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Abstract

We propose an approach to automatically extract the 3D
pose of dogs from single-view RGB images using only syn-
thetic data for training. Due to the lack of suitable 3D
datasets, previous approaches have predominantly relied
on 2D weakly supervised methods. While these approaches
demonstrate promising results, some depth ambiguities still
persist indicating the neural network’s limited understand-
ing of the 3D environment. To tackle these depth ambigui-
ties, we generate a synthetic 3D pose dataset (DigiDogs) by
modifying the popular video game Grand Theft Auto. Addi-
tionally, to address the domain gap between synthetic and
real data, we harness the power of Meta’s foundation model
DINOv2 due to its generalisation capability and fine-tune it
for the application of 3D pose estimation. Through a combi-
nation of qualitative and quantitative analyses, we demon-
strate the viability of estimating the 3D pose of dogs from
real-world images using synthetic training data.

1. Introduction

Automatically extracting the 3D pose of animals from
images holds immense potential across various fields, in-
cluding ecology, biology, and wildlife conservation. Scien-
tists can use this technology to study animal behaviour and
movement patterns in their natural habitats, gaining valu-
able insights into the ecosystem and supporting biodiver-
sity preservation. Additionally, the digitisation of animals
has a significant impact on the emerging field of metaverse
development. Through precise and lifelike 3D animal re-
constructions, a more authentic and immersive virtual ex-
perience can be achieved, enhancing the overall credibility
and engagement within the virtual world.

The field of 3D human pose estimation has advanced
rapidly due to the availability of 3D datasets. In contrast,
the progress in 3D animal reconstruction has been compar-
atively slow due to the scarcity of datasets, this is primarily
due to the inherent difficulty in capturing 3D datasets for

animals. As a consequence, researchers have faced chal-
lenges in obtaining sufficient and diverse data to train accu-
rate animal 3D pose estimation models. To tackle this issue,
previous research has predominantly relied on 2D weak su-
pervision methods [4, 12, 24]. These methods do not have
inherent 3D knowledge, so incorporating prior knowledge
such as the animal’s shape is necessary to mitigate the am-
biguity of single-view 2D-to-3D mapping and improve the
accuracy of 3D pose estimations. While these approaches
have demonstrated promising results, the 3D pose often re-
mains incomplete as the neural network lacks a compre-
hensive understanding of the 3D environment. This limi-
tation becomes apparent when viewing the reconstruction
from angles which are different from the original 2D cam-
era view direction.

To the best of our knowledge, the only publicly avail-
able 3D dog pose dataset is RGBD-Dog [14]. The dataset
includes 7 different types of dogs wearing motion capture
(mocap) suits. The data was captured using multiple Mi-
crosoft Kinect v2s along with a mocap system, providing
accurate 3D ground truth skeletons. However, due to the
controlled nature of the data collection, a model trained on
this dataset may face challenges when reconstructing poses
from in-the-wild RGB images, as the dataset lacks the nec-
essary diversity in, for example, background and illumina-
tion. To increase the diversity in the dataset and to address
the lack of 3D pose datasets, we propose to generate and
use synthetic data for training similarly to [11, 20]. How-
ever, using synthetic training data alone may lead to poor
inference performance on real data, due to the domain gap
between real and synthetic images.

We address two key problems for the 3D pose estimation
of dogs from images. Firstly, in order to tackle the problem
of in-the-wild 3D datasets and enhance the robustness of
3D pose estimation, we present a novel 3D synthetic dataset
(DigiDogs) that consists of a variety of dog videos accom-
panied by both 2D and 3D ground truth labels. It was gen-
erated by modifying the game Grand Theft Auto (GTA) [1].
The dataset features a diverse collection of videos showcas-
ing 8 distinct dogs engaged in various activities. Each video
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Figure 1. a) Illustrates samples of the DigiDogs dataset, b) showcases the different textures used for generating the DigiDogs dataset, c) is
a pie chart showing the number of frames generated using the type of dog breed, d) shows the number of encountered actions across the
videos generated and e) shows the proposed network used to estimate the 3D pose.

captures a single dog, ensuring individuality in breed, size,
and texture representation. Moreover, the dataset offers a
rich variety of backgrounds, encompassing both indoor and
outdoor settings, along with realistic scene illuminations.
Secondly, to address the domain gap we propose to build
upon and fine-tune the foundation model, DINOv2 [22] di-
rectly on the pose estimation task. The key contributions
of our work are:

• The generation and release of a synthetic 3D pose
dataset called DigiDogs compromising of videos of
dogs in various scenes from the game Grand Theft
Auto.

• We address the domain gap between synthetic and real
data by leveraging a foundation model (DINOv2).

• To the best of our knowledge, we are the first to esti-
mate the 3D pose of dogs from in-the-wild monocular
images using synthetic data alone.

2. Related work
2.1. Animal 3D pose estimation

3D pose estimation methods can be broadly categorised
into two groups: multi-view methods and single-view meth-
ods. Although multi-view 3D pose estimation remains the
most accurate approach for extracting the 3D pose of ani-
mals, it necessitates bringing the animals into a laboratory

and capturing them from multiple synchronised views us-
ing motion capture technology [3, 19]. This method poses
challenges related to setting up the mocap system and most
likely dealing with the uncooperative and natural behaviour
of animals. To overcome these difficulties, prior research
in the field of 3D animal reconstruction has increasingly fo-
cused on single-view reconstruction techniques, primarily
relying on 2D supervision as an alternative approach, con-
sidering that acquiring 2D datasets is easier than acquiring
3D datasets.

Relying solely on 2D ground truth can introduce depth
ambiguity issues, necessitating the incorporation of prior
knowledge to mitigate this problem. Previous methods have
addressed this challenge by using the animal parametric
model SMAL [34] as a geometric prior. Inspired by the
human-specific parametric model SMPL [18], SMAL was
learned from 41 scanned toy figures of various quadrupeds.
Various versions of the SMAL model have since been re-
leased for different animal cases, including horses [16],
birds [2, 30], and dogs [4, 7, 24, 26]. Additionally, more
relevant to our research, Kearney et al. [14] introduced the
RGBD-Dog dataset, the only publicly available 3D dataset
featuring multi-view videos of dogs recorded in mocap
suits. This dataset serves as a quantitative evaluation bench-
mark for future approaches and has been used to reconstruct
dogs from depth images. Although it provides high-quality
3D ground truth, neural networks trained using the RGB
images from the RGBD-Dog dataset may exhibit poor gen-

81



eralisation to in-the-wild scenarios, as these images feature
dogs wearing mocap suits and were recorded indoors in a
controlled environment. Unlike methods utilising the para-
metric model as a geometric prior, our approach stands out
by not relying on any priors. Instead, we directly train
our neural network using 3D pose data. Furthermore, our
method incorporates 3D data from a diverse dataset instead
of a mocap indoor dataset, leading to increased generalisa-
tion performance for in-the-wild scenarios.

2.2. Domain adaptation

The use of synthetic data as training data has become in-
creasingly popular [9, 29, 32] due to its numerous benefits,
such as the ability to generate an unlimited amount of data
and having complete control over the data generation pro-
cess. Although the setup for generating synthetic data can
be time-consuming, it is often considered a preferable al-
ternative to tedious and labour-intensive labeling work. In
the realm of animal-related research synthetic data usage is
not uncommon. In fact, [20] were pioneers in using CAD
models to generate synthetic data for animal pose estima-
tion. Similarly, [27] created a 2D pose dataset to address
the pose estimation problem for images of dogs. Another
recent [6] study employed image-domain translation tech-
niques to produce realistic videos of mice for 2D/3D pose
estimation model training, achieving comparable accuracies
to models trained solely on real-world data and showcasing
the potential of synthetic data in animal pose estimation.
Biggs et al. [5] performed 3D reconstruction of various an-
imals by registering meshes to synthetically generated sil-
houettes, while Zuffi et al. [33] successfully achieved the
automatic reconstruction of 3D pose, shape, and appearance
of in-the-wild images of zebras.

Recently, foundation models such as the Contrastive
Language-Image Pre-training model (CLIP) [23] and DI-
NOv2 [22] have gained significant popularity as founda-
tion models across various visual tasks, thanks to their ro-
bust pretraining capabilities and impressive state-of-the-art
performance. The following methods have benefited from
these models for 3D hand pose estimation [15], generating
animations from images [13] and generating 3D motions
from text prompts [28]. In our work, we harness the benefits
of the DINOv2 model [22] for the 3D pose estimation task
to narrow the domain gap. To the best of our knowledge, we
are the first to estimate the 3D pose of dogs from in-the-wild
monocular images using only synthetic 3D training data.

3. DigiDogs dataset generation
The dataset was generated by modifying the game,

Grand Theft Auto (GTA), which simulates a world based
on Los Angeles. We decided to generate the data using
GTA due to it being near photorealistic. Parameters such
as the time, lighting, weather, camera views and location

Outdoor # Dogs # Keypoints # Images
DigiDogs (ours) ✔ 8 33 27900
RGBD-Dog [14] ✗ 7 41 136,000
SVM ✗ 51 29 1880

Table 1. Comparison of DigiDogs (Ours) with real-world indoor
3D dog pose datasets.

(indoor/outdoor) were randomised. The human player was
replaced with dog meshes that were available in the game.
The game features a total of 8 canine breeds, each varying in
shape, size and texture (Fig. 1a,b). Some of these breeds are
adorned with unique collars, adding an extra layer of dis-
tinction to their appearance. These breeds include Labrador,
Rottweiler, Shepherd, Wolf, Coyote, Poodle, Terrier, and
Pug. The dogs contain an extensive library of animations
such as walking, cantering, running, sitting and barking,
among others. Our dataset comprises 118 videos, totaling
27900 frames, capturing a diverse range of scenarios. We
aimed to maintain an equal distribution of frames for each
dog type (Fig. 1c). For the training and testing phases, we
specifically selected 6 dogs and 2 dogs, respectively, main-
taining approximately an 80:20 ratio. In each video, the
dogs performed either a single animation, like running, or
a sequence of animations, such as walking followed by sit-
ting. This explains the elevated value of the walking bar in
the bar chart (Fig. 1d). Alongside the RGB images, we gen-
erated depth maps, kinematic skeletal motion sequences,
2D/3D keypoint coordinates, segmentation maps and cam-
era intrinsics and extrinsics. The 3D keypoints were ex-
tracted from the digital skeleton also referred to as a rig.
We extracted the skeletal information from the following 26
joints: head, neck, throat, mid-spine, pelvis, start-tail, mid-
tail, end-tail, five joints in each front leg, and four joints in
each back leg. The facial keypoints were omitted because
the facial joints in the rig did not align accurately with the
joints in image space. Accurate detection of body parts us-
ing the RGB image is important for the network; misalign-
ment may result in erroneous joint detection, leading to in-
correct predictions of 3D joints.

4. D-Pose architecture and losses
To achieve 3D dog pose from a single image, we ex-

tend the DINOv2 [22] model by adding 3 pose branches
simultaneously predicting the joint heatmaps for each X ,
Y , Z axis in the XY , XZ, ZY planes, respectively. The
heatmaps are marginal heatmaps representing the likelihood
of the joint positions in an image [21]. To generate the
ground truth heatmaps, the joint positions were first nor-
malised within the Normalized Device Coordinate space,
ensuring they fell within the range of [-1, 1]. Subsequently,
these normalised positions were then represented as a 2D
heatmap using a Gaussian distribution. The DINOv2 model
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was used rather than a conventional pose estimation model
such as the stacked hourglass network due to the latter’s
superior domain adaptation performance [22]. We refer to
our customised model as D-Pose for ease of reference and
distinction (Fig. 1e). D-Pose’s input is an RGB image of
size 448×448×3 and outputs 3 heatmaps of size 32×32×K
where K for the number of keypoints. Hxy , Hzy , and Hxz

denote the predicted heatmaps for the heatmaps on the xy,
zy, and xz planes, respectively. We denote the ground truth
heatmaps with a hat symbol: .̂ Within each branch, a lin-
ear layer is introduced to reduce the feature dimension from
768 to 512, followed by a convolutional layer with a kernel
size set to 1. To predict the Hzy and Hxz heatmaps, an axis
permutation technique [21] was applied following the di-
mension reduction operation. This axis permutation entails
transposing the intermediary activations, effecting a seam-
less transition from the xy space to the zy and xz spaces.
To refine the network’s performance, we fine-tune it by un-
freezing the last three layers and introduce a dropout layer
just before the final layer, with a probability of 0.3 for zero-
ing out elements.

We have adapted the loss in [21] by masking elements of
the loss function based on the availability/visibility of the
joints. The Jensen-Shannon divergence (JSD) [17] is com-
puted between the predicted and ground truth heatmaps to
encourage them to mimic the shape of a specific probability
distribution. Additionally, the mean squared error between
predicted and actual joint locations is calculated. The fol-
lowing equation Eq. (1) shows the loss used for training:

L1 = v · ∥µ− µ̂∥2+
JSD(Hxy∥Ĥxy)+

JSD(Hzy∥Ĥzy)+

JSD(Hxz∥Ĥxz)

(1)

Where v is a binary representation of joint availability, with
a length of K corresponding to the number of keypoints. µ
represents the joint coordinates and is computed the follow-
ing way:

xxy, yxy = E[Hxy]

yzy, zzy = E[Hzy]

xxz, xxz = E[Hxz]

µ =(xxy, yxy,
zzy + zxz

2
)

(2)

We set the predictions from the Ĥxy for the xy-coordinates.
However, we could have derived the xy-coordinates from
the zy- and xz-heatmaps. To obtain the z-coordinate, we
averaged the extracted z-coordinate from Hzy and Hxz .
The JSD function’s components were selectively masked

according to Eq. (3), with the binary mask M(x, y) deter-
mining inclusion (M(x, y) = 1) or exclusion (M(x, y) =
0) from the calculation.

JSD(H∥Ĥ) =
1

2
[DKL(H∥M ·Ĥ)+DKL(Ĥ∥M ·H)] (3)

5. Experiments
We present the implementation details (Sec. 5.1), the test

datasets employed for thorough evaluation (Sec. 5.2), and
the evaluation protocols (Subsection Sec. 5.3) adopted in
our research. We showcase both qualitative and quantita-
tive results (Sec. 5.4) obtained from both synthetic and real
images, providing a comprehensive analysis of our findings.

5.1. Implementation details

D-Pose’s architecture was built upon the DINOv2 back-
bone, employing a ViT-B [8] with a patch size of 14. The
network is trained using PyTorch Lightning [10], with a
batch size set to 16 and a maximum number of epochs set to
500. We selected the Adam optimizer with an initial learn-
ing rate of 1e-5 for optimization. The learning rate was ad-
justed according to the multi-step learning rate scheduler,
by decreasing the learning rate every 5 epochs with γ set to
0.001. Additionally, to prevent overfitting and to ensure ef-
ficient training, we employed early stopping after 5 epochs.
Data augmentation techniques were applied to augment the
dataset, including random color jitter (p=0.45), Gaussian
blur (p=0.35), and random grayscale conversion (p=0.5).
p is the probability for randomly applying the augmenta-
tions. Furthermore we randomly cropped the image based
on the bounding box, note that by doing this the center point
(cx, cy) of the camera changes.

5.2. Real-world dog datasets for evaluation

We evaluate our model on the DigiDogs test set, which
are dogs/scenes that the model has not seen during training.
Furthermore, our model is evaluated on real world datasets
which we will further discuss in this section.

StanfordExtra (2D) [4] Contains 12k in-the-wild im-
ages of dogs including 2D ground truth such as keypoint
coordinates and segmentation maps. We exclude images la-
beled with multiple dogs and those lacking segmentation
maps.

RGBD-Dog (3D) [14] Contains multi-view videos of
dogs in mocap suits recorded in a controlled environment.
This dataset is used to evaluate our 3D pose estimation and
the generalisation capability of our network. Furthermore,
this dataset was also used to train a network using only real-
world data and subsequently compare its performance with
the network trained solely on synthetic data (DigiDogs). We
refer the reader to Protocol 2 in Sec. 5.3.

SVM is an internal dataset collected specifically for de-
tecting different kinds of lameness using diverse sensor and
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capture systems, including pressure mats, optical markers,
IMUs, and video/depth cameras. The capture included 64
subjects, each performing three walking and three trotting
trials. Eight synchronised RGBD cameras were used to
record the data alongside the standard systems in a labo-
ratory. Due to the nature of the data and ongoing research,
we have decided to use it for the current study without for-
mally contributing it as a standalone dataset. Due to the
capture setup, we plan to further expand its use and aim to
release it for public access in future work. We employ a
subset of the SVM dataset to assess the performance of our
network. However, it is essential to acknowledge that the
depth information is available solely from one side of the
dog.

5.3. Evaluation protocols

To assess our network’s performance, the percentage of
correct keypoints (PCK) and the mean per joint position er-
ror (MPJPE) were used. PCK measures the percentage of
predicted joint locations that fall within a specific threshold
α of the ground truth keypoint locations. On the other hand,
MPJPE quantifies the distance between the predicted and
ground truth locations. We report these metrics for both 2D
and 3D scenarios. When computing the metrics, we only
consider the joints that are visible and have ground truth la-
bels available. The PCK and MPJPE in 3D are measured
after Procrustes alignment of the predicted and ground truth
skeletons. Due to the lack of facial keypoints in DigiDogs,
the metric calculations apply exclusively to the remaining
anatomical components, excluding the facial region.

Protocol 1 (2D): Demonstrating the 2D re-projection er-
rors. Following previous works [4,24], we evaluate on Stan-
fordExtra test set in terms of 2D reprojection error. For PCK
evaluation, we set the PCK threshold to α = 0.15. The dis-
tances between predicted and ground truth joint locations
are normalised relative to the area of the 2D segmentation
map. Our method is compared to the results against recent
state-of-the-art methods such as WLDO and BARC [4, 24],
both of which leverage the animal parametric model for 3D
pose estimation.

Protocol 2 (3D): Comparing real to synthetic data. In
this protocol, our approach is trained with real-world in-
door 3D pose datasets. This protocol presents the 3D
pose estimation results. We compare D-Pose trained on
the DigiDogs dataset with D-Pose trained on real-world
datasets (RGBD-Dog [14] and SVM). We evaluate our re-
sults on different datasets such as the StanfordExtra (2D),
the RGBD-Dog (3D) and the SVM dataset (3D). We set the
threshold to α = 0.15 and normalise the skeleton with re-
spect to the length between the neck and pelvis for the 3D
metrics. For future reference, we identify D-Pose, the pose
estimation model, based on the specific dataset it is trained
on (Tab. 2).

Symbol Training dataset
D-Posedigi DigiDogs (synthetic)
D-Posergbd RGBD-Dog (real & indoor)
D-Posesvm SVM dataset (real & indoor)

Table 2. The nomenclature explains the symbols and specifies the
dataset used for training the network.

Figure 2. 3D results (PCK and MPJPE) from D-Posedigi on the
DigiDogs test set. The ground truth and predicted skeleton are
coloured green and pink, respectively.

5.4. Results

We begin by presenting both quantitative and qualita-
tive results on the DigiDogs test set. D-PoseDigi achieves a
PCK2D of 95.28 and a MPJP2D of 0.06, along with PCK3D

of 78.27 and MPJPE3D of 0.14. Fig. 2 shows the 3D met-
rics including D-PoseDigi’s ability to generate high quality
3D poses on the in-domain test set. The network was not
exposed to these specific dog types or background environ-
ments during training.

Protocol 1 (2D): We compare our method to WLDO [4]
and BARC [24], which rely on parametric models and 2D
supervision. Tab. 3 presents the 2D results, while Fig. 3 pro-
vides qualitative results of our method on the StanExt test
set. Our results using the 2D metrics are better than the cur-
rent state-of-the-art methods, without being trained on the
StanfordExtra training set or using real-world data and/or a
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Figure 3. 2D results (PCK, MPJPE) on the StanfordExtra test set
from D-Posedigi (left) and from the D-Posergbd (right). The 2D
projections including the predicted 3D pose from different angles
are shown. The ground truth and predicted skeleton are coloured
green and pink, respectively. The ground truth skeleton is only
shown in 2D as the StanfordExtra is a 2D dataset. Furthermore,
only the visible joints are shown from the ground truth skeleton.

geometric prior. These results is most likely due to the use
of 3D ground truth, in contrast to exclusively relying on 2D
ground truth. We believe that using our approach in con-
junction with a geometric prior has the potential to enhance
the performance of existing 3D dog pose estimation meth-
ods. As illustrated in Fig. 3, our D-PoseDigi model demon-
strates the ability to reconstruct both 2D and 3D dog poses
from real-world images, despite being trained on synthetic
3D data. It is important to note that in Fig. 3, we present
the ground truth skeleton (coloured in green) in 2D, as the
StanfordExtra dataset only provides 2D ground truth anno-
tations.

Protocol 2 (3D) In Tab. 3, we present the 2D reprojec-
tion results obtained from D-Posergbd, a model trained ex-
clusively on real-world indoor data (RGBD-Dog) and tested
on the StanfordExtra dataset. Despite the precise 3D pose
labels in the RGBD-Dog dataset, its lack of diversity be-
comes evident. This limitation is why D-Posedigi outper-
forms D-Posergbd by 12% in the 2D pose estimation task.
The table clearly illustrates the substantial advantage of
leveraging DINOv2 in bridging the domain gap. Notably,
D-Posergbd, despite not being trained on the StanfordExtra
dataset, demonstrates performance levels nearing the state

Method PCK@0.15
Avg Legs Tail

WLDO [4] 78.8 76.4 63.9
BARC [25] 82.8 82.3 63.3
Ours (D-Posergbd) 71.8 72.0 86.6
Ours (D-Posedigi) 83.8 86.1 80.0

Table 3. 2D results on the StanfordExtra test set [4]. Comparison
to SOTA. Results from WLDO and BARC are reproduced from
[26]. Our(s) networks are trained either on DigiDogs or RGBD-
Dog datasets.

of the art. In summary, it remains crucial to diversify the
training dataset for more robust pose reconstruction, espe-
cially when dealing with images captured in natural envi-
ronments (in-the-wild). This also becomes evident when
qualitatively comparing the 3D skeleton predictions in row
2 of Fig. 3. The predictions generated by D-Posedigi appear
more plausible than those produced by D-Posergbd. This
is most likely attributed to the broader range of poses, in-
cluding sitting and lying down, and the diverse background
scenes featured in the DigiDogs dataset. In contrast, al-
though the RGBD-Dog dataset is larger Tab. 1, its limited
background variety adversely impacts the overall quality of
pose predictions. This shows that using synthetic training
data offers more advantages than capturing 3D data in a
controlled laboratory environment. Synthetic data is not
only easier to generate but also provides a greater diversity
of scenarios and poses for training purposes. As there are
no available in-the-wild 3D pose datasets, our method, us-
ing training synthetic data is a viable alternative to estimate
the 3D pose of dogs from images.

We continue to present the results obtained from the D-
Posergbd model, specifically evaluating its 3D performance
on the RGBD-Dog test sets. There are two RGBD-Dog
test sets: one assessing the model’s adaptability to miss-
ing data, while the other evaluates its ability to generalise to
previously unseen dog breeds. Furthermore, we perform a
comparative analysis by contrasting it with the D-Posedigi
model. Tab. 4 demonstrates that D-Posergbd is able to pre-
dict the 3D poses for test sets encompassing dogs 1 to 5,
which it has encountered during the training process with
an acceptable level of accuracy. Tab. 4 also demonstrates
D-Posergbd’s generalisation capability by successfully pre-
dicting poses for previously unseen dogs, specifically dog
6 and 7. When compared to D-Posergbd, D-Posedigi ap-
pears to struggle in accurately predicting poses across the
test sets. We believe this is due to the domain gap in the
z-coordinate space, due to the different z-coordinate distri-
butions across different datasets, which can be caused by
different camera setups. However, upon qualitative evalu-
ation of the results as depicted in Fig. 4, D-Posedigi pose
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Figure 4. Qualitative results from D-Posergbd (left) vs. D-Posedigi (right). The ground truth and the predicted skeletons are coloured in
green and pink, respectively.

Figure 5. Failure cases from D-Posedigi compared to successful
cases from D-Posergbd (from left to right). The ground truth and
predicted skeletons are coloured in green and pink, respectively.

predictions appear plausible. D-Posedigi faces challenges
in accurately predicting 3D poses, especially in cases of oc-
clusion or when a human is present in the frame. It often
misidentifies human limbs as dog limbs, leading to confu-
sion in pose predictions (Fig. 5). Overall, the qualitative
results show potential in our method, as it is important to
reiterate that the model has not been exposed to the RGBD-
Dog data during its training process.

Finally, we present the 3D results on the SVM test set
from the D-Posesvm, D-Posergbd and D-Posedigi models.
D-Posesvm achieves high accuracy on the SVM dataset,
which belongs to the same domain. While D-Posesvm, per-
forms well on its in domain dataset, D-Posergbd and D-
Posedigi do not perform well on the out-of-domain test set
quantitatively (Tab. 5). Similarly to the previous analysis
of D-Posergbd, we believe this is due to the domain gap in
the z-coordinate space. Nonetheless, upon closer examina-
tion, we find that the predicted 3D poses exhibit a reason-
able proximity to the ground truth, as illustrated in Fig. 6.
Despite narrowing the domain gap in 2D image space, dif-
ferences in Z-coordinate distributions persist across the 3D
datasets due to factors like varying camera setups. A do-
main gap in the z-axis still remains. We believe that this
could be addressed by refining the 3D pose using label

refinement networks [31]. Furthermore, while the SVM
dataset only includes the 3D ground truth from the lateral
side, D-Posergbd and D-Posedigi were trained with datasets
including complete skeleton 3D ground truth data. Because
of this, both models are able to predict believable 3D skele-
tons (Fig. 7). It should be noted that D-Posedigi consistently
exhibits a more reliable 3D skeletal pose structure when ob-
served from different angles, compared to the predictions
made by D-Posergbd

6. Conclusion
We present an approach for automatically extracting the

3D pose of dogs from single-view RGB images, using
synthetic training data. Past methodologies relied on 2D
weakly supervised techniques due to the absence of suit-
able 3D datasets, yielding promising results but leaving per-
sisting challenges in depth perception. To overcome these
depth ambiguities, we created a synthetic 3D pose dataset,
DigiDogs, through modifications to the video game Grand
Theft Auto. Moreover, to help bridge the gap between
synthetic and real-world data, we harnessed the general-
isation capabilities of the DINOv2 foundation model and
fine-tuned it for the 3D pose estimation task. While pre-
vious research has primarily assessed their approach using
2D metrics, we extend our analysis by providing results in
3D as well. Firstly, we demonstrate that training our ar-
chitecture with our synthetic dataset, DigiDogs, yields sig-
nificantly more realistic and comprehensive 3D poses com-
pared to training it on real-world indoor datasets. This is
due to the dataset’s diverse range in of dog appearances,
poses and contextual scenes. Secondly, we outperform the
current state-of-the-art in 2D. Finally, through a compre-
hensive blend of qualitative and quantitative analyses, we
have established the practicality of estimating realistic 3D
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Figure 6. Qualitative results on the SVM test set from D-Posesvm,rgbd,digi (from left to right). Ground truth and predicted skeletons are
coloured in green and pink, respectively.

Dog Training set Metric Avg

Dog1
RGBD-Dog PCK 75.23

MPJPE 0.16

DigiDogs PCK 31.11
MPJPE 0.44

Dog2
RGBD-Dog PCK 78.33

MPJPE 0.15

DigiDogs PCK 29.63
MPJPE 0.39

Dog3
RGBD-Dog PCK 73.12

MPJPE 0.19

DigiDogs PCK 29.01
MPJPE 0.48

Dog4
RGBD-Dog PCK 73.54

MPJPE 0.16

DigiDogs PCK 30.25
MPJPE 0.38

Dog5
RGBD-Dog PCK 67.01

MPJPE 0.29

DigiDogs PCK 30.35
MPJPE 0.44

Dog6
RGBD-Dog PCK 76.01

MPJPE 0.16

DigiDogs PCK 29.87
MPJPE 0.39

Dog7
RGBD-Dog PCK 75.13

MPJPE 0.18

DigiDogs PCK 30.83
MPJPE 0.47

Table 4. 3D results (PCK and MPJPE) on the RGBD-Dog dataset
[14] from D-Posergbd and D-Posedigi. Dog 6 and Dog 7 were not
seen by the network.

poses of dogs from real-world images, using a combination
of the DINOv2 model and synthetic training data.

Limitations and Future work Our method reconstructs
plausible 3D skeleton structures of dogs from real-world

Figure 7. Qualitative results on the SVM test from D-Posergbd and
D-Posedigi. Demonstrating complete results as the SVM dataset
only consists of joints from the lateral side. Ground truth and pre-
dicted skeletons are coloured in green and pink, respectively.

Method PCK MPJPE
D-Posesvm 86.15 0.31
D-Posergbd 20.34 0.40
D-Posedigi 21.35 0.44

Table 5. 3D results (PCK and MPJPE) on the SVM test set from
networks trained on the following datasets: SVM, RGBD-Dog and
DigiDogs.

images qualitatively. However, quantitative results reveal
a domain gap in the z-coordinate space, indicating room for
improvement. We plan to refine the joint predictions [32] to
match specific 3D pose datasets. After refining the joints,
we are optimistic that by integrating our methodology with
a geometric prior could enhance existing 3D dog pose esti-
mation techniques which relied solely on 2D ground truth.
In addition, we plan to evaluate the significance of diversity,
including various dog breeds and textures, and determine
the optimal size of the training synthetic data to enhance
overall performance.
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