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Abstract

Achieving underwater coral seabed image segmentation
involves dividing an image into meaningful regions or seg-
ments, which, in this case, could represent different types of
corals, substrate, or other features in the underwater habi-
tat. We introduce an innovative network architecture, CNet,
designed for the segmentation of coral seabed images. This
architecture incorporates a three-branch parallel encoder
structure, employing an RGB encoder based on the ResNet
block, a Depth encoder based on the VGG block, and a
ShapeConv block-based Fusion encoder. The study con-
ducts comprehensive performance comparisons and abla-
tion experiments to evaluate the efficacy of CNet in com-
parison to state-of-the-art (SOTA) methods. The results
demonstrate an impressive mIoU of 81.83% on the coral
dataset, with the IoU of the minority class, Acropora, reach-
ing 73.61%. This is of crucial significance in the fields of
marine biology and environmental monitoring, playing a
pivotal role in the comprehensive understanding of coral
reef ecosystems. By automatically and accurately iden-
tifying different coral classes, scientists can gain insights
into threatened corals and their growth in different environ-
ments, providing crucial data for developing targeted con-
servation plans to promote coral recovery.

1. Introduction
Coral reefs, known as the “rainforests of the ocean”, are

a vital part of the marine ecosystem, providing refuge for
approximately 25% of ocean fish species and bestowing sig-
nificant economic and cultural benefits upon coastal global
communities [8]. However, human activities such as coastal
development, land reclamation, and overfishing have led to
the disappearance of about 14% of coral reefs [32]. With
the development of underwater remote sensing [7, 25], the
long-term monitoring and tracking of coral reefs growth
and health status through underwater coral seabed visual
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images have become imperative for predicting early warn-
ings, evaluating adverse events, and ensuring ecosystem re-
silience. This monitoring process involves the analysis and
extraction of valuable information from extensive underwa-
ter image data to evaluate various key reef indicators, in-
cluding coral species, area, and abundance. Unlike satel-
lite and aerial photogrammetry and remote sensing tech-
nologies vulnerable to adverse weather and air-water in-
terface effects, underwater videography enables large-scale
detailed imaging with the benefits of high imaging reso-
lution and low cost, thus enabling granular coral monitor-
ing [11]. Despite addressing the challenges of fine data
collection, automating the process of analyzing high spa-
tial resolution images presents its own set of complexities.
Manual annotation of corals is a time-consuming task for
machine learning-based image segmentation prone to an-
notation errors over time and among individuals due to the
repetitive nature of labeling [22]. Therefore, quantifying
coral growth and degradation, as well as identifying coral
individuals, urgent needs advanced accurate automated im-
age processing tools.

To meet this need, we propose an automated processing
method for multimodal data that integrates effective data
partitioning techniques and novel deep learning-based neu-
ral network structure. It first performs reasonable dataset
partitioning from limited underwater remote sensing images
and then uses a designed multi-modal deep neural network
for fast and accurate coral segmentation. This method can
predict and analyze multi-year coral maps. Specifically, our
research focusses on the application of the multi-modalities
semantic segmentation to coral orthophotos, a conventional
data product extensively used by terrestrial ecological mon-
itoring scientists for extracting ecological information from
remote sensing imagery [21]. Orthophotos provide a top-
down perspective and accurate geographical reference, fa-
cilitating the generation of coral coverage maps. Our pro-
posed neural network, which integrates high-resolution or-
thophotos and corresponding depth information, can more
accurately identify and classify corals at the genus level,
making it reliable for dynamic coral reef monitoring tasks
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in in situ survey.

2. Related work
Accurate coral monitoring is essential for documenting

and comprehending the long-term dynamics in coral reef
decline and recovery on a spatial scale through a variety
of meta-analysis integrating different data sources. The
widely adopted metric for assessing coral reef condition,
such as the estimation of “percent live coral cover”, can
be efficiently and rapidly computed using photogrammetric
computer vision and deep learning-based image segmenta-
tion algorithms [18,29]. Despite the capability of underwa-
ter remote sensing technology to cover extensive coral reef
substrates, the heterogeneous nature of corals necessitates
the involvement of knowledgeable experts for initial data
annotation, resulting in limitations in the dataset available
for deep learning-based coral monitoring tasks. In deal-
ing with remote sensing images for training of deep neu-
ral network model, researchers employ fixed-stride sliding
windows [4, 28] and Poisson sampling [20] to effectively
utilize limited data. Compared to sliding windows, Pois-
son sampling offers the advantage of controlling the num-
ber of patches of both the majority and minority classes
through the manipulation of the sampling radius, thereby
achieving category balance. In addition, the high hetero-
geneity of coral reef systems [13] presents a challenge in
providing a comprehensive description of these organisms
using singular features of a specific type, hierarchy, or scale.
Consequently, there is an urgent need to establish gener-
alized features that can effectively describe corals in their
underwater environments. Thus, careful design, selection,
and optimization of suitable network models hold signifi-
cant importance. For conventional network models in other
fields, several network architectures such as DeepLab v3+,
U-Net, and MultiResUNet, have been successfully applied
to underwater coral image segmentation [10, 17, 20]. Re-
searchers often introduce new modules or structures to en-
hance these existing networks, aiming to improve the accu-
racy and performance of segmentation models when deal-
ing with complex objects such as corals [15, 31, 35, 36].
These techniques facilitate the fusion of fine-grained fea-
tures, thereby enhancing the accuracy and performance of
segmentation models when dealing with complex objects
like corals. Moreover, SUIM-Net [14], tailored specifically
for underwater image segmentation tasks, includes a core
component called Residual Skip Block (RSB). This fea-
ture enables optional hierarchical skip connections within
its core building blocks, effectively capturing contextual in-
formation. In addition to model optimization, techniques
such as transfer learning and ensemble networks find exten-
sive usage in this domain [20, 33].These collective efforts
and advancements lead to highly precise segmentation anal-
ysis of coral images acquired through underwater measure-

ment methodologies, thereby opening up new avenues for
the study and comprehension of complex coral ecosystems.

3. Method
3.1. Data collection & pre-processing

We concentrate on a dataset comprising human-
labeled orthophotos provided by the Moorea IDEA
(https://mooreaidea.ethz.ch) project, encompassing coral
imagery from two monitoring sites on Moorea Island. The
dataset spans a three-year period and was taken around Au-
gust. The camera system was positioned approximately 2
meters from the reef, enabling clear identification of indi-
vidual coral colonies and intricate coral branches within the
images. To minimize the influence of the underwater light-
ing environment on image quality, we conduct radiation cor-
rection on the acquired images. Specifically, for chromatic
aberration, we employ Adobe Camera Raw for precise color
correction. Additionally, the Wiener filter algorithm [24] is
applied to resolve image quality issues stemming from mo-
tion errors. Subsequently, we utilize the photogrammetry
program in Agisoft Metashape software to complete key
processes such as marking control points, image match-
ing, and the generation of dense point clouds. This pro-
cess culminates in the production of high-resolution (1mm)
orthophoto and depth image products. The manual annota-
tion process is overseen by experienced professionals, aug-
mented by the application of Taglab [23] tools for semi-
automatic annotation. This dual approach ensures the ac-
quisition of high-quality pixel-level annotation data, critical
for our coral image semantic segmentation analysis.

3.2. Dataset partition

The dominant coral classes on Moorea Island primarily
consist of the Pocillopora genus, followed by the Acrop-
ora genus, totally constituting 85% of our coral monitor-
ing area. Considering that deep learning models require
sufficient data for model training and parameter optimiza-
tion, we have focused on these two dominant genera, setting
aside the consideration of other less common coral genera.

Despite this, the substantial numerical disparity between
these two coral genera results in a pronounced imbalance
in their representation. This imbalance can lead to biases
in the train progress of deep learning models, particularly
in capturing minority classes. The current basic and com-
monly used sliding window extraction technique, which in-
volves employing a fixed-stride sliding window to segment
images into training, validation, and test datasets. However,
this straightforward implementation method proves insuf-
ficient in handling class imbalance and often falls short in
providing adequate contextual information through smaller
image patches. On the other hand, the dataset partition
method based on Poisson disk sampling controls the ra-
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Figure 1. Improved Copy-paste partition methods. (1) Utilize
Poisson disk sampling to partition the background patch (shown
in the green box) and the source patch containing minority classes
(shown in the red box); (2) Implement the random flipping oper-
ation to merge the minority class objects from the source patches
onto the background patches.

dius of the sampling disk to sample the image multiple
times without excessive repetition. Nonetheless, the result-
ing cropped image retains the same spatial distribution in
the overlapping areas, thus limiting the capacity to enhance
feature representation. Taking inspiration from the concept
of copy-paste [9], a simple mechanism for randomly pasting
objects, we design a copy-paste for class imbalance tech-
nique, as shown in Figure 1. Specifically, we utilize the
image obtained through the Poisson disk sampling method
as the background and randomly paste only minority class
objects. This approach not only facilitate the segmentation
of the limited remote sensing data into an adequate num-
ber of sections but also ensure class balance by altering the
spatial distribution of various corals.

3.3. Network Structure

We propose CNet, a model designed for coral image se-
mantic segmentation with two symmetric input branches
and a fused input branch, which is based on ACNet [5].
The proposed network structure is depicted in Figure 2. We
employ a pretrained ResNet50 encoder [12] for the RGB
branch, while the VGG encoder [30] is utilized for the
depth branch. The fused input branch also employs a pre-
trained ResNet50 encoder. In this branch, the 3×3 convo-
lution used for feature extraction in the Bottleneck is re-
placed by ShapeConv [1]. We utilize this branch to inte-
grate and refine semantic information from the two sym-
metric input branches. In the RGB branch, the original
ResNet50 model is used for RGB images as the baseline
network with five encoding modules. In comparison, depth
images typically contain less feature information. However,
they are adept at extracting detailed edge contour informa-
tion, given their representation of the depth value for each
pixel in the RGB image. In the context of semantic seg-
mentation, when the encoder has a deeper number of layers
in the network, there is a higher likelihood of losing edge

contour information due to the lack of high-level features
within the edge contour information. Thus, for the depth
images, we advocate the application of a shallow encoder to
extract auxiliary feature information, thereby preventing the
loss of valuable coral edge contour information. We replace
the Bottleneck block in ResNet50 with the shallower VGG
block in the depth branch. Based on the original Bottleneck
block, we substitute the 3×3 convolution in the middle with
ShapeConv. ShapeConv represents a distinctive convolu-
tional layer that dynamically adjusts the weights of convo-
lution kernels based on the shape information of the input
data, facilitating the seamless integration of shape features
from RGB images and depth images. This modification em-
powers the network to effectively capture the intricate mor-
phological structure and fine-grained textural patterns of
corals without a substantial increase in computational over-
head. Finally, we integrate the feature information output
from the three branches and employ convolutional layers to
optimize the fused features. Subsequently, we utilize four
transposed convolution blocks to restore the spatial resolu-
tion of the optimized feature maps to match the size of the
RGB image. Drawing inspiration from UNet’s skip connec-
tions [26], we connect the feature map output of each trans-
posed convolution block with the output of the correspond-
ing layer in the encoder through a convolutional layer. This
process aims to leverage the underlying low-level features,
which is crucial for the restoration of detailed information
within the image. The final layer of each decoder stage is
supervised by ground truth.

To further enhance the model’s performance, we employ
a hybrid loss function. This chosen approach combines a
weighted cross-entropy loss function and an intersection-
over-union (IoU) loss function [34]. The weighted cross-
entropy loss function is tailored to assign greater weight to
minority classes, thus effectively addressing the challenge
of class imbalance. On the other hand, the IoU Loss func-
tion serves to measure the similarity between the predicted
results and the actual results. Maximizing the IoU loss value
encourages the model to produce more precise and accurate
predictions. The equation for the weighted cross-entropy
loss is defined as follows:

Lwce = − 1

N

N∑
i=1

[ωG(i) logS(i)+(1−G(i)) log (1− S(i))],

(1)
where G(i) ∈ 0, 1is the ground truth label, S(i) is the pre-
dicted probability and N is the total number of classes. IoU
Loss is a metric learning method like Dice Loss, and the
formula is defined as follows:

Liou = 1− X ∩ Y

X ∪ Y
, (2)

where X is the ground truth label, Y is the predicted prob-
ability map.
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Figure 2. The network architecture of CNet.

Through the combination of these loss functions, we de-
rive a comprehensive loss function that effectively mitigates
class imbalance issues to achieve precise model predictions.
In subsequent experiments, we employ various weighting
coefficients to balance the impact of the two loss functions,
with the optimal combination as follows:

L = Lwce + λ · Liou, (3)

the value of λ is taken to be 0.4.

4. Experimental results and analysis

We first assess the improvement in network performance
resulting from our proposed data partitioning method. Sub-
sequently, we evaluate our method using our custom parti-
tioned coral dataset, as outlined in Section 4.3. In Section
4.4, we conduct a series of ablation studies to confirm the
effectiveness of component selection in our CNet.

4.1. Implementation details & Datasets

We trained our network using PyTorch [19] for 120
epochs with batches of size 16. Our optimization process
involved using SGD with a momentum of 0.9 and Adam
[16] with an initial learning rate of 1e-4, coupled with a
minor weight decay of 5e-4. We adopted PyTorch’s poly
learning rate scheduler to dynamically adjust the learning
rate. Moreover, to expand our training samples, we em-
ployed random scaling, translation, and flipping techniques
for image augmentation. In the case of RGB images, we
also implemented random adjustments for brightness, con-
trast, and blur. Our evaluation used three representative
common metrics: average accuracy (mAcc), average union
over intersection (mIoU), and F1 score (F1).

The underwater remote sensing images collected be-
tween 2017 and 2019 in area A are partitioned into 1230
coral RGB-D images of size 300*300. The training and
validation datasets are randomly divided in a 4:1 ratio and

the labels were set to three classes: background, Pocillo-
pora, and Acropora. For the test dataset, we utilize under-
water remote sensing images from area B in 2018 and 2019.
The test dataset employs a basic sliding window division
to facilitate the stitching of predicted patches, resulting in
5421 images. Despite the images in area A produce fewer
patches, utilizing these patches for network training enable
the network to learn the color and shape characteristics of
corals across different years, which is beneficial to enhanc-
ing the generalization ability of the network. It should be
pointed out that the mosaic orthophotos we used for data
partitioning were obtained through photogrammetric pro-
cessing using approximately 400 underwater coral seabed
images with millimeter-level spatial resolution.

4.2. Results with different dataset partition methods

We apply the proposed data partitioning method to three-
year orthophotos of area A, which were used for training the
neural network. We sample the orthophotos to acquire non-
overlapping background patches and multi-sampled source
patches containing the minority class, Acropora. The num-
ber of oversampled patches depend on the coral’s area and
distribution. Subsequently, we randomly paste the Acro-
pora objects from the source patches into the background
patches. To illustrate the effectiveness of this sampling
method, we compare it with both the sliding window and
Poisson disk sampling methods. And we divide the or-
thophotos to yield approximately 1,200 image patches due
to ensure fairness among these three methods. We count
the pixel frequencies of each class in the coral remote sens-
ing image dataset derived from the various division meth-
ods, as outlined in Table 1. In comparison with the slid-
ing window and Poisson disk sampling, our improved copy-
paste method achieved a more balanced class frequency in
the dataset, resulting in the frequency of the minority class,
Acropora, increasing from 1.47% to 9.33%. Moreover, the
baseline network model, ACNet, trained on each orthophoto
dataset, demonstrate that our data partitioning method facil-
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Methods BGCf PCf ACf mIoU BGIoU PIoU AIoU
Sliding Window 59.67% 38.86% 1.47% 75.58% 88.73% 83.02% 55.01%
Poisson Sampling 67.32% 29.73% 2.95% 80.36% 88.45% 82.81% 69.83%
Copy-paste (Ours) 56.56% 34.11% 9.33% 80.77% 88.70% 82.90% 70.72%

Table 1. Class frequencies (Cf) and network performance on training area using our over-sampling strategy and other methods. BG, P, and
A respectively refer to background, Pocillopora, and Acropora.

itate the comprehensive comprehension of the characteris-
tics of each class by the network. Notably, the minority
class display a remarkable IoU of 70.72%.

4.3. Performance comparison with SOTA methods

In this section, we present a performance evaluation of
the coral semantic segmentation network. Specifically, we
compare our proposed underwater coral image segmenta-
tion method with SOTA networks such as SUIM-Net [14],
DeepLab v3+ [2], UNet [26], SA-Gate [3], ESANet [27],
and BBSNet [6]. Additionally, we compare our proposed
network structure with our previous work [36]. All ex-
periments are conducted using the same dataset and hy-
perparameter settings. For SUIM-Net, DeepLab v3+, and
UNet, which lack depth map input channels, we integrate
the RGB channel with the depth channel, generating the
images with four channels for network input. Table 2 dis-
plays the segmentation performance achieved by our pro-
posed CNet in comparison to the aforementioned methods.
CNet demonstrates the highest overall performance, with
mAcc, IoU, and F1-Score of 92.52%, 81.83%, and 89.87%
respectively. Our proposed method exhibits superior accu-
racy when compared to other well-known methods designed
solely for RGB images, such as DeepLab v3+ and UNet.
Additionally, our fusion method outperforms existing RGB-
D image fusion techniques, surpassing the performance of
SA-Gate, ESANet, and BBSNet. It is worth noting that
our network outperforms the previously designed improved
DeepLab V3+, which involves the simple operation of re-
placing all vanilla convolutions with ShapeConv. We ex-
tract different features from RGB images and depth images,
respectively, and then use a smaller but effective number of
shape convolutions to fuse RGB and depth features, achiev-
ing better network performance without increasing compu-
tational overhead. Furthermore, the network performance
of SUIM-Net, tailored specifically for underwater image
segmentation, also falls short in comparison to our pro-
posed CNet. These results indicate the effectiveness of our
proposed improvements in fusing the multi-modal features
of corals, thereby yielding higher quality predictive images
segmentation results.

Figure 3 depicts the visualization results acquired from
various semantic segmentation network models. It is evi-
dent that the segmentation results produced by CNet exhibit

Methods mAcc mIoU F1-score
SUIM-Net [14] 88.12% 72.29% 82.90%
DeepLab V3+ [2] 88.65% 72.84% 83.89%
Zhong et al. [36] 89.92% 73.30% 84.06%
UNet [26] 91.01% 77.12% 86.64%
SA-Gate [3] 91.43% 72.93% 83.33%
ESANet [27] 91.14% 77.07% 86.85%
BBSNet [6] 92.05% 78.68% 87.82%
CNet (ours) 92.52% 81.83% 89.87%

Table 2. Quantitative comparison results with SOTA methods.

finer boundaries and more precise coral outlines compared
to other methods, which only roughly identify the overall
coral outline. Moreover, distinguishing between dead and
living corals is challenging due to their similar morpholo-
gies. However, CNet demonstrates the capability to effec-
tively exclude dead corals, as evidenced in the third and
sixth columns. It is essential to highlight a minor incon-
sistency in the sixth column, where the newly generated
coral in the upper left corner lacks significant height. Con-
sequently, the depth information in the associated depth im-
age is not prominent, resulting in challenges for some net-
work models in accurately recognizing it. Despite its ex-
ceptional performance, CNet is not completely immune to
errors. For instance, in the first column of 2019, while most
networks successfully identify the Acropora region, CNet
erroneously categorizes it as Pocillopora.

4.4. Ablation study

Table 3 presents the results of the ablation study con-
ducted on CNet, where it is compared with the baseline
ACNet, and various components are gradually integrated
to assess their impact on segmentation performance. AC-
Net is used as the baseline. The network, which incorpo-
rates the ShapeConv fusion branch, is labeled as S. Each en-
coder block of the depth branch is substituted with a VGG
Block represent as V, while the hybrid loss function used
is marked as H. The ablation experiments reveal that the
baseline ACNet achieve an 80.77% mIoU, surpassing all
SOTA networks compared in Section 4.3. Following the
integration of ShapeConv to merge multi-model coral fea-
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Figure 3. Examples of segmentation patches of CNet and other comparison methods. Masks of Pocillopora coral is in pink and Acropora
coral is in green.
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tures, the IoU of the minority class Acropora significantly
increase by 1.76%, while the IoU of other classes showed
a slight decline. This demonstrates the superior ability of
ShapeConv to effectively capture and fuse local geometries
encoded by deep features compared to traditional convolu-
tions. Additionally, compared with the original ResNet50
encoder, employing shallow encoders to extract the mor-
phological information of corals in depth images improves
mIoU from 80.77% to 81.00%. This suggests that for depth
information with fewer features, shallow encoding is more
beneficial for feature extraction, although the improvement
effect on minority classes is not substantial. The use of
hybrid functions also enhances accuracy, especially on the
minority class, reaching 72.94%. The combination of the
depth branch based on the VGG block and the fusion branch
adding ShapeConv elevates the IoU of the three classes to an
impressive level, particularly for the background and Pocil-
lopora, which experience a growth of approximately 1%,
reaching 89.22% and 83.43%, respectively. The implemen-
tation of the hybrid loss function further boosts the mIoU
to the highest 81.83%, significantly enhancing the accuracy
of the minority class to 73.61%. This showcases how the
IoU loss effectively adjusts the overall loss bias to achieve a
balanced segmentation outcome. Our refinements result in
a 1.06% mIoU improvement for the final CNet compared to
baseline ACNet, without a substantial increase in parame-
ters or additional computational overhead.

Methods mIoU BGIoU PIoU AIoU
Baseline 80.77% 88.70% 82.90% 70.72%
Baseline+S 81.12% 88.39% 82.48% 72.48%
Baseline+V 81.00% 88.78% 83.18% 71.02%
Baseline+H 81.32% 88.53% 82.51% 72.94%
Baseline+S+V 81.58% 89.22% 83.43% 72.08%
Baseline+S+V+H 81.83% 88.76% 83.10% 73.61%

Table 3. An ablation study conducted on CNet. BG, P, and A
respectively refer to background, Pocillopora, and Acropora.

5. Discussions

The predicted map we generated demonstrates the alarm-
ing rate of coral mortality within a single year, emphasizing
the critical urgency of implementing effective coral protec-
tion measures. While our expertise lies predominantly in
the realm of photogrammetric computer vision, we recog-
nize the multi-dimensional complexity of coral degradation
within the broader context of marine biology and ecological
dynamics in visual images. Utilizing quantitative analysis,
we conduct a thorough examination of the pixel frequency
within the two-year timeframe, serving as a rudimentary yet
critical metric for assessing changes in coral coverage. Our

findings indicate a substantial decline in the coverage of
Pocillopora and Acropora by 53.29% and 71.40% respec-
tively, mirroring the reduction trends derived from Ground
Truth measurements (49.27% and 74.92%) with an error
margin within 5%. This observation implies that Acrop-
ora experiences a more substantial decline in coverage than
Pocillopora, indicating higher sensitivity to environmental
changes. However, given the smaller original coverage of
Acropora, additional regional data may be essential to fur-
ther validate this conclusion. It is important to note that
comprehensive coral monitoring necessitates the integration
of various ecological indicators, each playing a crucial role
in elucidating the intricate dynamics of coral reef ecosys-
tems. We only take the simplest example of coverage rate
to show the potential for automated processing of under-
water benthic images. We emphasize the capacity of this
approach to expedite the analysis of extensive coral remote
sensing data, thereby facilitating comprehensive monitoring
conducted by marine experts.

Moreover, we recognize that our examination primarily
pertains to the distribution of live corals on orthophotos,
highlighting the imperative need to account for the pres-
ence of dead and bleached corals. Of particular signifi-
cance is the dynamic nature of bleached corals, as they re-
spond to environmental fluctuations by either regenerating
or experiencing further deterioration, ultimately leading to
either coral recovery or continued bleaching and eventual
mortality. Real-time monitoring of bleached corals serves
as a pivotal tool in enabling ecologists to discern the tem-
poral variations in coral health, allowing for the identifica-
tion of key environmental stressors and the formulation of
timely, data-driven conservation strategies. The design of
our network, tailored explicitly for multi-modal data fusion
and morphological characterization of corals, underscores
its potential in bolstering the efficacy of coral reef manage-
ment initiatives. Looking ahead, we envisage the expansion
of our network’s capabilities to encompass a wider array of
coral monitoring tasks, thereby fostering a more holistic and
adaptive approach to marine conservation efforts.

6. Conclusions
This paper presents a cost-effective approach for auto-

mated monitoring of changes in coral reefs, utilizing under-
water remote sensing technology. To address the challenge
of limited data and class imbalance, we introduce a Copy-
paste-based data partitioning technique, significantly en-
hancing the performance of minority classes within the net-
work. Additionally, we design a novel multi-modal network
model, CNet, specifically tailored for semantic segmenta-
tion of underwater coral remote sensing images. CNet accu-
rately identifies different coral genera and is characterized
by the use of two encoders with layer asymmetry, the fusion
branch for effective fusion of RGB and D features and the
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skip connections for deep and shallow feature fusion. Our
experimental results demonstrate the effectiveness of these
strategies in enhancing the network’s performance and gen-
eralization capabilities. Moreover, our proposed framework
holds significant potential for practical applications in fine-
grained coral ecological monitoring tasks. It may have the
potential to enhance the accuracy and dependability of un-
derwater visual image segmentation technology in the fore-
seeable future.
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gan, David Obura, and Francis Staub. Status of coral reefs of
the world: 2020, 2021. 1

[33] Mathew Wyatt, Ben Radford, Nikolaus Callow, Mohammed
Bennamoun, and Sharyn Hickey. Using ensemble methods

to improve the robustness of deep learning for image clas-
sification in marine environments. Methods in Ecology and
Evolution, 13(6):1317–1328, 2022. 2

[34] Jiahui Yu, Yuning Jiang, Zhangyang Wang, Zhimin Cao, and
Thomas Huang. Unitbox: An advanced object detection net-
work. In Proceedings of the 24th ACM international confer-
ence on Multimedia, pages 516–520, 2016. 3

[35] Hanqi Zhang, Armin Grün, and Ming Li. Deep learning for
semantic segmentation of coral images in underwater pho-
togrammetry. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 2:343–350, 2022.
2

[36] Jiageng Zhong, Ming Li, Hanqi Zhang, and Jiangying Qin.
Combining photogrammetric computer vision and seman-
tic segmentation for fine-grained understanding of coral
reef growth under climate change. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 186–195, 2023. 2, 5

775


	. Introduction
	. Related work
	. Method
	. Data collection & pre-processing
	. Dataset partition
	. Network Structure

	. Experimental results and analysis
	. Implementation details & Datasets
	. Results with different dataset partition methods
	. Performance comparison with state-of-the-art (SOTA) methods
	. Ablation study

	. Discussions
	. Conclusions

