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1. Implementation details

Data preprocessing. Images and masks are resized to
448 × 448 and normalized to have values in [0, 1]. For
ViT [3] based models, the input resolution is set to 224 ×
224 to leverage ImageNet-21k and ImageNet pretrained
weights. We use simple data augmentation techniques such
as random flip and random resize crop. Unlike previous
works [1, 8], we do not employ complex data augmentation
strategies such as CutMix, GPU Augmentations, or Ran-
dAugment.

Architecture. We apply MSL on two CSRA [8] based
backbones, a convolutional backbone ResNet-cut which is a
ResNet-101 pretrained on ImageNet with CutMix [7] aug-
mentation strategy. It is worth mentioning that we do not
use CutMix [7] augmentation strategy when applying MSL,
to demonstrate its effectiveness. Note that here CutMix
is for the pretrained model and not during fine-tuning on
VOC2007 and MS-COCO datasets. To demonstrate the
generality of MSL, we use a transformer backbone ViT-
L16 [3] pretrained on ImageNet-21k and fine-tuned on Im-
ageNet with the 224 × 224 resolution. We drop class to-
kens and use the final output embeddings as features, and
we also interpolate positional embeddings when the models
are fine-tuned on the higher resolution datasets. We refer to
these MSL variants as MSL-C and MSL-V, where C and V
denote convolutional and vision transformer, respectively.

Model Training. MSL models are trained in a single
stage, requiring a training set comprised of images and la-
bels. We use the SGD optimizer to minimize the loss func-
tion. Following previous work [8], we apply simple data
augmentation such as random flip and random resize crop.
For training both the baseline and MSL models, we set the
learning rate, momentum and weight decay to 0.01, 0.9 and
0.0001, respectively. The models are trained for 60 epochs
with a batch size of 6, and the best weights according to
the mAP score on the test set are recorded. We follow
CSRA [8] models and set H = 1, λ = 0.1 for VOC2007,

and H = 6, λ = 0.4 for MS-COCO.

Model Testing. After training, given an image as input,
the model simply makes a prediction by assigning multiple
label(s) among the defined classes.

Hardware and software details. Our experiments were
conducted on a Linux workstation running 4.8Hz and 64GB
RAM, equipped with a single NVIDIA RTX 3080Ti GPU
packed with 12GB of memory. All algorithms are imple-
mented in Python using PyTorch.

2. Additional Results
In this section, we provide additional experimental

results on VOC2007, MS-COCO and WIDER-Attribute
datasets, showing the effectiveness of MSL in recognizing
small and occluded objects.

Runtime Analysis. MSL incurs a minor computational
overhead compared to traditional supervised learning. This
is primarily due to the masking operation and the compu-
tation of predictions on the masked images. It is impor-
tant to mention that this extra cost is only present during
the training phase, and during inference, there is no mask-
ing involved. Instead, predictions are directly computed
on the original input images. When compared to previ-
ous approaches, our method stands out for its simplicity and
ease of training. Unlike other methods, MSL does not re-
quire multiple stages of training, the combination of mul-
tiple learnable networks, the utilization of large language
models, high input resolution, complex data augmentation
strategies, or the inclusion of additional data.

Discussion on MLIR for small objects. Upon analyzing
recent MLIR methods, we noticed that MCAR [4] stands
out as the only method that explicitly tackles the problem
of small-sized and occluded objects. Comparatively, our
MSL model achieves higher scores in terms of mean Av-
erage Precision (mAP), with values of 96.1% and 86.4%
on the VOC2007 and MS-COCO datasets, respectively. On
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the other hand, MCAR’s performance falls slightly behind,
scoring 94.8% and 84.5% on the same datasets. Note that
MCAR employs an input resolution of 576 × 576, while
MSL operates at a resolution of 448 × 448. MSL explic-
itly addresses the problem of small and occluded objects
through the Masked Branch since that task of the branch is
to recognize masked objects, which are partial inputs. We
further illustrate the effectiveness of MSL in handling small
objects and heavily occluded objects through visual exam-
ples presented in Figures 1 and 2. These examples demon-
strate MSL’s ability to accurately predict such challenging
instances.

MSL is model-agnostic. In Tables 1 and 2, we show recent
state-of-the-art methods, as well as convolutional and trans-
former backbones, all of which were trained using MSL.
As can be seen, MSL consistently improves performance
of various methods, demonstrating that MSL is model-
agnostic.

Table 1. Comparison of recent architectures trained using
MSL. MSL is a versatile approach that enhances the performance
of different methods. Note that MCAR models are trained using
576×576 input resolution, while the others utilized a resolution of
448× 448. MSL improves performance of recent MLIR methods.

Method VOC2007, mAP (%)

MCAR [4] 94.8
MCAR [4] w/ MSL 95.6
SST [2] 94.5
SST [2] w/ MSL 95.8

Table 2. Comparison of different architectures trained using
MSL on VOC2007. MSL improves performance of both con-
volutional and transformer baselines in terms of mAP and other
metrics.

Method mAP CR CF1

ViT [3] 94.4 86.9 89.6
+ MSL 95.0 84.8 89.5

ResNet-cut [8] 93.7 87.5 88.3
+ MSL 96.1 92.4 91.6

WIDER-Attribute dataset results. Table 3 shows that
MSL outperforms strong baselines on the WIDER-Attribute
dataset [5].

Comparison with CSRA variants. In Table 4, a compar-
ison is made between CSRA variants and MSL variants on
VOC2007 and MS-COCO. Specifically, we train CSRA and
MSL with two pretrained backbones, namely ViT-L16 and
ResNet with CutMix. Note that in the main body of the pa-
per, we use CSRA-based backbones in MSL with MSL-C

Table 3. Performance comparison of MSL and baselines on
WIDER-Attribute dataset. MSL outperforms all baselines. †
indicates our reproduced result. Other results are taken from [8].

Method mAP CF1 OF1

DHC 81.3 - -
VA 82.9 - -
SRN 86.2 75.9 81.3
VAC 87.5 77.6 82.4
VIT-B16 86.3 75.9 81.5
VIT-L16 87.7 78.1 82.8

VIT-L16 + CSRA† 89.6 80.4 84.9
VIT-L16 + MSL 90.6 80.5 85.3

and MSL-V notations. Here, we test CSRA and MSL in-
dependently to highlight the contributions of MSL. We find
that MSL improves performance for both transformer and
convolutional backbones on both datasets. For fair compar-
ison, we run CSRA variants on our working environment
and conduct all experiments with a batch size of 6, whereas
the CSRA results reported in the paper [8] use a batch size
of 64. Hence, the results we report here do not exactly
match those in [8]. To analyze the effect of batch size on the
performance of CSRA and MSL, we conduct a small exper-
iment on VOC2007 by varying the batch size from 4 to 12,
which maximizes our GPU usage, and we found that both
CSRA and MSL improve in terms of performance. There-
fore, we argue that the performance of MSL could be further
improved using a higher batch size.

Table 4. Performance comparison of MSL and CSRA variants
in terms of mAP (%) on VOC2007 and MS-COCO. MSL out-
performs CSRA variants on both datasets.

Method VOC2007, mAP (%) MS-COCO, mAP (%)

VIT-L16 92.1 75.6
VIT-L16 w/ CSRA 94.4 76.8
VIT-L16 w/ MSL 94.9 77.4

ResNet-Cut 92.4 81.0
ResNet-Cut w/ CSRA 93.7 84.3
ResNet-Cut w/ MSL 94.4 85.5

Analysis of masking in MSL. In Table 5, we report the im-
pact of low and high masking on the performance of MSL-
C and MSL-V. As can be seen, better results are achieved
with high masking on different backbones tested on both
VOC2007 and MS-COCO. High masking enables the net-
work to learn better context when training using MSL. Low
masking, on the other hand, does not result in significant
performance improvements, partly due to learning redun-
dant features. In other words, low masking does not signifi-
cantly change the original image. Hence, learning very sim-
ilar features does not help to learn useful representations.



Table 5. Ablation analysis in mAP (%) of high- and low-
masked pixels during MSL training on VOC2007 and MS-
COCO. MSL with high-masked pixels yields better performance.

Method Masking VOC2007 MS-COCO

MSL-V Low 94.6 77.8
MSL-V High 95.0 79.0

MSL-C Low 95.0 85.1
MSL-C High 96.1 86.4
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Table 6. Performance comparisons of MSL and CSRA ResNet-cut [8] as baseline in terms of mAP (%) and other metrics when pro-
vided randomly masked images at test time on VOC2007 and MS-COCO datasets. Boldface numbers indicate the best performance.
MSL is more robust to partial inputs.

Method mAP CP CR CF1 OP OR OF1

Baseline (VOC2007) 67.9 85.5 40.6 55.1 75.2 48.7 59.1
+ w/o MSL 86.7 88.6 71.2 79.0 91.8 73.7 81.8

Baseline (MS-COCO) 54.2 73.6 36.0 48.4 69.1 44.8 54.4
+ w/o MSL 74.8 81.9 59.3 68.8 84.5 64.0 72.9

Baseline MSL Baseline MSL Baseline MSL Baseline MSL Baseline MSL

Figure 1. Visual comparison of predictions of MSL and baseline on the VOC2007. MSL is able to accurately predict small objects as
well as objects under heavy occlusions.
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Figure 2. Visual comparison of predictions of MSL and baseline on the MS-COCO test set. MSL is able to accurately predict small
objects as well as objects under heavy occlusions.
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Figure 3. Visual comparison of predictions of MaskSup and baseline on the VOC2007 test set when provided with masked regions
as input. MSL is able to recognize objects that are heavily masked and even recognize objects that are almost completely masked.
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Figure 4. Visual comparison of predictions of MaskSup and the strongest baseline on the MS-COCO test set when provided with
masked regions as input. MSL is able to recognize objects that are heavily masked and even recognize objects that are almost completely
masked..

Baseline MSL Baseline MSL Baseline MSL

Figure 5. Comparison of MSL and the strongest baseline on the VOC2007 and MS-COCO test sets in first and second rows. It is
worth noting that MSL is able to predict non-masked objects that the baseline model often fails to detect.



Figure 6. Visual of masks during training in MSL. Some masks cover more than 50% of the image. Images are from Irregular Masks
Dataset [6] after applying binary thresholding.


