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Abstract

Video Anomaly Detection (VAD) represents a challeng-
ing and prominent research task within computer vision. In
recent years, Pose-based Video Anomaly Detection (PAD)
has drawn considerable attention from the research commu-
nity due to several inherent advantages over pixel-based ap-
proaches despite the occasional suboptimal performance.
Specifically, PAD is characterized by reduced computa-
tional complexity, intrinsic privacy preservation, and the
mitigation of concerns related to discrimination and bias
against specific demographic groups. This paper intro-
duces TSGAD, a novel human-centric Two-Stream Graph-
Improved Anomaly Detection leveraging Variational Au-
toencoders (VAEs) and trajectory prediction. TSGAD aims
to explore the possibility of utilizing VAEs as a new ap-
proach for pose-based human-centric VAD alongside the
benefits of trajectory prediction. We demonstrate TSGAD’s
effectiveness through comprehensive experimentation on
benchmark datasets. TSGAD demonstrates comparable re-
sults with state-of-the-art methods showcasing the poten-
tial of adopting variational autoencoders. This suggests a
promising direction for future research endeavors. The code
base for this work is available at https://github.com/
TeCSAR-UNCC/TSGAD.

1. Introduction

In recent years, surveillance cameras have been prolifer-

ation; nevertheless, the available human resources are insuf-

ficient for real-time monitoring and expeditious, judicious

response to the voluminous video feed generated by these

cameras [30]. Furthermore, there may exist an inherent bias

in decisions made by humans. Hence, as Artificial Intelli-

gence (AI) continues to advance, the integration of smart

technologies for the detection of anomalous behaviors has

garnered significant attention across various communities.

Anomaly detection can refer to a wide range of appli-

cations [5, 15, 17, 31, 34]. One of the main subsets is the

domain of human-centric video anomaly detection that has

been examined from two primary perspectives: pose-based

video anomaly detection [27, 39] and pixel-based video

anomaly detection [32, 37]. While pixel-based approaches

typically demonstrate superior detection accuracy, Pose-

based Anomaly Detection (PAD) has attracted considerable

research interest due to reduced computational complexity,

inherent privacy preservation, and robustness to visual vari-

ations and background noise [3, 10, 25]. However, PAD

methods may suffer from limited information and reliance

on accurate pose estimation. The choice between these ap-

proaches should consider the specific application’s require-

ments, balancing the need for privacy, efficiency, and the

nature of targeted anomalies. In this article, our focus is

pose-based approaches.

Video anomaly detection presents an intrinsic challenge

as it inherently constitutes an open-set problem character-

ized by the potential emergence of diverse normal and ab-

normal behaviors within the real-world setup, driven by the

complexity of human behavior. The supervised training,

often reliant on data that may inadequately represent the

entirety of anomalies, suffers from limited generalizabil-

ity [29]. In response to this challenge, the field employs

unsupervised learning techniques as the most common ap-

proach [16] to improve the efficacy of anomaly detection

models. We embrace the unsupervised paradigm to mitigate

this challenge in line with prior scholarly investigations.

This study introduces TSGAD, a novel approach that

amalgamates reconstruction, distribution analysis, and tra-

jectory prediction, offering promising avenues to enhance

PAD performance. TSGAD departs from conventional

methodologies by incorporating Variational Autoencoders

(VAEs) [20]. Additionally, we propose the use of a State-

of-the-Art (SotA) trajectory prediction model [1] as a com-

plementary branch for PAD. The trajectory, derived from

the human pose, is defined as the temporal evolution of the

spatial displacement of the central keypoint (middle of the

hips). Motivations for using trajectory are two-fold; firstly,
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in instances involving individuals positioned at a significant

distance from the camera, trajectory data exhibits reduced

noise levels compared to pose. Secondly, the chosen trajec-

tory prediction model can capture social interactions miss-

ing from most pose-based methods through Graph Isomor-

phism.

We evaluate the proposed TSGAD method through com-

prehensive experiments. To ensure a thorough analysis,

unlike most previous works, we employ not only the con-

ventional Area Under the Receiver Operating Characteristic

Curve (AUC-ROC) metric but also supplementary metrics,

including Area Under the Precision-Recall Curve (AUC-

PR) and Equal Error Rate (EER). These additional metrics

provide a more nuanced understanding of our model’s per-

formance, addressing aspects that AUC-ROC may not fully

represent. TSGAD attains AUC-ROC values of 80.67%,

81.77%, and 69.55% on three well-known anomaly detec-

tion benchmarks namely ShanghaiTech [24], Human Re-

lated ShanghaiTech [28], and CHAD [11] respectively. This

exploratory study and its results showcase our method’s

ability to compete with SotA models in the field of anomaly

detection, affirming its potential as a novel avenue for future

endeavors and enhancement in PAD.

The contributions of this paper are as follows:

• Investigating the fusion of prediction-based and

reconstruction-based approaches utilizing Variational

Autoencoders (VAE) for human-related anomaly de-

tection.

• Exploring the benefits of using social interaction-

aware trajectory prediction for anomaly detection and

propose an integrated approach that combines pose and

trajectory methods for comprehensive anomaly detec-

tion.

• Conducting a thorough evaluation of the proposed so-

lutions using a comprehensive range of metrics to gain

deeper insights into the merits and limitations of the

design under consideration.

• Empirical analysis of different pose anomaly score for-

mulations to assess their impact on anomaly detection

performance.

2. Related Works
2.1. Pixel-based Approaches

[32] proposes a multi-branch design for anomaly detec-

tion. The proposed method is based on the idea that anoma-

lies can be detected using abrupt changes in velocity, pose,

and deep features extracted from input frames. [37] tackles

anomaly detection by solving a spatio-temporal jigsaw puz-

zle. The jigsaw solver is only trained using normal videos.

The permutation predictions from the solver are used as a

measure for anomaly detection. [6] introduced a two-stream

framework for anomaly detection. The context recovery

stream predicts the future video frames and the knowledge

recovery stream compares the video snippet to the knowl-

edge gathered from training on normal videos. [12] also

proposes a multi-branch multi-task design. The first branch

learns to predict the arrow of time, assuming that detecting

the arrow of time is harder for anomalous behaviors. The

second branch tries to detect irregular motion in the input

sequence. The final branch reconstructs the detected ob-

jects bounding boxes. The model is trained on normal sam-

ples, and in the inference stage, the score from all these tree

branches is fused to form the final score.

2.2. Pose-based Approaches

Normal Graph [26] leverages spatial-temporal graph

convolutional network for predicting future pose segments

trained on the normal data. The predicted pose segments are

then compared to the ground truth, and the Mean Squared

Error (MSE) loss is used as the anomaly score. Since

the model is only trained on normal data, it cannot pre-

dict anomalous movements accurately. Hence the drastic

difference between the prediction and actual future move-

ment can reveal anomalous behavior. [33] uses a similar

prediction-based approach. [33] not only predicts future

pose sequences but also leverages a past prediction mod-

ule for multi-scale past/future prediction to enhance the ac-

curacy of the final anomaly detection model. [40] similarly

proposes a prediction-based method but with three branches

for predicting future pose, trajectory, and the motion vector.

MPED-RNN [28] proposes a Gated Recurrent Unit-based

(GRU) encoder-decoder structure with two decoder heads:

a predicting and a reconstructing head. The reconstruction

and prediction scores are then fused to generate the anomaly

score. Similar to MPED-RNN, [22] uses both reconstruc-

tion and prediction for anomaly detection, but [22] uses

Long Short-Term Memory (LSTM) units instead of GRUs.

MemWGAN-GP [23] also uses a similar dual-head decoder

structure upgraded with a modified version of the Wasser-

stein generative adversarial network [2] for improving the

prediction and reconstruction quality. GEPC [27] uses a

spatio-temporal graph autoencoder combined with a clus-

tering layer for assigning soft probabilities to the input pose

segments. The output probabilities are a measure of anoma-

lous behavior.

3. Preliminaries
3.1. Variational Autoencoders

Variational Autoencoder (VAE) first introduced by [20]

is a type of generative model initially designed for proba-

bilistically generating content. They have gained popularity

for their capability to model complex data distribution in
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an unsupervised manner. Similar to Autoencoders (AEs),

VAEs can be used for feature learning, dimensionality re-

duction, denoising, etc. However, VAEs can be more ad-

vantageous for anomaly detection due to their probabilistic

nature and ability to capture intricate data distributions. In

VAEs, the objective function consists of two terms: a re-

construction term similar to AEs and a regularization term

as depicted by Eq. (1):

LVAE = Lreconstruction + Lregularization (1)

LVAE indicates Evidence Lower Bound (ELBO) which is

maximized during the training. The reconstruction term is

defined as the log-likelihood of the observed data given the

latent variable:

Lreconstruction =
1

N

N∑
n=1

Eq
[
log p (xn | z)] (2)

where N is the number of data samples, xn is the data

sample and z is the latent variable. On the other hand, the

regularization term encourages the latent space to have a

specific structure, typically a multivariate Gaussian distri-

bution. This objective is achieved using Kullback-Leibler

(KL) divergence between the approximate posterior distri-

bution q(z | x) and the prior distribution p(z):

Lregularization = − 1

N

N∑
n=1

KL (q (z | xn) ‖p(z)) (3)

Another variant of VAEs named β-VAE [4] was later in-

troduced to learn a more disentangled representation in the

latent space. This goal is achieved by highlighting the regu-

larization term in Eq. (1) by adding a multiplier β with set-

ting β values greater than 1. Later, TC-VAE [7] introduces

a new formulation for achieving better disentanglement:

LTC−VAE := Eq(z|n)p(n)[log p(n | z)] − αIq(z; n)

−βKL

⎛⎜⎜⎜⎜⎜⎜⎝q(z)‖
∏

j

q
(
z j

)⎞⎟⎟⎟⎟⎟⎟⎠ − γ∑
j

KL
(
q
(
z j

)
‖p
(
z j

)) (4)

Where n is a distinct integer index assigned to every

training datapoint establishing a random variable that uni-

formly covers the range from 1 to N. Keep in mind that

q(z, n) = q(z|n)p(n) = q(z|n) 1
N . The first term corresponds

to the reconstruction loss. The second term is the Index-

Code Mutual Information, which is the mutual information

between the data variable and latent variable or Iq(z; n). It

is shown that maximizing this term results in learning more

disentangled latent representations based on previous stud-

ies [4, 8]. Total correlation calculated by the third term in

Eq. (4) quantifies the dependence between variables. Opti-

mizing this term leads to learning independent factors in the

data distribution. The final term denoted as dimension-wise

KL, is responsible for maintaining congruence between the

latent dimensions and their respective prior distributions. α,

β, and γ are adjustable multipliers chosen by the require-

ments.

3.2. Trajectory Prediction

A trajectory prediction problem is forecasting a subject’s

future position based on the observed trajectory. Trajec-

tory prediction has many real-world computer vision appli-

cations such as pedestrian safety, transportation safety, in-

telligent traffic monitoring, and video surveillance [13, 36].

Predicted trajectory can also be used for anomaly detec-

tion; sudden changes in the trajectory can be an indication

of anomalous events.

We leverage Pishgu [1] for the purpose of anomaly

detection. Pishgu uses the Graph Isomorphism Network

(GIN) to capture the interdependencies between subjects

available in the scene and constructs latent representations

considering both social interactions and the movement his-

tory of the subject. In the next step, an attentive Convo-

lutional Neural Network (CNN) is used for capturing tem-

poral relations and constructing the final predicted trajecto-

ries.

4. TSGAD
In this section, we introduce our proposed TSGAD

methodology.

4.1. Problem Formulation

As depicted in Fig. 1, TSGAD has two branches. The

top branch uses a window of size Tin of observed poses as

input:

Pi = [Pi
t0 , P

i
t0+1, ..., P

i
t0+Tin−1] (5)

where Pi
t0 shows the pose of person i in frame t0. A se-

quence of the position of the center of a person is used as

the input of the trajectory branch:

Ci = [Ci
t0 ,C

i
t0+1, ...,C

i
t0+T ′in−1] (6)

where Ct0 is the location of the center of person i in frame

t0 and T ′in is the input window size for the trajectory predic-

tion branch. Pose branch and trajectory branch output S i
Pose

and S i
Tra j respectively associated with the ith person. The

final output of the model is constructed by combining nor-

malized S i
Pose and S i

Tra j:

S i
Final = a · Norm(S i

Pose) + b · Norm(S i
Tra j) (7)

where a and b are multipliers calculated by dividing the

AUC-ROC of each branch by the sum of the AUC-ROC of

both branches. In the final step, the maximum score over all
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Figure 1. TSGAD architecture. The upper branch utilizes Graph Attentive Variational Autoencoder (GA-VAE) for learning the character-

istics of normal human behavior distribution in an unsupervised manner. The lower branch leverages a SotA trajectory prediction method,

namely Pishgu [1], for learning how to predict normal trajectories. Pi
t denotes the ith person at time t, and D, μ, and σ refer to the latent

representation’s dimensions, mean, and variance. z follows a normal distribution with z ∼ (0, I), where I is the identity matrix.

available subjects in the scene is calculated and considered

as the anomaly score associated with a frame:

S Final = maxi∈N(S i
Final) (8)

4.2. Archietcture

As depicted in Fig. 1, the proposed model consists of two

branches; the top branch uses pose data and Graph Attentive

Variational Autoencoder (GA-VAE) to capture the distribu-

tion of normal behavior. The bottom branch uses the state-

of-the-art trajectory prediction method Pishgu [1] to predict

future trajectories. Deviation from predicted trajectories is

used as a measure of anomaly detection.

4.2.1 GA-VAE

In order to capture the relationships between joints in hu-

man pose, we choose to represent the human pose using

a spatio-temporal graph formulation. The joints are con-

sidered the nodes of the graph, and the edges represent

the physical limbs and learned motion dependencies nec-

essary for modeling the human pose effectively. In the con-

text of video anomaly detection, it is imperative to incor-

porate temporal edges to represent the temporal interde-

pendencies among frames. Thus, the resulting graph is a

spatio-temporal graph that formulates human motion. We

propose building a deep variational autoencoder leverag-

ing Spatial-Temporal Graph Convolution (ST-GCN) blocks

[38]. [27] extended ST-GCN blocks by adding more sophis-

ticated spatial attention, including three GCN blocks for

better capturing physical relations, dataset-level keypoint

relations, and sample-specific relations. We chose a sym-

metric design for the VAE with both Graph Attentive Prob-

abilistic encoder (GA-VAE encoder) and Graph Attentive

Probabilistic decoder (GA-VAE decoder) having 9 layers

of modified ST-GCN blocks, demonstrated in Fig. 2. Un-

like previous works that use ST-GCN for processing input

pose data, we adopt a probabilistic approach using ST-GCN

blocks for constructing a VAE. We consider the prior distri-

bution to be a normal distribution to match real-world hu-

man behavior. The probabilistic design is instrumental in

capturing the inherent distribution of input data, thereby en-

hancing the modeling of normal behavior and consequently

leading to improved performance in the context of anomaly

detection.

The training procedure is conducted in an unsupervised

fashion, wherein the GA-VAE is trained on the training

set, which exclusively includes normal behavior exemplars.

During the GA-VAE training phase, we implement the Ev-
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Figure 2. Nine layers of spatio-temporal graph convolution blocks

are stacked forming the GA-VAE encoder. Each block consists of

a spatial attention graph convolution followed by temporal con-

volution, batch normalization, a residual connection, and a final

activation function.

idence Lower Bound (ELBO) loss as introduced in Eq. (4)

with the same setup for multipliers as [7]. Throughout the

training, the model minimizes the negative LGA−VAE to en-

courage the understanding of normal behavior patterns. Af-

ter the model is trained, for each datapoint in the training

set, the corresponding normal distribution parameters (μn

and σn) are concatenated and averaged over the training set

to find an Aggregated Parameter Index (API) that is a single

vector representing the characteristics of normal behavior:

API =
1

N

∑
n∈N

(μn ‖ σn) (9)

where N is the number of datapoints in the training set.

Fig. 3 shows the inference process. Each datapoint in the

test set is passed through the trained GA-VAE encoder to

map to a normal distribution parameterized by μn and σn.

To calculate the anomaly score, we measure the deviation

from API:

S Pose =

√∑
j=1

(
(μn ‖ σn) j − API j

)2
(10)

where (μn ‖σn) j is the jth dimension of the latent param-

eters of input datapoint.

4.2.2 Trajectory Prediction for Anomaly Detection

As illustrated in Fig. 1, we advocate the incorporation of a

trajectory prediction model within the context of anomaly

detection. The primary goal is to introduce the dynamics of

interactions between subjects, thereby extracting valuable

insights for anomaly detection. The trajectory prediction

branch, fundamentally concerned with modeling the col-

lective movements of individuals within the scene, comple-

ments the pose-based anomaly detection approach. This ap-

proach is introduced to mitigate challenges associated with

pose estimation inaccuracies. Consequently, the trajectory

perspective provides a complimentary and holistic represen-

tation of the scene, contributing to improved anomaly detec-

tion capabilities.
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Figure 3. The inference phase. The deviation from API in the

latent space is used for calculating the pose score (S Pose). The dif-

ference between the predicted trajectory and the actual trajectory

measured by MSE is used to form a trajectory score (S Tra j). The

weighted sum of these normalized scores forms the final anomaly

score. μn, σn, and API refer to the mean, and variance of the latent

representation and Aggregated Parameter Index defined in Eq. (9)

respectively.

We adopt the state-of-the-art trajectory prediction model

Pishgu, as introduced by [1] for the specific application

of anomaly detection. We train Pishgu exclusively on the

training set, comprising instances of normal behavior, with

a focus on capturing the nuanced features of typical move-

ments. The training process involves the optimization of the

Mean Squared Error (MSE) loss function.

MSE =
1

N

N∑
n=1

(
Yn − Ŷn

)2
(11)

where Ŷ is the predicted trajectory and Y is the actual

coordinates of a person.

In the inference phase, as illustrated by Fig. 3, the pre-

dicted trajectories for each datapoint are compared to the

corresponding actual trajectories. The deviation is mea-

sured using MSE loss and used as an anomaly score S Tra j.

5. Experimental Setup

In this section, we focus on different aspects of our ex-

perimental setup. All the trainings and evaluations have

been conducted on a computational workstation featuring

three NVIDIA RTX A6000 GPUs and an AMD EPYC 7513

32-core CPU with 256 gigabytes of memory.
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5.1. Datasets

5.1.1 ShanghaiTech Campus (SHT)

The ShanghaiTech Campus (SHT) dataset [24] serves as

the principal benchmark for video anomaly detection. This

dataset comprises more than 317,000 frames spanning 13

distinctive scenes. SHT is partitioned into an unsuper-

vised subset, including in excess of 274,000 normal training

frames and 42,883 normal and anomalous frames for testing

purposes. For the purposes of our investigation, we adopt

the unsupervised split to facilitate a meaningful comparison

with prior research endeavors. PAD methodologies assess

their models using this dataset due to its expansive scale

and the presence of videos with sufficient quality recorded

at 24 frames per second (FPS) for pose extraction. Addi-

tionally, the types of anomalies in this dataset are also a

good representative of real-world scenarios. Accordingly,

we integrate the SHT dataset into our experimental frame-

work, employing a methodology consistent with previous

SotA studies [39] for pose extraction and tracking [21], thus

ensuring equitable comparisons.

5.1.2 HR-ShanghaiTech (HR-SHT)

The dataset introduced in [28] represents a specialized

adaptation of the ShanghaiTech Campus (SHT) dataset,

specifically tailored for human-related anomaly detection.

It is essential to underscore that the sole differentiation be-

tween this dataset and the original SHT dataset lies in its

exclusive concentration on anomalies related to human ac-

tivities.

5.1.3 Charlotte Anomaly Dataset (CHAD)

Pazho et.al. [11] introduce the Charlotte Anomaly Dataset

(CHAD), a high-resolution multi-camera dataset for video

anomaly detection in real-world scenarios. It comprises ap-

proximately 1.15 million frames, encompassing 1.09 mil-

lion normal frames and 59,000 anomalous frames with

detailed annotations for human detection, tracking, and

pose. It is suitable for both unsupervised and skeleton-

based anomaly detection methods and emphasizes the use

of multiple metrics for benchmarking, discussed in Sec. 5.3.

CHAD simulates a real parking lot surveillance environ-

ment with four high-resolution cameras recording at 30

FPS, and a diverse set of actors engaging in normal and

anomalous behaviors across 22 different anomaly classes.

It stands out as the largest anomaly detection dataset with

pose and tracking annotations. We exclusively employ the

official unsupervised split of CHAD. We choose to conduct

experiments on this dataset due to its role in establishing a

standardized benchmark for pose-based anomaly detection,

thereby mitigating variations due to the quality of extracted

poses by different methods.

5.2. Training Setup

To optimize hyperparameters, a grid search methodol-

ogy has been employed, systematically exploring parameter

combinations. All trainings have been conducted 5 times to

ensure stability. Adam optimizer is used in all training se-

tups.

5.2.1 SHT and HR-SHT

For SHT and HR-SHT datasets, a batch size of 256 is em-

ployed for processing the data, while a dropout rate of 0.3

is applied to regularize the neural network. The model un-

dergoes training for 20 epochs with an initial learning rate

of 0.005 and a decay factor of 0.99. Also, a weight decay

of 5.0e-05 to prevent overfitting. The input window size for

set to 24 frames, allowing the model to capture meaningful

patterns within the data over a span of 1 second.

For training the trajectory branch, we follow the setup

of [1]; we used the input window size of 16 frames and

the output prediction horizon of 14 frames and trained the

model for 80 epochs with a learning rate of 0.02 and batch

size of 64.

5.2.2 CHAD

For the CHAD dataset, a similar configuration is employed.

A batch size of 256 is used, and a dropout rate of 0.3 is ap-

plied for regularization. The training also spans 20 epochs,

with a slightly higher initial learning rate of 0.01, which

still decays by a factor of 0.99. Similar to the first setup

a weight decay of 5.0e-05 is employed for regularization.

In this case, the input window size is set to 1 second or 30

frames.

When training the trajectory branch on CHAD, we use

similar parameters as training on SHT with a window size

set to 16 for input data and a prediction horizon of 14 for the

output. The training process spanned 80 epochs, employing

a learning rate of 0.02, a batch size of 64, and the Adam

optimizer.

5.3. Metrics

5.3.1 AUC-ROC

The Area Under the Receiver Operating Characteristic

(AUC-ROC) curve is used to evaluate the accuracy of bi-

nary classification models. The ROC curve represents the

trade-off between a model’s true positive rate (sensitivity)

and its false positive rate (1-specificity) at various classi-

fication thresholds. A higher AUC-ROC score indicates a

better model performance.

5.4. AUC-PR

The Area Under the Precision-Recall Curve (AUC-PR)

quantifies the quality of binary classification, particularly in
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Table 1. AUC-ROC compared on SHT [24], HR-SHT [28], and

CHAD [11] datasets.

Methods SHT HR-SHT CHAD

MPED-RNN [28] 73.40 75.40 -

GEPC [27] 75.50 - 64.90

PoseCVAE [19] 74.90 75.70 -

MSTA-GCN [9] 75.90 - -

MTP [33] 76.03 77.04 -

HSTGCNN [40] 81.80 83.40 -

STGformer [18] 82.90 86.97 -

TSGAD-Pose (Ours) 80.59 81.52 59.30

TSGAD-Traj (Ours) 67.78 68.45 69.55

TSGAD (Ours) 80.67 81.77 66.49

imbalanced datasets. AUC-PR measures the area under the

precision-recall curve, where precision represents the ratio

of true positive predictions to the total positive predictions,

and recall (sensitivity) quantifies the model’s ability to cap-

ture all true positive instances. A higher AUC-PR value

indicates a better-performing model, as it reflects a higher

precision-recall trade-off, signifying superior discrimina-

tion and a more effective approach for problems where false

positives can be costly or misleading.

5.5. EER

The Equal Error Rate (EER) quantifies the point at which

the False Acceptance Rate (FAR) and False Rejection Rate

(FRR) are equal for a binary classification model. EER

identifies the threshold at which the decision boundary bal-

ances the rate of false positives vs. false negatives. Please

note that EER alone is insufficient [35] but when combined

with other metrics, offers valuable insights. A lower EER

signifies improved system accuracy, as it indicates a better

equilibrium between security and usability.

6. Results
6.1. Comparison with State-of-the-Art Approaches

The AUC-ROC metric stands as the most extensively in-

vestigated performance measure within the realm of PAD.

Tab. 1 presents the investigation across diverse datasets re-

vealing promising results for TSGAD, approaching SotA

performance. This underscores the potential for further ex-

ploration of the innovative approach that integrates VAEs

and probabilistic modeling, along with the fusion of pose

and trajectories.

As illustrated in Table 1, it is evident that distinct

branches exert varying influences, and the outcomes mani-

fest their complementary nature. For instance, in the context

of the SHT dataset [24], the pose and trajectory branches in-

dividually attain AUC-ROC values of 80.59% and 67.78%,

respectively. However, the combination of these branches

yields the most favorable results, implying that each branch

addresses a complementary subset of anomalies, and their

combined operation aims at mutual enhancement. The same

trend can be seen for HR-SHT [28] as well.

Conversely, when examining the results for CHAD [11],

the AUC-ROC values distinctly indicate that a trajectory-

based approach is notably more well-suited for this partic-

ular environment. This observation may serve as an indica-

tor of a potentially noisier environment or less precise pose

annotations. As previously discussed, the inherent robust-

ness of trajectory data, when contrasted with pose informa-

tion, likely contributes to the superior results achieved with

trajectory-based anomaly detection in this scenario. The in-

corporation of both pose and trajectory components appears

to diminish the overall performance. Consequently, the se-

lection of the most appropriate model depends on the intrin-

sic characteristics of the given environment. It is imperative

to undertake comprehensive explorations involving diverse

branches to tailor the model effectively to the specific re-

quirements of the environment under consideration.

6.2. Detailed Analysis of Supplementary Metrics

While the AUC-ROC metric provides valuable insights

into the effectiveness of binary classifiers, its applicability

diminishes when confronted with imbalanced datasets [14].

Conversely, AUC-PR exhibits greater resilience in the pres-

ence of imbalanced data, thereby aiding in a deeper com-

prehension of the model’s underlying characteristics. In ad-

dition to examining AUC-PR, we report EER to not only

gain better insights into the sensitivity-specificity balance

but also assess the real-world practicality of our model.

AUC-PR and EER are only compared to GEPC [27] as it is

the only model that its performance was reported for these

metrics in [11].

As evident from the comprehensive metrics presented

in Tab. 2, the behavior of the AUC-PR aligns with the

trends observed in the AUC-ROC, as elucidated in Tab. 1,

across various branches. Nevertheless, it is noteworthy that,

across all scenarios, AUC-PR consistently registers values

lower than AUC-ROC. This can be attributed to the inher-

ent optimism of the AUC-ROC metric in imbalanced data,

thereby complicating the translation of AUC-ROC results

to real-world scenarios. The observed discrepancy signi-

fies a misclassification event pertaining to the minority class

(anomaly instances). Thus, a judicious calibration of the

model to achieve an optimal trade-off between precision and

recall is imperative, depending upon the specific require-

ments of the given use case.

In the field of anomaly detection, achieving a delicate

balance between the False Acceptance Rate (FAR) and the

False Rejection Rate (FRR) is critical, as it balances the im-
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Table 2. AUC-PR and EER of our design compared to GEPC [27] on SHT [24], HR-SHT [28], and CHAD [11] datasets.

SHT HR-SHT CHAD

AUC-PR ↑ EER ↓ AUC-PR ↑ EER ↓ AUC-PR ↑ EER ↓

GEPC [27] 65.70 0.31 - - 58.70 0.38

TSGAD-Pose (Ours) 72.20 0.25 72.07 0.25 53.69 0.41

TSGAD-Traj (Ours) 61.26 0.38 61.32 0.38 66.97 0.36

TSGAD (Ours) 73.86 0.25 74.20 0.25 62.18 0.38

Table 3. Comparing different methods of calculating pose anomaly score (S Pose) on SHT [24], HR-SHT [28], and CHAD [11] datasets.

SHT HR-SHT CHAD

AUC-ROC ↑ AUC-PR ↑ EER ↓ AUC-ROC ↑ AUC-PR ↑ EER ↓ AUC-ROC ↑ AUC-PR ↑ EER ↓

GA-VAE 80.59 72.20 0.25 81.52 72.07 0.25 59.30 53.69 0.41

GA-VAE-ELBO 76.08 69.14 0.30 76.91 69.33 0.30 59.77 54.19 0.43

perative need for high sensitivity to detect anomalies and

high specificity to minimize false alarms. The EER serves

as the main metric to pinpoint this equilibrium. Notably,

as depicted in Table 2, a substantial 34.2% reduction in

the EER is observed in both SHT and HR-SHT datasets

within the pose and combined models compared to the tra-

jectory, signifying a more harmonious approach to anomaly

detection. This trend is reversed in the context of CHAD,

where the trajectory branch excels in achieving a balanced

anomaly detection model, underscoring the contextual nu-

ances inherent in different environments.

6.3. Ablation Study

In this section, we focus on the pose branch of the TS-

GAD model. As previously discussed, during the training

of the GA-VAE, we employ the ELBO loss function. Max-

imizing ELBO forces the model to acquire more semanti-

cally significant representations within the latent space and

to achieve a more precise approximation of the true pos-

terior distribution. As a result, it ensures that the recon-

structed data closely resembles the original data, preserving

faithfulness in reconstruction.

In the context of unsupervised anomaly detection, when

applied to the training dataset consisting of normal videos, a

higher ELBO signifies stronger conformity to normal video

patterns. After training, when we transition to the test

dataset, which contains anomalous frames in addition to

normal ones, a low ELBO serves as an indicator of devi-

ations from the learned normal behavior, signifying abnor-

mality. This intrinsic quality of the ELBO can be used as a

standalone metric for detecting anomalies.

Therefore, as an alternative to the previously described

approach outlined in Sec. 4, which involved the construc-

tion of a distribution of distributions, we have adopted the

utilization of the Evidence Lower Bound (ELBO) inher-

ent to the GA-VAE model as a singular measure. This

approach allows us to quantitatively assess the advantages

gained through the aforementioned distribution of distribu-

tions technique. Tab. 3 presents a summary of the perfor-

mance enhancements accomplished through the utilization

of the specified technique. In the context of the SHT and

HR-SHT datasets, it is evident that GA-VAE outperforms

GA-VAE-ELBO in a statistically significant manner. Con-

versely, in the case of the CHAD dataset, we observe a

more subtle differentiation, with GA-VAE-ELBO exhibit-

ing a slight advantage in terms of both AUC-ROC and the

AUC-PR, albeit demonstrating inferior performance with

respect to the EER.

7. Conclusion

Our investigation in this paper delved into the efficacy

of variational autoencoders in combination with trajectory

prediction for pose-based anomaly detection. Through a se-

ries of experiments conducted across multiple benchmark

datasets, we have unveiled compelling evidence that this

approach holds significant promise. The demonstrated ef-

fectiveness of this approach, with consistent performance

on diverse datasets, indicates that it represents a worthwhile

avenue for future exploration and development within the

field of anomaly detection.
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