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Abstract

We propose a method for Saimaa ringed seal (Pusa hisp-
ida saimensis) re-identification. Access to large image vol-
umes through camera trapping and crowdsourcing provides
novel possibilities for animal conservation and monitoring
and calls for automatic methods for analysis, in particu-
lar, when re-identifying individual animals from the images.
The proposed method NOvel Ringed seal re-identification
by Pelage Pattern Aggregation (NORPPA) utilizes the per-
manent and unique pelage pattern of Saimaa ringed seals
and content-based image retrieval techniques. First, the
query image is preprocessed, and each seal instance is seg-
mented. Next, the seal’s pelage pattern is extracted using
a U-net encoder-decoder based method. Then, CNN-based
affine invariant features are embedded and aggregated into
Fisher Vectors. Finally, the cosine distance between the
Fisher Vectors is used to find the best match from a database
of known individuals. We perform extensive experiments of
various modifications of the method on challenging Saimaa
ringed seals re-identification dataset. The proposed method
is shown to produce the best re-identification accuracy on
our dataset in comparisons with alternative approaches.

1. Introduction

Image-based individual re-identification of animals has
recently gained significant attention due to the availabil-
ity of large volumes of wildlife image data from automatic
game cameras and citizen science projects. Automated
re-identification methods have clear advantages over tradi-
tional methods, such as tagging, as they offer a non-invasive

approach to monitor endangered species without causing
stress or behavior changes [37]. The benefits of this tech-
nique are demonstrated by the valuable data it provides for
conservation efforts, including accurate population size es-
timates and novel information on animal migration and be-
havior patterns [3, 26].

In this study, we focus on the Saimaa ringed seal (Pusa
hispida saimensis), an endangered species endemic to Lake
Saimaa in Finland, with a population currently number-
ing no more than 500 individuals. The conservation of
this species necessitates the regular evaluation of popu-
lation size, migration patterns, and behavior, as exempli-
fied in [19–21]. To achieve this, the Photo ID method is
employed, which entails the re-identification of each dis-
tinctive individual. The re-identification of Saimaa ringed
seals is made feasible by their unique and enduring ring
pattern that encompasses their entire body. Presently, re-
identification is carried out manually, but it can be op-
timized through the utilization of computer vision-based
methods.

A variety of methods for animal re-identification ex-
ist that utilize distinct characteristics in fur, feather and
skin patterns [7, 13, 18, 22, 23, 31], and methods originally
developed for human re-identification have been success-
fully applied to animals [1, 12, 14, 42]. Visual animal re-
identification can be formulated as a task of finding a match
for the given query image from a database of known individ-
uals, which is equivalent to a content-based image retrieval
(CBIR) problem [44] where an image is searched from a
database based on the image content. However, despite the
clear similarity between CBIR and re-identification tasks,
utilizing utilization of CBIR approaches for animal re-
identification has remained largely unstudied.
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Figure 1. Visualisation of the proposed re-identification method.
Input pictures are on the left and the results are on the right. The
seal is segmented (orange outline), and matching regions of the
pelage pattern are highlighted and connected with lines. The inten-
sity of the highlights corresponds to the similarity of the matched
regions.

Multiple methods have been proposed for ringed seal re-
identification [10,11,32,34,35,46]. Re-identifying individ-
ual Saimaa ringed seals from images is particularly chal-
lenging due to several factors: limited viewing angles, nar-
row range of poses and locations, biased image data col-
lected using static game cameras, low sociality and high
site fidelity of the seals, domain shift and database bias
due to heterogeneous images captured by different cameras,
and challenges posed by the seals’ deformable nature, non-
uniform pelage patterns, low contrast between ring pattern
and fur, and large variation in possible poses. Compared
to other animals such as zebras, which have clearly vis-
ible and distinct patterns with limited pose variation, re-
identifying Saimaa ringed seals is considerably more chal-
lenging, which limits the accuracy of the existing methods.

In this paper, we address the above challenges by propos-
ing the NOvel Ringed seal re-identification by Pelage Pat-
tern Aggregation (NORPPA) method for automatic Saimaa
ringed seal re-identification (Fig. 1). The proposed work is
the first application of CBIR methods to the animal individ-
ual re-identification task to the best of the authors’ knowl-
edge. We further develop this approach by proposing an
improved pattern feature embedding, which is done by uti-
lizing affine invariant local CNN features and aggregating
them into a fixed size embedding vector describing global
features. The advantage of the system is that it does not
have to be reconfigured or retrained in case new individu-
als are added to the database. In the experimental part of
the work, we show that the proposed method outperforms
previously developed re-identification methods for Saimaa
ringed seals as well as HotSpotter [13]. In addition, differ-
ent variations of the method are comprehensively evaluated
to find the best pattern feature embeddings for the task. The
code is available

The main contribution of this paper can be summarized
as follows: (i) a novel Saimaa ringed seal re-identification

method (NORPPA) inspired by content-based image re-
trieval methods, (ii) a novel combination of local affine-
covariant region learning and CNN-based descriptors and
feature aggregation to obtain a single fixed size pattern em-
bedding vector with high discrimination power, and (iii) ex-
tensive evaluation of the method and its modifications on a
challenging Saimaa ringed seal dataset. While the method
was developed for Saimaa ringed seals, it is also possible to
apply it to other patterned species as shown in [4].

2. Method
The proposed NORPPA method is illustrated in Fig. 2.

It consists of four steps: 1) image prepossessing 2) fea-
ture extraction, 3) feature aggregation and 4) individual re-
identification based on the aggregated vectors.

2.1. Image preprocessing

2.1.1 Tone-mapping

The images can have high contrast variation depending on
the illumination conditions. This can cause a loss of detail
in the region of interest, namely, the seal and its pelage pat-
tern. To address this issue, we employ the tone-mapping
approach to equalize the contrast in dark and bright image
regions. The tone-mapping algorithm proposed in [25] is
used due to its ability to produce realistic tone-mapped im-
ages without visual artifacts. The algorithm adjusts the con-
trast at different spatial frequencies using gradient methods
with some extensions. These extensions prevent the rever-
sal of global brightness levels and the loss of low-frequency
details. Examples of images before and after prepossessing
are presented in Fig. 3.

2.1.2 Seal instance segmentation

Seal instance segmentation is crucial because most of the
images come from static camera traps. This, along with
the fact that seal individuals tend to use same sites or ar-
eas inter-annually, makes it likely that one seal individual is
captured repeatedly by the same camera. This may cause
the supervised re-identification algorithm to learn to iden-
tify the background of the image instead of the actual seal if
the full image or the bounding box is used. As a result, the
algorithm may fail to identify the seal in a new environment.

Instance segmentation is performed using Mask R-
CNN [16]. A segmentation model trained for Ladoga ringed
seals from [32] is utilised. This is possible due to the two
species being visually almost indistinguishable. Ladoga
ringed seals are more numerous than Saimaa ringed seals
and they are often captures in large groups which makes
it easier to collect and annotate large training data for the
segmentation. For more details about the instance segmen-
tation model and training procedure see [32].
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Figure 2. NORPPA re-identification pipeline.

Figure 3. Examples of the image processing of camera trap im-
ages. Images on the left are the originals. The right column
demonstrates the result of the tone-mapping.

After the segmentation masks are obtained, additional
morphological operations are applied to close the holes and
smooth the borders by using morphological closing and
opening. The examples of segmentation results are pre-
sented in Fig. 4.

2.2. Feature extraction

2.2.1 Pelage pattern extraction

The main distinguishing feature of a seal is its pelage pat-
tern, which is both permanent and unique to each seal allow-
ing the identification of individuals over their whole life-
time. The pelage pattern forms the basis for the proposed
re-identification method. In order to focus the attention
on the pattern and discard irrelevant information causing
database bias such as illumination and other visual factors

Figure 4. Examples of the segmentation masks. The images on
the left are the originals. The mask is highlighted in blue and the
background is highlighted in red on the middle images. The last
column shows the result of the segmentation.

(e.g., wet fur looks different from the dry fur), the pattern
is segmented. This is done using a CNN based method uti-
lizing the U-net encoder-decoder architecture [40] that has
been successfully applied to segmentation of other similar
thin structures (e.g. veins in medical image data). The out-
put of the method is a binarized image of the pelage pat-
tern(see Fig. 5). The network has been trained and tested
on the manually annotated dataset consisting of 520 images.
The pattern image is further post-processed to remove small
noise by using unsharp masking and morphological open-
ing. All images are then resized in such way that the mean
width of the pattern lines is the same for all images, bring-
ing them into the same scale. This is necessary because
the images are obtained from various sources and the image
resolution has a large variation. For a more detailed expla-
nation of the pattern extraction step, further training details,
as well as the comparison to other segmentation methods,
see [45].
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Figure 5. Example of pattern extraction output.

2.2.2 Local feature extraction

Seals can be found in a variety of poses. The deformable
nature of seals body results in distorted and warped patterns
on images. The pattern undergoes a non-linear transforma-
tion as a whole, but small local regions typically have sim-
ilar affine transformations. Therefore, an affine invariant
feature extractor is suitable for the task. For this purpose a
combination of HesAffNet [30] detector and HardNet [29]
descriptor is used.

The combination of a Hessian-Affine detector [28] with
RootSIFT [2] used to be considered a gold standard for
local feature extraction and description. However, with
the increasing size of available datasets and rapidly de-
veloping field of deep learning, CNN-based methods are
now able to outperform previous handcrafted features. The
combination of HesAffNet [30] and HardNet [29] is able
to provide state-of-the-art results in image retrieval tasks,
which makes those methods particularly useful for animal
re-identification as well.

HesAffNet modifies the Hessian Affine Region detec-
tor [27, 28] by using the AffNet CNN for shape estima-
tion. The detector finds regions of interest based on the
Harris cornerness measure [15], which uses a second mo-
ments matrix to estimate the dominant gradient directions.
It also uses the multiscale approach from [24], which finds
extrema in the scale space by using Laplacian of Gaussian.
This concept can extend to all affine transformations, not
just scale. However, affine transformations have more de-
grees of freedom, which make the process more complex
and need a special shape adaptation algorithm. The original
Hessian Affine detector used Baumberg iteration [6], which
HesAffNet replaces with an AffNet CNN.

AffNet and HardNet have a similar architecture and
training procedure. HardNet is trained on batches of match-
ing patch pairs, each with an anchor ai and a positive match
pi. Each pair correspond to a different location, so there are
no other matches except for the ones in each pair. The net-
work encodes each patch, and computes a matrix of pair-
wise distances between all anchors and positive matches.
For each pair, a closest non-matching descriptor from the

batch is chosen, and a final hard negative margin loss is
computed as

  \begin {split} L = \frac {1}{n} \sum _{i=1}^n & \max (0, 1+d(a_i, p_i)) \\ &- \min (d(a_i, p_{j\min }), d(a_{j\min }, p_i)), \end {split} 







   

    

(1)

where pj min is the closest non-matching positive to ai, and
aj min is the closest non-matching anchor to pi.

AffNet utilizes a slightly different training procedure,
with the main difference being that it sets the derivative for
the negative term in the loss to 0. This loss, called hard
negative-constant, helps avoid the situations where a neg-
ative sample in the metric space prevents positive samples
from moving closer together. The training procedure for
AffNet is also more complex, since it learns affine shapes
and not just a distance metric. It uses spatial transformers
to transform input patches according to the predicted shape,
and then feeds them into a descriptor network, such as Hard-
Net. Only after that, it calculates and backpropagates the
loss through both networks. Fig. 6 visualizes regions ex-
tracted using HesAffNet.

(a) (b)

Figure 6. Visualisation of Hessian Affine patch extraction: ((a))
segmented image; ((b)) HesAffNet-based patch extraction. Ex-
tracted regions are highlighted in green.

2.3. Feature aggregation

HardNet and HesAffNet produce a set of local region
embeddings for each image. To obtain a single embed-
ding for the whole image, the features are aggregated us-
ing Fisher Vector [17, 38, 39]. First, Principal Component
Analysis (PCA) is applied to the resulting the feature em-
beddings to decorrelate the features and reduce the dimen-
sionality. This is an important since Fisher Vectors are
known to produce large descriptors. Principal components
are learned using the images in the database of known indi-
viduals. Next, a visual vocabulary is constructed by apply-
ing Gaussian Mixture Model (GMM) to the features from
the database. Fisher Vectors are created for each image by
computing the partial derivatives of the log-likelihood func-
tion with respect to the GMM parameters and concatenating
them. Kernel PCA [43] is applied to further reduce the di-
mensionality of the resulting image descriptors which re-
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duces the storage requirements for the database and speeds
up the database search for the re-identification.

2.4. Individual re-identification

Re-identification involves finding the individual with the
lowest cosine distance from the Fisher vector of the query
image. It is a common practice to use Euclidean distance or
dot product [41], and since Fisher vectors are l2-normalized,
cosine distance and dot-product are essentially the same
metrics. Heatmaps are generated by calculating the distance
between all query and database patches. The inliers of the
final homography are highlighted with ellipses that are di-
rectly proportional to their similarity. To handle previously
unseen individuals, a threshold similarity value can be set.
The algorithm considers a seal a new individual if the high-
est similarity score is below the threshold. Experts can ver-
ify the addition of new individuals to the database in a semi-
supervised manner. No reconfiguration of the algorithm is
required for the addition of new individuals.

To address novel (previously unseen) individuals, a
threshold value for the similarity can be set. During re-
identification, for a given query image, the top-k images
with the smallest cosine distances between their Fisher vec-
tors and the query’s Fisher vector are returned. If the small-
est distance is larger than a threshold, then the match is re-
jected, meaning the query contains a new individual. The
addition of new individuals to the database does not require
reconfiguration of any part of the algorithm. However, to
keep the database of known individual clean, it is better to
conduct this step in semi-supervised manner, where an ex-
pert verifies that the individual is not found in the database.

3. Experiments and results
3.1. Data

For the evaluation of the proposed method, publicly
available SealID dataset have been used [33]. The dataset
consists of 57 individual seals with a total of 2080 im-
ages (see Fig. 7). The dataset is divided into two subsets:
database and query. The database subset contains a mini-
mal number of high-quality unique images that are enough
to cover the full body pattern of each seal. The query subset
contains the remaining images and contains the same indi-
viduals as in the database.

To train and evaluate the patch embedding (feature ex-
traction) and matching (finding the corresponding patch in
other images) a separate dataset containing in total 4599
pattern image patches was utilized [11]. The training sub-
set contains 3016 images and 16 classes. The testing sub-
set contains 1583 images and 26 classes that are different
from the training classes in the training set. Each class cor-
responds to one manually selected location in the pelage
pattern of one individual seal (see Fig. 8). The images that

Figure 7. Examples from the database and query datasets. Every
row contains images of an individual seal. For every image from
the query dataset (left) there is a corresponding subset of images
from the database (right).

Figure 8. Examples of pattern image patches. The patches in the
second row match the patches in the first row.

were used to construct the dataset of pattern image patches
are not included in the database and query subsets of the
re-identification dataset.

The accuracy is calculated as the ratio of correctly iden-
tified instances to the total number of instances from the
query subset.

3.2. Feature extraction

The feature extraction step contains two differences
compared to the previous version of the Saimaa ringed seal
re-identification algorithm [34]. The first difference is that
the region of interest detection approach uses the affine in-
variant regions (HesAffNet) instead of dense patches. The
second difference is a switch to HardNet network to com-
pute patch embedding. HardNet was compared to Triplet
Network from [34] and ArcFace Network from [11]. To
assess the necessity of each of these changes both modifi-
cations were evaluated separately. Hyperparameters for all
versions of the algorithm were chosen using the Tree Parzen
Estimator [8] algorithm. The results of the experiments are
presented in Table 1.

As can be seen, both HesAffNet for region of interest
detection and HardNet for patch embedding computation
improve the accuracy noticeably. This finding leads to the
conclusion that the dense patches approach cannot handle
more general cases, whereas fine invariant features provide
much needed robustness to various imaging conditions.

In order to evaluate the effect of the pelage pattern ex-
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Table 1. Re-identification accuracy for different variants of the
algorithm.

Patch
extraction

Patch
embedding

Top-1,
%

Top-3,
%

Top-5,
%

Dense
Triplet [34] 52.06 60.36 65.70

ArcFace [11] 39.94 50.06 56.67
HardNet 52.18 61.70 67.27

HessAffNet
Triplet [34] 60.42 69.27 73.52

ArcFace [11] 47.03 55.58 60.55
HardNet 77.64 82.97 85.27

Table 2. Comparison of re-identification results by the NORPPA
method on the SealID dataset with and without the pattern extrac-
tion step.

Input data
Top-1,

%
Top-5,

%
Top-10,

%
Top-20,

%
Original images 55.03 68.48 76.36 84.73
Pattern images 77.64 85.27 89.09 92.18

traction on the algorithm’s accuracy, an ablation study has
been performed. The results with and without the pattern
extraction step are presented in Table 2. It is clear that the
pelage feature extraction significantly increases the accu-
racy of the algorithm.

3.3. Patch embedding network

Training and fine-tuning of HardNet on different datasets
were conducted in order to further improve the method.

The original HardNet was trained on the union of
HPatches [5] and Brown [9] datasets. Typically, fine-tuning
a machine learning model on domain-specific training data
improves the method performance in a new domain. To test
this on Saimaa ringed seal re-identification, we fine-tuned
the HardNet model on patches of pelage pattern images.
Fine-tuned models were compared to the pretrained model,
a model trained from scratch on the pattern patches, and a
model trained on the union of all datasets.

The results are presented in Table 3. For the training,
all hyperparameters and random seeds were taken from the
original implementation of HardNet [29].

While fine-tuning on the patches dataset improved the
accuracy of the patch matching, the overall accuracy of
the full-image matching dropped significantly. One pos-
sible reason is that the patches dataset was created using
patches of the same scale, while the patches extracted by
HesAffNet during the full re-identification algorithm vary
in scale, leading to a different level of detail.

Training on the union of all datasets showed no consid-
erable improvements. This result can be explained by the
size of the pelage pattern patches dataset in comparison to

Table 3. Comparison of results for HardNet trained and fine-tuned
on various datasets. We report mean with standard deviation.

Training
Patches

TOP-1, %
Full

TOP-1, %
Full

TOP-5, %
Pattern patches 86.5 59.9 71.4
Brown
+HPatches 93.02 77.2 85.1

Brown
+HPatches
+Pattern patches

93.76 70.7 80.5

the combined sizes of the Brown and HPatches datasets.
In other words, since HardNet utilizes triplet sampling dur-
ing the training stage, the probability of an image from the
pelage pattern dataset appearing in the triplet is extremely
small.

3.4. Qualitative evaluation

Visual examples of the re-identification results for the
proposed NORPPA method are presented in Fig. 9. For
the final version we use HardNet trained on Brown and
HPatches datasets. Upon inspecting the results with high-
lighted areas, it is evident that the proposed method learns
to perform the matching between query and database im-
ages based on the characteristics of the pelage pattern. Fur-
thermore, it can be seen that the method is able to find the
corresponding regions in the patterns in very challenging
cases (Fig. 10).

Figure 9. TOP-4 examples for the NORPPA method. For the given
query image, the four best matches in decreasing order of similar-
ity. Matched hotspots are highlighted in green. TOP-1–TOP-3
matches are correct. TOP-4 is incorrect.
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(a) (b) (c)

Figure 10. Examples of some challenging cases. Top images are matched to the bottom images. The seal segmentation is shown in orange.
The matching regions are highlighted and connected with green lines, the intensity corresponds to the similarity of a matched pair. The
algorithm is able to match patterns even when the pose and point of view change significantly.

Table 4. Comparison of re-identification results between
HotSpotter, NORPPA and previous iterations of the algorithm:
SaimaaReID [34] and LadogaReID [32].

Method TOP-1 TOP-3 TOP-5
SaimaaReID [34] 35.23% 44.61% 60.39%
LadogaReID [32] 39.94% 50.06% 56.67%
HotSpotter [13] 61.87% 63.63% 64.42%
NORPPA (ours) 77.64% 82.97% 85.27%

3.5. Quantitative evaluation

SaimaaReID [34], LadogaReID [32] without grouping
step and NORPPA seal re-identification methods have been
compared to HotSpotter [13], which is another method de-
veloped for patterned animal re-identification. HotSpotter
is species-agnostic, and as such can be applied to Saimaa
ringed seals as well. The results of NORPPA and HotSpot-
ter for the Saimaa ringed seal dataset are presented in Ta-
ble 4. It can be seen that the proposed method clearly out-
performs HotSpotter based on TOP-1 accuracy. The differ-
ence is even more clear on TOP-5 accuracy, implying that
even when NORPPA fails to correctly re-identify the seal,
it is often able to provide a high rank for the correct match
in the database. This is especially useful when the method
is applied in a semi-supervised manner where the algorithm
provides a set of possible matches for the expert to verify.

By considering a larger number of top matches, it is pos-
sible to further increase the chances of finding a correct

individual. The plot of the top-k accuracy relative to the
k value is presented in Fig. 11. The relationship for the
NORPPA, SaimaaReID and LadogaReID methods is loga-
rithmic in nature with fast growth for small k values, which
slows down significantly with higher values. HotSpotter, on
the other hand, exhibits almost no improvement after TOP-
2 accuracy, with the difference between TOP-1 and TOP-
5 accuracy being only about 2%, while the difference for
NORPPA is almost 10%. The improvement in accuracy is a
desirable property for a semi-automatic approach, offering
a considerable accuracy improvement in exchange for a rel-
atively small increase in the manual work required (as com-
pared to a fully manual approach). Depending on the final
application and available data, the relationship between the
top-k accuracy and k can be used to determine the optimal
number of matches to be returned by the algorithm.

4. Discussion

The proposed method has demonstrated promising re-
sults and can be utilized for the automatic re-identification
of ringed seals. To mitigate the extreme dataset bias and to
focus attention on the pelage pattern for re-identification, a
series of steps were performed, including tonemapping of
the original image, segmentation of seals from the back-
ground, and segmentation of the pelage pattern from the
seal image. Furthermore, to address the issue of variabil-
ity in the viewpoints and poses of the seals, local pattern
patches were extracted from the images and pattern fea-
tures were aggregated over the images. It should be noted
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Figure 11. Plot of top-k re-identification accuracy for the proposed
NORPPA method relative to k.

that the accuracy of re-identification is influenced by vari-
ous factors, such as image quality, the distance between the
camera and the seal, weather conditions, illumination, and
the seal’s pose.

The obtained TOP-1 accuracy of 77.6% motivates to
utilize the proposed method in a semi-automatic manner,
thereby noticeably reducing the manual labor. Expert veri-
fication is useful to ensure the accuracy and reliability of the
results. Additionally, the incorporation of new individuals
into the database does not require the reconfiguration of any
of the system’s components.

The proposed framework was evaluated on the challeng-
ing SealID dataset, which comprises high and poor-quality
images captured using game and hand-held cameras. A sig-
nificant advantage of the NORPPA method is that it does
not require a large dataset for training, and it operates on the
white-box principle, whereby the outcome of each step can
be assessed and improved. For example, the pattern extrac-
tion step may not always eliminate grass occlusions, lead-
ing to incorrect matches with other images with the same
distortion. The re-identification and ranking steps can be
enhanced by incorporating geometric verification.

While the method was developed for Saimaa ringed
seals, the future plans include its evaluation on other pat-
terned animal species. The method is relatively easily trans-
ferable and has only 2 steps that require supervised train-
ing: segmentation and pattern extraction. While those steps
benefit the accuracy of the method, they could be omitted,
whereas the feature extraction and re-identification steps re-
quire unsupervised training only.

One additional benefit of the proposed method is that
it allows features to be aggregated over multiple images.
This opens interesting possibilities for further research as
sequences of game camera images can be utilized to create

a single descriptor for a larger portion of a pelage pattern by
filling in the gaps created by obstructions and viewpoints.
This has been demonstrated in [36].

5. Conclusion

A novel method for Saimaa ringed seal re-identification
called NOvel Ringed seal re-identification by Pelage Pat-
tern Aggregation (NORPPA) was proposed in this paper.
The method utilizes pelage pattern extraction and feature
aggregation inspired by content-based image retrieval tech-
niques. The re-identification pipeline consists of image en-
hancement, seal instance segmentation by Mask R-CNN, U-
net based pelage pattern extraction, pattern feature extrac-
tion, feature aggregation, and individual re-identification by
database search.

Improved pattern feature embeddings were proposed
by employing affine-invariant region of interest detection,
CNN based feature descriptors, and Fisher Vector feature
aggregation to obtain fixed size embedding vectors with
high discriminative power. The proposed method was ap-
plied to a novel and challenging Saimaa ringed seal dataset
and showed superior performance compared to HotSpot-
ter and earlier versions of the Saimaa ringed seal re-
identification method by the authors.
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