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Abstract

Preserving endangered species is a critical component
of maintaining a balanced and healthy ecosystem. Animal
pose, especially for rare animals, allows an understand-
ing of various aspects of biology and ecology, including
but not limited to individual animal behavior analysis and
study of migration patterns. Using the small-scale dataset
from (i.e., red-list species) monitoring efforts of Eurasian
lynx (Lynx lynx), we provide a comprehensive guide to a
simple yet effective 2D pose estimation suitable for endan-
gered species. We showcase the contribution of a vari-
ety of methods and their influence on the performance in
terms of AP, AP 75, APy g5, and PCKy o5. Our experiments
provide a hitchhiker’s guide to (i) pre-trained model selec-
tion, (ii) model pre-training and fine-tuning, (ii) augmen-
tation strategies, (iii) training hyper-parameters settings,
(iv) number of required real data, and (v) use of synthetic
data. Using all the bells and whistles and HRNet-w32, we
achieved 0.855AP and 0.936PCKy o5 lowering the relative
error of a pre-trained model by more than 50%. Last but not
least, we have developed a system for photorealistic syn-
thetic camera trap data generation. The system is available
at: https://github.com/strakaj/Synthetic—
animal-pose—generation.git.

1. Introduction

Ensuring the survival of endangered species is vital for
sustaining a harmonious and thriving ecosystem. Monitor-
ing the population and migration of endangered species has
been at the center of the attention of biologists for a long
time. Non-intrusive tracking devices such as camera traps
are preferred to other devices such as collars or chips. How-
ever, processing the data from cameras by hand is time-
consuming and tedious. Modern Al-powered systems can
be helpful in many ways, such as filtering empty camera
images [0], classifying the observed species [25], identify-
ing individuals [!4], or estimating their pose [31].

Animal pose plays a crucial role in studying and under-
standing various aspects of biology and ecology, e.g., ani-
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Figure 1. Results summary for 2D pose estimation of endan-
gered species Lynx lynx with limited data. We showcase that
pre-training on larger datasets leads to overfitting, and any amount
of real data leads to better performance. Overall, the best approach
is to pre-train on domain-related data enriched with synthetic data
and fine-tune it with any available real data. The size of the circles
is proportional to the number of training data; the largest circle has
14000 images, and the smallest includes 1000 images. A-P stands
for Animal-Pose dataset and IN for ImageNet-1k dataset.

mal behavior [10, 13,22], migration patterns [I1, 17], that
allow for better conservation and endangered species pro-
tection [27,35]. In general, pose estimation is a challeng-
ing task for several reasons, such as the inherent flexibil-
ity of limb joints and the potential for body parts to be ob-
scured. In human pose estimation, a model trained on one
dataset can be easily transferred to different data as humans
in different scenarios are still similar in size and propor-
tions. There is a large number of animal species and not
all species are represented in existing datasets. Therefore,
in some cases, it is necessary to transfer a model trained
for detection on animals of one species to animals of dif-
ferent species which can differ in size, proportionality, and
flexibility of limbs making this task more challenging. In
recent years, animal pose estimation has received more at-
tention with newly proposed datasets with a large range of
species [22,32,33]. Still, rare and endangered species are
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omitted or represented sparsely in these datasets. This is
due to the nature of their scarcity, which makes them diffi-
cult to capture on a camera. Existing pre-trained models for
animal pose estimation suffer from the poor generalization
ability to unseen and endangered (i.e., rare) animal species.
In such cases, one of the solutions can be the use of syn-
thetic data.

Arguably, the photorealisticity of generated synthetic
data can reduce the domain gap between real and syn-
thetic data. Studies [26,29] on other computer vision tasks
(semantic segmentation) showed that highly realistic syn-
thetic data can outperform less realistic synthetic datasets.
However, such datasets may face challenges in terms of
lower data diversity due to the difficulty of creating detailed
scenes. Real data encompass images from diverse environ-
ments with varying weather and lighting conditions, lead-
ing to significant appearance variations at the same loca-
tion over time. Synthetic data generation pipeline should
address this issue. Another challenge is the use of realis-
tic models of animals in simulation. Real animals of one
species can vary in size, texture, and proportions. Simula-
tion should also capture animals in various poses.

Synthetic data offers certain advantages over real data.
Annotation of real data may be challenging primarily due
to occlusion and photo quality. This can lead to inaccu-
rate position of keypoints or only partial annotation of the
pose. Simulation of synthetic data provides the advantage
of precise control over keypoint positions, ensuring their ac-
curacy. Furthermore, generating data for different animal
species becomes straightforward by merely switching be-
tween animal models in the simulation process.

The main contributions of this work are: 1. We provide
an all-encompassing guide on how to handle scarce data of
endangered species for pose estimation. 2. We explore the
effect of synthetic data on the quality of pose estimation by
creating a high-detailed synthetic image dataset of the tar-
get animal - Lynx lynx. 3. We analyze the metrics that mea-
sure pose estimation accuracy and propose a stricter key-
point variance value so that the accuracy measure is more
intuitive. 4. We measure the influence of pre-training and
fine-tuning of pose estimation approaches on different data.

2. Related Work

This work is related to several topics as it provides a
guideline for endangered species 2D pose estimation in sce-
narios with limited data. Therefore, in this section, we de-
scribe the state-of-the-art in these different topics, i.e., an-
imal pose estimation, utilization of synthetic data, and the
available real data.

2.1. 2D Pose Estimation

2D human or animal pose estimation is usually done us-
ing the skeletal pose estimation, where the pose is defined

as a graph with 2D positions of joints as nodes that are con-
nected by bones represented as vertexes of the graph. There
are two major approaches — Top-Down and Bottom-Up — to
detect the 2D positions of joints (alternatively bones). In
both, the pose estimation model comprises two parts: (i)
a backbone (usually a pre-trained CNN- or Transformer-
based model) and (ii) a segmentation head that directly re-
gresses the location or uses multiple transposed convolu-
tions that result in a heatmap for each key point. The posi-
tion of the key point is then obtained as the pixel’s position
with the maximum value in the corresponding heatmap.

The Top-Down approach is characterized by first de-
tecting instances of the objects and then estimating the pose
for each instance individually. Examples of Top-Down
methods include the stacked hourglass model [21] or the
HRNet model [24], which preserves the high resolution of
the input throughout the network. Simple but strong base-
lines for Top-Down pose estimation are presented in the
Simple Baseline paper [30]. Recently, following the success
of the Transformers in NLP [28] and CV [8], the Transform-
ers has also been adopted to pose estimation [31].

Differently, the Bottom-Up approach detects all the
joints of all the object instances directly on the entire input
image. Such approaches include OpenPose [3], which
joins the detected joints into skeletal graphs using the
graph-matching method, and HigherHRNet [4], which
learns scale-aware representations using high-resolution
feature pyramids.

Animal Pose Estimation is adopted from the Human
Pose Estimation in the sense of methods and techniques,
but a different skeletal model is used. The best-performing
methods on the animal pose benchmark datasets (e.g.,
Animal-Pose [2] and AP-10k [33]) are the Transformer-
based ViTPose model [31] and the CNN-based models
HRNet-w32 and HRNet-w48' [24].

2.2. Learning with Synthetic Data

Synthetic data are a promising way of addressing the
lack of labeled real data, particularly in the problem of ani-
mal pose estimation. There are several approaches to lever-
aging synthetic data. In [15,20], the authors trained models
on synthetic data, which are then used to generate pseudo-
labels for real data. This approach assumes a significant
number of real images of target species, which may not be
viable for rare and endangered species. The study by Mu et
al. [20] also showed that the model trained exclusively on
their synthetic data did not perform well on real data.

A study by Shooter et al. [23] proposes a synthetic
dataset of dogs. Images are generated by creating a sim-
ple 3D scene with a dog. A pose of the animal model is

132 and 48 represent the width of the high-resolution sub-network in
the last three stages.
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Figure 2. Examples of generated synthetic data. Recently published methods do not provide a photo-realistic output. Methods that place
a 3D model into a static 2D background [12] do not account for interaction and occlusions caused by background. More advanced methods
use a 3D squared space [ 15,20, 23], this provides more variability in environment appearance and more realistic model placement but still
does not account for interaction and occlusions caused by background.

generated using the Adaptive Neural Network proposed by
Zhang et al. [34]. Multiple components of the scene are ran-
domly selected e.g. background image and camera position.
The models trained exclusively on synthetic data performed
poorly. Only after combining synthetic data with a portion
of training data from StanfordExtra [1] models surpassed
the performance of models trained only on real data.

Similarly, Jiang et al. [12], focused on generating syn-
thetic data and training on a combination of synthetic and
real images. Synthetic data are generated by composing real
background images and rendered 3D models. The pose of
the model is generated through a variational autoencoder.
Additionally, the style adaptation model StyTr? [7] is used
to match the style of the background and rendered ani-
mal. Results showed that synthetic data in combination with
real data can slightly improve performance over the models
trained only on synthetic data.

The described methods show that there is potential for
the use of synthetic data when real data are scarce. How-
ever, the photo-realism of the synthetic data generated by
prior works remains questionable. See Figure 2 for exam-
ples. In this work, we push the quality of the synthetic data
to the limit to see whether it has any considerable effect on
the quality of predictions on real data.

2.3. Animal Pose Datasets

Data are crucial for supervised learning of animal pose.
There were several single-species datasets proposed [I,
16, 19] in the past. Ideally, for endangered species, the
model would be pre-trained on a dataset with a large va-
riety of animal species and then fine-tuned on the smaller
species-specific dataset. One of the first attempts to create a
multi-species dataset is the Animal-Pose [2] dataset which
contains 5.5k annotations for 5 common animal species.
Each animal is annotated with a maximum of 20 keypoints.
In [33] the authors proposed the AP-10k dataset which ad-
dresses the low diversity of species in [2]. The dataset con-
tains 13k instances of 54 species from 23 families anno-
tated with a maximum of 17 keypoints. The distribution of

species in the dataset is not uniform, rare species are rep-
resented less, which corresponds to their occurrence in na-
ture. Another diverse dataset is APT-36k [32]. The dataset
is created from video clips and focuses on pose estimation
and tracking. The dataset contains 53k instances of animals
of 30 species. The same 17 keypoints as in [33] are used.

3. Datasets

We focus on the 2D pose estimation of an endangered
species Lynx lynx. In this section, we describe (i) a small-
scale camera-trap dataset collected within central Europe
and (ii) a newly developed pipeline for realistic synthetic
data generation of any endangered species.

3.1. Central Europe Lynxes

The Central Europe Lynxes dataset originates from the
camera trapping project that focuses on the monitoring and
conservation of Lynx [ynx in Central Europe and has been
running for almost 15 years. More details about the acqui-
sition process and details of manual identification of lynx
individuals based on a comparison of coat patterns, particu-
larly on the hind limbs, forelimbs, and flanks, are available
in a study by Dula et al. [9].

From the provided unstructured data, we have built two
datasets — for testing and training — that originate from
two geographically distinct regions — Sumava National Park
(1969 images) and Javorniky (1148 images) — with differ-
ent backgrounds and camera traps to allow better cross-
geographical performance evaluation. In all our experi-
ments and ablations, the Sumava dataset is used for test-
ing, and the dataset from Javorniky is used for training.
While constructing the datasets, we excluded the images
with more than one individual and hardly visible or heavily
occluded Lynxes. All Lynx lynx instances were annotated
with 20 keypoint skeletons based on the physiology of the
Felidae species and to allow compatibility with the Animal-
Pose dataset. Besides the keypoints, a bounding box is pro-
vided.
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3.2. Synthetic Data Generation

Synthetic data have the potential to increase perfor-
mance in scenarios with limited data, such as 2D pose
estimation of endangered species. Given the fact that
outputs of existing approaches for synthetic animal pose
estimation are far from realistic [12, 23] (see Figure 2),
we have proposed and developed a new pipeline that
uses a game engine (i.e., Unity) capable of producing
highly realistic synthetic samples of any species. The
comprehensive overview of the proposed pipeline, which
consists of a description of the Environment, Animal, and
skeletal models, is provided below.

Environment: To generate highly realistic environments
(i.e., scenes), we have used freely available assets (e.g.,
terrain, trees, logs, etc.) from the Unity’s Book Of The
Dead. Inspired by the real environments that are available
in the data, we have created four photo-realistic scenes
with dynamic changes in real environments (e.g., tree type,
grass, snow). Different environment variants can be found
in the supplementary material. We show the comparison
between real and synthetic scenes in Figure 3.

Figure 3. Selected synthetic data samples. Inspired by the real
camera trap views, we have created four highly realistic scenes.
All scenes are made publicly available for further use.

Animal model: The main asset of our approach is the de-
tailed synthetic Lynx lynx textured model. On the negative
side, the model has just one walking animation. Therefore,
we have developed a sitting animation in addition to the
existing walking animation. We use the same skeleton
model as in the Animal Pose dataset with the 20 keypoints
to allow direct comparison with real data. In addition to
keypoints, we also save a bounding box, which is obtained
based on the mesh of the model.

Data generation pipeline: In the data generation process,
we aimed to mimic the actual process of capturing photos
through camera traps. First, we manually select four points
that define the trajectory within each scene where the ani-
mal model will walk. Along the walk, the Lynx lynx model
“stops” n times. In each “’stop” several adjustments to the
environment (e.g., tree type, grass, snow), camera view-
point, and animation and rotation of the animal modes are
made. Subsequently, two data samples are saved. First with
the pre-stop conditions and second after the adjustments.

4. Evaluation Metrics

Commonly used metrics for 2D pose estimation are
Percentage of Correct Keypoints (PCK) and Average Preci-
sion (AP) based on Object Keypoint Similarity (OKS). In
this section, we briefly describe both methods and further
evaluate their weaknesses, strengths, and suitability.

Percentage of correct keypoints measures if the distance
between prediction and ground truth is less than the given
threshold.  Typically, the threshold is determined as a
fraction of the animal’s size. This implies that every key
point must be predicted with equal accuracy regardless of
their ambiguity. For instance, the elbow is more ambiguous
than the eye, but the same level of accuracy is expected.

Object Keypoint Similarity is used in the calculation
of AP to measure the similarity between prediction and
ground truth value. The keypoint similarity (KS) is com-

puted as KS = exp (%), where d is the distance

of the predicted keypoint and the ground truth, s is the
scale of the detection, and o is the standard deviation of
redundantly annotated per-keypoint annotations. The OKS
is then computed as the mean of visible keypoints KS. A
keypoint is considered correctly predicted if its KS value is
larger than a selected KS threshold.

Average precision calculates the percentage of correctly
predicted keypoints. Typically, AP is evaluated on 10
evenly distributed OKS levels starting from 0.5 and ending
at 0.95. For the low values of OKS, predictions can lie fur-
ther from the ground truth to be considered correct. Com-
pared to PCK, AP is able to control the size of the threshold
with per-keypoint standard deviation values. This allows for
less strict thresholds for ambiguous keypoints.

53


https://unity.com/demos/book-of-the-dead
https://unity.com/demos/book-of-the-dead
https://www.turbosquid.com/3d-models/3d-model-bobcat-rigging-animation-cat/710089

Figure 4. AP thresholds in Animal-Pose dataset. An illustration
of AP thresholds for selected keypoints using three different OKS
values (e.g., 0.5, 0.85, and 0.95).

Metric evaluation: To understand the quality of the pose
estimation intuitively, one has to understand the different
parameters of individual metrics. At first, we used o values
from the Animal-Pose dataset introduced by MMPose [5]
that were inferred from the original COCO [18] values for
human pose estimation. After a brief evaluation of various
thresholds, we observed that at low OKS levels, predictions
were considered correct even if they were predicted on in-
correct parts of the animal body (see Figure 4).

We argue that AP evaluated on low OKS levels (e.g.,
0.5-0.75) with standard deviation values proposed for
Animal-Pose is not meaningful for model comparison and
can be misleading. Based on our observations, we adjusted
the o values” to more precisely measure the precision of the
model. Figure 5 depicts a comparison of Animal-Pose OKS
thresholds and OKS thresholds with our adjusted o values.
We adjusted o values with two goals in mind. The least
strict thresholds of two keypoints should overlap as little as
possible and thresholds should extend beyond the body of
the animal as little as possible. In Figure 6 we compare APs
and PCKj o5 with our modified values of o.

Figure 5. Per-keypoint standard deviation comparison. In the
image on the left are illustrated OKS thresholds with standard de-
viation proposed for the Animal-Pose dataset. In the image on the
right are our adjusted values of the standard deviation.

2See supplementary material for details.

3:08 aM

Figure 6. Proposed AP threshold. With our adjusted o values
even the least strict threshold does not excessively overlap with
other parts of the animal. AP thresholds are at 0.5 and 0.85 OKS.

5. Methods

In order to establish guidelines for simple yet effective
2D pose estimation of endangered species in a scenario
with limited data, we performed multiple experiments. The
experiments are tailored to provide the reader with a guide
to (i) pre-trained model selection, (ii) model pre-training
and fine-tuning, (ii) augmentation strategies, (iii) training
hyper-parameters settings, (iv) number of required real
data, and (v) use of synthetic data. In this section, we
describe all relevant experiments, training strategies, and
evaluations. All experiments were initialized with the same
random seed and training hyperparameters to ensure fair
comparison. If not stated differently, the models were
optimized for 210 epochs with a mini-batch size of 64,
using Adam optimizer with multistep LR scheduler.’

Method and backbone: Based on the state-of-the-art per-
formance in both human and animal 2D pose estimation,
we focus on the Top-Down methods in all experiments. To
find the best suitable method and backbone, we evaluate the
performance of different pre-trained ResNets (ResNet-50,
ResNet-101, and ResNet-151) and HRNets (HRNet-w32,
HRNet-w48) available in MMPose library.

Fine-tuning with synthetic data: As proposed in related
work, synthetic data might have a positive influence on
the performance of animal pose estimation methods. To
test this scenario with limited data, we use the publicly
available data from the Animal-Pose dataset and our gen-
erated synthetic data. We started training from the model
pre-trained on ImageNet. We always used all Animal-Pose

3The initial learning rate was 5e~* which was reduced by 90% after
the 80% epoch and again after the 95% epoch.
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data and gradually added synthetic data from 0 to 10k
images to evaluate the influence on performance. Smaller
versions of the dataset are always selected as a subset of the
larger versions and images are evenly selected from four
individual scenes.

Augmentations: Up to this point, we have not addressed
any post-processing of generated synthetic data. Instead of
applying transformations during the generation of the data
we left this procedure until the training stage, where it can
be addressed through augmentations. This gave us an op-
portunity to assess the influence of different augmentations
on performance. We selected five augmentations based on
different aspects of the real data that were not sufficiently
addressed in the simulation. To replicate imperfections
in the camera sensor, we applied blur and Gaussian noise
augmentations. Different lighting conditions are simulated
as HSV shift and random brightness and contrast augmen-
tation. Because some of the real data are taken at night we
also added augmentation that converts images to grayscale.

Hyperparameters fine-tuning: Optimally selected hy-
perparameters are crucial for training. To ensure that the
parameters are optimal we performed a hyperparameter
sweep over learning rate and number of epochs. The learn-
ing rate was selected from the set: {5e~%,1e~4,1e75} and
the number of epochs from the set: {50, 100,210}. Models
were trained on a combination of 1k synthetic data and the
Animal-Pose dataset.

Fine-tuning with real data In this experiment, we mea-
sured the performance of models trained on real lynx
data. We considered the scenario where real lynx data are
available but limited. We tested two cases, in the first case,
the model was trained from the ImageNet checkpoint with a
combination of Animal-Pose data and real lynx data. In the
second case, we trained the model from the Animal-Pose
checkpoint only on real data.

Fine-tuning with synthetic and real data: Based on the
related work relying only on synthetic data is not enough
to outperform models trained on real data. However, com-
bining real and synthetic data has the potential to improve
results. We explored two strategies for combining real and
synthetic data. In the first strategy, we combined real lynx
data with synthetic data in different proportions and trained
models from the Animal-Pose checkpoint.

In the second strategy, we first trained the model from the
ImageNet checkpoint on a combination of the Animal-Pose
dataset and 1k synthetic data. Then we continued training
the model with real data. In this way, the model can learn
prior knowledge about the lynx pose from synthetic data
and then fully leverage information from real images.

6. Results

We performed a series of experiments in which we
showed different possible utilizations of synthetic and real
data. In this section, we will provide the results of the
experiments. As mentioned earlier, we have two datasets
at our disposal that contain real images of the Lynx lynx
species. For all our experiments, we used the dataset from
Sumava National Park (1969 images), for evaluation. In
experiments where real lynx data were used for training,
we used the dataset from Javorniky (1148 images).

Backbone selection: Evaluating available backbones, e.g.,
ResNet-50, ResNet-101, ResNet151, HRNet-w32, and
HRNet-w48 in the zero-shot scenario, shows that HRNet
models achieve a superior performance to ResNets. The
best model, HRNet-w32, reduced the ResNet-152’s — a
model with 50% more parameters — relative error by 21.0%.
Interestingly, HRNet-w32 outperformed the larger HRNet-
w48 by a considerable margin. This may be due to the
relatively low number of training data. This also follows
from the results on the other datasets provided by MM-
Pose. HRNet-w32 performed better when trained on the
Animal-Pose dataset, however, HRNet-w48 achieved supe-
rior performance when trained on the larger AP-10k dataset.
Nevertheless, HRNet-w48 has almost twice the number
of FLOPS. We provide the comprehensive performance
overview in Table 1. Based on our evaluation, the most vi-
able method for animal pose estimation is HRNet-w32.

Backbone | AP AP;75 APyss PCKo os|Params FLOPS

ResNet-50 | 0.251 0.087 0.010 0.613 | 25.6 4.1
ResNet-101 | 0.309 0.113 0.005 0.641 | 44.6 7.9
ResNet-152 | 0.333  0.157 0.010 0.655 | 60.2 11.6
HRNet-w32| 0.403 0.277 0.013 0.697 | 41.2 9.0
HRNet-w48| 0.379 0.199 0.010 0.678 77.5 174

Table 1. Zero-shot performance of selected Animal-Pose pre-
trained backbones. The performance is evaluated on real Lynx
Ilynx data using standard AP and PCK metrics. Parameters of mod-
els are given in millions and floating operations in gigaFLOPS.

Fine-tuning with synthetic data: Using available Animal-
Pose data enriched with an increasing number (0, 10, 100,
1k, 10k) of synthetic data showed a constant improvement
trend in performance. The performance peak (0.475AP),
where the performance started decreasing, i.e., the model
was overfitting, was achieved at 10k images. We show the
effect of synthetic data on performance in Figure 7. Interest-
ingly, using only the AP dataset led to slightly better results
than provided in the MMPose documentation, most likely
due to different random seeds.

All proposed augmentations were beneficial for perfor-
mance. The most beneficial were augmentations that al-
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tered the lighting conditions of the image. Random bright-
ness and contrast adjustment were the most beneficial from
the individual augmentations and improved AP compared
to baseline by 7.8%. By using all augmentations together
AP improved by an additional 3.2%. In Table 2 we report
ablation on augmentations. Based on the ablation use of all
proposed augmentations is beneficial.

Based on the augmentation results we trained the model
again with an increasing number of synthetic images, but
this time with all proposed augmentations. The model
trained with 1k synthetic images outperformed the model
trained with 10k images. AP of the model improved from
0.464 to 0.516. This could be attributed to the fact that
when trained without augmentations model was more prone
to overfiting. The model trained with 10k images did not
improve as much. Performance increased from 0.475 to
0.494AP. The results of both experiments are compared in
Figure 7. We concluded that augmentations are crucial for
training and can dramatically decrease the number of nec-
essary synthetic images.
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Table 2. Ablation on augmentations. We evaluate various aug-
mentations and their influence on the real test data performance
using synthetic data and HRNet-w32.
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Figure 7. Ablation on synthetic data pre-training. We enrich
the Animal-Pose dataset with a different number of Lynx lynx syn-
thetic data and pre-train the HRNet-w32 model for 210 epochs.

Hyperparameters: Results of the sweep showed, that
generally, models trained with higher learning rates and a
lower number of epochs achieved better results. The best
results were achieved with a 1e~* learning rate and 100
epochs. The model trained with the best setting improved
its performance from 0.464 to 0.486 AP. When trained with
augmentations model improved from 0.516 to 0.523 AP.

Fine-tuning with real data We evaluated two scenarios
where the HRNet-w32 model was fine-tuned from the Ima-
geNet checkpoint and the Animal-Pose checkpoints using
an increasing number (0, 10, 100, 1k) of real data (i.e.,
Javorniky), for all the cases. All experiments were per-
formed with augmentations and improved training strat-
egy. The model fine-tuned from the Animal-Pose check-
point achieved a better performance in terms of AP surpass-
ing the model fine-tuned from ImageNet. Notable are the
results of the models trained with a low number of images.
The model trained even with 10 real images outperformed
the best model trained with synthetic images by 21.0% AP.
The model trained with 1k real images achieved the highest
performance, with an AP of 0.849. A comprehensive result
of the two scenarios can be found in Table 3. Based on the
results it is clear that the most beneficial for performance is
to start training from checkpoint trained on a general animal
dataset with as many real images as possible.

A-P Real Checkpoint‘ AP APy.75 APgpss PCKp s

v 0 ImageNet 0431 0337 0.012 0.719
v 10 ImageNet 0481 0.463 0.035 0.746
v 100 ImageNet 0.710 0.821 0.577 0.870
v/ 1000 ImageNet 0.837 0906 0.799  0.927
X 10 Animal-Pose | 0.626 0.725 0.407  0.826
X 50 Animal-Pose | 0.739 0.833  0.658 0.881
X 100 Animal-Pose | 0.769 0.845 0.704 0.895
X 500 Animal-Pose| 0.829 0905 0.790  0.925
X 1000 Animal-Pose| 0.849 0916 0.810  0.933

Table 3. Effect of a number of real images on performance.
We trained HRNet-w32 on different combinations of real data. A-
P indicates if the Animal-Pose dataset was used for training. In
all cases was more beneficial to train model from Animal-Pose
checkpoint with real data.

Fine-tuning with synthetic and real data: We measured
the performance of the model fine-tuned from the Animal-
Pose checkpoint with a combination of 1k synthetic data
and a different number of real lynx data. The best perfor-
mance achieved model fine-tuned with 1k real images and
1k synthetic images. However, the results were very close to
the model trained without synthetic data, the only improve-
ment was in AP( g5 which improved from 0.810 to 0.821.
With less real images performance decreased compared to
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models trained with no synthetic data. In Table 4 is a sum-
mary of the results. This leads us to the conclusion that it
is more beneficial to fine-tune models only with real images
from the target domain. This is also supported by results in
Table 3.

Synthetic Real ‘ AP APO‘75 APO,85 PCK0,05
1000 0] 0335 0.164 0.000 0.651
1000 10| 0.515 0560 0.110 0.767
1000 100 | 0.741 0.844 0.676 0.892
1000 1000 | 0.849 0916 0.821 0.933

50 50| 0.726  0.823  0.634 0.881
100 100 | 0.744  0.844  0.667 0.888
500 500 | 0.827 0.905 0.789 0.924

Table 4. Effect of combination of real and synthetic data on
performance. Models are trained from the Animal-Pose check-
point. When compared to Table 3 it is clear that synthetic data
does not improve performance in the fine-tuning stage and the
most beneficial is to fine-tune the model with real data.

We observed that the model achieves better results when
fine-tuned from a checkpoint that was pre-trained on data
from a similar domain to the fine-tuning data e.g., fine-
tuning from Animal-Pose compared to ImageNet check-
point. We evaluated models pre-trained with a combination
of Animal-Pose and 1k synthetic data from the ImageNet
checkpoint and then fine-tuned the models with real data.
With this approach, AP improved compared to the model
trained only with real data from the Animal-Pose check-
point. Improvement was more apparent at a lower number
of images except when trained with only 10 real images.
The model trained with 1k real images improved from 0.849
to 0.855. In Table 5 are results for different sizes of the real
lynx dataset. Based on the results, when real data are avail-
able it is most beneficial to first pre-train the model on a
general animal dataset (e.g., Animal-Pose) combined with
synthetic data and then fine-tune the model with real data.

Real Samples ‘ AP APq 75 APg 35 PCKo.05
10 | 0.619 0.686 0.409 0.820
50 | 0.758 0.854 0.676 0.895
100 | 0.783 0.875 0.734 0.905
500 | 0.838 0.907 0.809 0.931
1000 | 0.855 0.917 0.820 0.936

Table 5. From synthetic data pre-training to real data fine-
tuning. We fine-tune the HRNet-w32 model pre-trained on the
Animal-Pose dataset enriched with 1k of synthetic images on real
data, i.e., Javorniky.

7. Conclusion

In this study, we focused on the 2D pose estimation of
the Eurasian lynx, a red-listed endangered species, with
limited data. We provide a complete guide to 2D pose es-
timation suitable for any Felidae species. With our com-
prehensive analysis, we demonstrate the impact of diverse
methods on performance using standard metrics, e.g., AP,
APy 75, APy g5, and PCKg 5. Throughout our experiments,
we provide insights into several key factors that influence
the performance of the pose estimation model, including:
(i) Selection of pre-trained models and architectures. (ii)
Pre-training, fine-tuning, and augmentation strategies. (iii)
Training hyper-parameter settings. (iv) Ablation on syn-
thetic data pre-training. (v) Effect of a number of real im-
ages on performance. (vi) The effective approach for real
and synthetic data combination. In a nutshell, we showcase
that pre-training on larger datasets leads to overfitting, and
any amount of real data leads to better performance. Over-
all, the best approach is to pre-train the model on domain-
related data enriched with synthetic data and fine-tune it
with any available real data. By employing advanced tech-
niques and the HRNet-w32 model, we achieved remarkable
results with an AP of 0.855, APy 75 of 0.917, APy g5 of
0.820, and PCKj 5 of 0.936. This represents a significant
improvement, reducing the relative error of the Animal-
Pose pre-trained model by more than 50%. Furthermore, we
have analyzed the established metrics for 2D animal pose
evaluation and found out that the default metric parameters
do not provide an intuitive insight into the quality of the es-
timation. Even with the most strict thresholds, the metrics
can paint an inaccurate picture, giving a false impression
that the pose is estimated accurately even though the indi-
vidual keypoints can lie outside of the animal body or are
exchanged. Thus, we adjust the keypoint variance param-
eters to provide a more descriptive measure. Besides, we
have developed and made publicly available a system for
generating photorealistic synthetic camera trap data, further
enhancing the research and conservation efforts for endan-
gered species.
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