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Abstract

Although 3D human pose estimation has gained impres-

sive development in recent years, only a few works focus

on infants, that have different bone lengths and also have

limited data. Directly applying adult pose estimation mod-

els typically achieves low performance in the infant domain

and suffers from out-of-distribution issues. Moreover, the

limitation of infant pose data collection also heavily con-

strains the efficiency of learning-based models to lift 2D

poses to 3D. To deal with the issues of small datasets, do-

main adaptation and data augmentation are commonly used

techniques. Following this paradigm, we take advantage of

an optimization-based method that utilizes generative pri-

ors to predict 3D infant keypoints from 2D keypoints with-

out the need of large training data. We further apply a

guided diffusion model to domain adapt 3D adult pose to

infant pose to supplement small datasets. Besides, we also

prove that our method, ZeDO-i, could attain efficient do-

main adaptation, even if only a small number of data is

given. Quantitatively, we claim that our model attains state-

of-the-art MPJPE performance of 43.6 mm on the SyRIP

dataset and 21.2 mm on the MINI-RGBD dataset.

1. Introduction

3D human pose estimation has been a popular research

area these days. Similarly, pose estimation for infants plays

an important role in risk assessment and healthcare monitor-

ing [28]. However, due to privacy and the difficulty of data

collection, public infant pose datasets are rare and limited,

and manual labeling is unreliable and expensive. Therefore,

it is challenging to train an efficient deep-learning model

for infant pose estimation from scratch without sufficient

data. To address this limitation, it is natural to think about

transferring or tuning an existing adult-based pose estima-

tion model on infant datasets to fully take advantage of sim-

ilar kinetics of human body pose. Previous work like [11]

tried to adapt a 2D adult pose detector to the infant domain,

Figure 1. The overall flowchart of our method. Our model aims

to adapt a generative prior pre-trained model based on large adult

pose data to the infant domain via a controllable branch or fine-

tuning. Then, we utilize generative prior in the infant domain to

perform optimization work that predicts 3D infant pose from 2D.

but little work has been discussed for 3D infant pose es-

timation. Therefore, in this paper, we would like to pur-

sue a method that can efficiently predict 3D infant poses

even with small infant datasets, by taking advantage of the

general kinetic knowledge transferred from an adult adult-

based pre-trained model, as the flowchat shown in Figure 1.

Though learning-based 3D pose estimation models typ-

ically learn better features and obtain better performance

compared to optimization algorithms, they inevitably re-

quire much more data in training for sufficient feature learn-

ing. Besides, the majority of human pose estimation learn-

ing models suffer from out-of-distribution issues, which

make it hard for them to apply in practical scenarios or test

data whose characteristics are far from the training data.

However, this can easily happen for infant pose as few

public datasets are available to support a more general 3D

model’s training, and cameras in hospitals or healthcare in-

stitutions may have different camera settings, leading to an

unpredictable domain gap. Fortunately, previous optimiza-

tion works [2, 32] are proved to be more insusceptible to

distribution bias and robust in cross-domain tasks. More-

over, thanks to sophisticated 2D keypoint detectors, two-

stage lifting networks are generally of higher accuracy than
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one-stage networks, which directly predict 3D pose from

raw images. In addition, we believe that generation models

can be easily trained with few data and be domain-adapted

efficiently compared to classic deep-learning models [26].

Therefore, inspired by ZeDO [16], we choose to apply a

two-stage optimization-based method, named ZeDO-i, to

address the lack of data and out-of-distribution issues un-

der the assistance of generative priors. Given 2D keypoints,

our model can iteratively adjust noisy 3D prediction under

the constraint of 2D-3D projection and prior distribution

learned. As we expected, generative priors learned in the

adult domain could be effectively transferred to the infant

domain without requiring a lot of data, and the optimization

process can cope with challenging test data in reality. More-

over, to simulate the extreme condition of lack of data in

small datasets, we also test our model with only 20 and 100

data during adaption and successfully validate our model’s

ability for efficient domain adaptation. Furthermore, we

also introduce a guided diffusion model, which aims to sup-

plement datasets by adapting adult pose to infant pose in

order to address data limitation issues and reinforcement di-

versity. Finally, our method obtains SOTA performance in

terms of MPJPE on two infant pose datasets. In this paper,

we make the following contributions:

• We propose an optimization-based method using gen-

erative priors for 3D infant pose estimation. We attain

SOTA performance on MINI-RGBD [7] and SyRIP

[11]. We also claim that our model can achieve effi-

cient domain adaptation even with a small number of

data.

• We introduce a condition-guided diffusion model

which can adapt adult human keypoints to similar in-

fant keypoints for data augmentation purposes and fur-

ther enhance performance.

2. Related Work

2.1. 3D Human Pose Estimation

3D Human Pose Estimation is one of the fundamental

tasks in computer vision and is crucial to many downstream

tasks, including Human Tracking [1, 34], Action Recogni-

tion [5, 29, 36, 41], Motion and Gait Analyses [10, 15, 40],

and so on. There are three main approaches to realizing

the 3D human pose estimation: optimization-based, 2D-3D

lifting [20, 38], and image-based methods.

Optimization-based methods are not limited by any

training dataset and are good at in-the-wild inference. How-

ever, the performance of previous optimization-based meth-

ods [2, 25, 33] is commonly worse than the performance

of training-based networks. 2D-3D lifting methods fol-

low a two-stage pipeline requiring a separate 2D human

pose estimation model and a lifting network to map 2D hu-

man poses to 3D human poses in single frames or short se-

quences. Pavllo et al. [27] apply dilated temporal convolu-

tion to enhance 3D pose estimation for unlabeled videos in

a semi-supervised method. Zhao et al. [39] design a novel

graph convolution and take advantage of a graph convolu-

tion network (GCN) to learn inter-joint features and local

and global relationships in a structured graph. On the other

hand, image-based methods focus on directly regressing 3D

human poses from RGB images. Kolotouros et al. [18] in-

troduce SPIN (SMPL oPtimization IN the loop) by using

a CNN to extract features from a cropped-out human im-

age and regress the SMPL [22] parameters with the help of

an optimization-based pose estimation pipeline to conduct

semi-supervised learning. However, all the learning-based

methods suffer from the use of small datasets in Infant Pose

Estimation tasks. In this paper, we focus on how to conduct

3D infant pose estimation with limited data.

2.2. Infant Pose Estimation

Infant pose estimation, which aims at predicting 2D and

3D keypoints of infants in image and world coordinates, can

lead to useful downstream tasks such as infant action recog-

nition [12,36] or motion analysis [4,13]. Hesse et al. [7] are

the first to present the MINI-RGBD dataset, which enables

the experiment on 2D infant pose estimation. Subsequently,

Huang et al. [11] propose a hybrid synthetic and real infant

pose (SyRIP) dataset based on SMIL [24] with annotated

2D keypoints. Following the 2D infant pose estimation, the

mainstream of 3D infant pose estimation works on RGB-D

data. Wu et al. [35] measure infant movements by com-

bining 2D keypoints and matching depth images collected

by Kinect. Li [19] continues using the same pipeline but

correcting depth information for a better matching between

image and depth. However, Kinect may cause depth ambi-

guity if joints are occluded, and depth images are not always

available in the infant monitor system. In [6], the author

uses a 2D pose estimation model and a 3D lifting network

pretrained on the adult dataset and fine-tuned on the infant

dataset. Though this model achieves rather good perfor-

mance on the MINI-RGBD dataset, it is basically learning-

based and hard to adapt to more realistic data due to the do-

main gap. From our experience in human pose estimation,

predicting 3D keypoints from 2D keypoint detection is eas-

ier than the one-stage method predicting 3D joints directly

from raw images.

3. Methods

Our model primarily consists of a diffusion model to

learn the prior, and an optimization algorithm to itera-

tively adjust 3D pose prediction. Additionally, we apply

a condition-guided diffusion model for pose data augmen-

tation. We demonstrate the method as followings: back-
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Figure 2. Model architecture. The modules excluded by the dotted box comprise our proposed score-matching-based prior learning

model, and the modules inside the dotted box are the controllable branch used in one of our adaptation strategies. The prior learning model

consists of MLP layers and two residual blocks displayed on the right side. The controllable branch takes a learning prompt as inputs,

copies the weights from the prior model and only updates the copied weights during adaptation, while the original prior learning model is

kept frozen. For convenience, we paint all frozen layers in controllable adaptation as blue and all updated layers as brown.

ground of diffusion model in section 3.1, generative prior

model in section 3.2, optimization algorithm in 3.3, its con-

trollable adaptation variant in 3.4 and condition-guided data

augmentation in 3.5.

3.1. Preliminaries of Diffusion Model

Before introducing our diffusion model as the genera-

tive prior learning model, we briefly discuss its background

for clarity. Diffusion models [9, 31] are popular generation

models used in tasks like image generation [30], image in-

painting [23], editing [3] and so on. During training, the

diffusion model iteratively adds Gaussian noise to an image

relative to a timestamp t to the inputs and tries to recover

inputs from a noise image in the reverse process. In this

paper, we use Score-Matching-Network(SMN) [31] as our

prior learner. SMN aims to train a score network sθ(x) to

approximate gradients of log probability of a score function

pθ(x), expressed as sθ(x) ≈ ▽x log pθ(x), so the loss is

generally represented as

Ep(x)∥▽x log pθ(x)− sθ(x)∥
2
2. (1)

3.2. Infant Pose Prior Model

For pose estimation tasks on small datasets, learning-

based deep-learning models suffer from out-of-distribution

issues and insufficient resources to extract reliable features.

Built upon the work of ZeDO [16], we also propose to use

an optimization-based method to predict 3D keypoints from

2D keypoints along with a score-matching network diffu-

sion model(SMN) [31] as our prior learner. Our final ar-

chitecture is illustrated in 2. The modules excluded by the

dotted bounding box comprise our proposed prior learn-

ing model, which takes root-relative infant keypoints, sized

B × J × 3, and randomly sampled noise timestamp t as

inputs, where J is the number of joints. The embedding

layers are simple linear projection layers, which lift input

dimension to B × 1024, and then sum them up. Further,

the embedding goes through the Score-Matching-Network

diffusion model consisting of two residual blocks as back-

bones. Each of the residual blocks contains two residual-

connected MLPs. The last output projection layer projects

the feature back to pose joints. With the generative priors,

our method can denoise a noisy 3D pose in the optimization

stage if it violates the kinematic rules of infant poses.

3.3. Optimization Algorithm

Given a 2D infant pose and the intrinsic parameter,

ZeDO-i first tries to compute the ray vectors emitted by

the camera and initializes the predicted 3D keypoints on

the rays to minimize 3D-2D projection errors. Further it

activates the generation model to adjust the noisy 3D pose

prediction based on its prior knowledge. After each ad-
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justment, 3D keypoints may be off the rays, and the model

again moves them onto the rays in the shortest distance. Our

method runs this iteration 1000 times to iteratively achieve

a reasonable 3D pose under a 3D-2D projection constraint.

In experiments, we find that a pseudo intrinsic parameter

which has a focal length of 2000 and a camera center equal

to the image center also functions so one could apply it in

practical cases.

In details, we first define ray vectors ˆVray emitted from

the camera using 2D keypoints X2D and real or pseudo in-

trinsic parameter K, in which focal length is always 2000

and the principal point is the image center point. Then we

randomly choose a training 3D pose X3Dinit and use an

Adam optimizer [17], which helps us find an appropriate

rotation Ro and translation T0 such that ∥K(R0X3Dinit +
T0) −X2d∥2 is minimized. With T0 known, we set all ini-

tial 3D keypoints on the rays with depth equal to T0, and

supposedly this 3D pose has zero projection error with the

2D ground truth. Next, we start T = 1000 times of opti-

mization steps in which we first move 3D kyepoints to cor-

responding rays in the shortest distance if they are off the

rays and then the prior model is used to adjust the noisy

pose based on the prior distribution it learns.

In evaluation, we find that a noise level t = (0, 0.1]
works the best, and we also observe that performance is

heavily dependent on the initial depth distance assigned. As

the training data are all root-relative, the prior model may

cause depth ambiguity if we don’t limit depth in the first

few steps. In practice, we get the lowest error when forc-

ing the depth T unchanged in the first 950 iterations and

opening the constraint in the remaining 50.

3.4. Controlling Branch for Domain Adaptation

As the kinematics of infants and adults are similar, trans-

ferring a pre-trained adult pose model to the infant domain

would intuitively boost the performance. Considering that

directly fine-tuning a model trained on a huge amount of

data to a small dataset may lead to overfitting, we propose

a method inspired by Control-Net [37] to manipulate the

adaption process of the generative priors. As shown in the

left-side dotted box in Figure 2, we duplicate the weights

of the prior model to the controllable branch. Like how

Control-Net sets the condition, We set a learnable prompt

with the same size as 3D pose as the controlling inputs

and connect the prior model and controllable branch with

a few zero linear layers, which are fully initialized as zero

weights. Then internal embeddings are added back to the

prior model before and after every residual block. Dur-

ing adaptation, all layers of the prior model have to be kept

frozen, and only the controllable branch is open to weight

update. In the experiment section, we will compare its per-

formance with two other adaption strategies: fine-tuning a

pre-trained adult prior model and training a prior model in

Figure 3. Left: augmented infant pose. Right: h36m adult pose.

Our augmentation model converts the adult pose to a similar infant

pose by adjusting scales and kinematic features like bone length

without altering actions much.

the infant domain only.

3.5. Condition Guided Diffusion Model

If the only available data are too few to be used, one

could convert the resourceful adult poses to an infant-like

pose as data augmentation. To fit the augmented data to

the kinematics of infants, we trained a score matching net-

work diffusion model which takes in both adult and infant

3D poses along with two 1 × 1000 sized learnable condi-

tion tokens to represent whether the pose belongs to adults

or infants. The architecture is similar to the prior model

we used. We hope that the diffusion model would implic-

itly learn features like bone lengths and bone angles for two

different domains and know how to distinguish their dis-

tribution. During inference, we ask the diffusion model to

generate corresponding infant poses based on the given in-

put adult poses, so the model adjusts the scale and angle

according to the implicit knowledge of the pose prior, yet

still keeps the pose semantic meanings, such as actions, as

shown in Figure 3. We prove that adding these challenging

poses enhances diversity in the ablation study.

4. Experiments

4.1. Datasets

We conduct our experiments on MINI-RGBD [7] and

SyRIP [11], two public infant datasets with 2D-3D pose

pairs. For pre-trained adult prior model and condition-

guided diffusion model, we take advantage of Human3.6m

[14].

MINI-RGBD includes 12 sequences of data, in total 12000

synthetic infant images, and also provides their 25 joint 2D

and 3D keypoint pairs. We train on the first 9 sequences

and test on the rest 3, following the 17-keypoint definition

of Human3.6m.

SyRIP includes a diverse set of 700 real and 1000 synthetic

infant images, generated by fitting SMIL [24] models to

real images, supplemented with additional variants to the
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Figure 4. Visualization of the optimization algorithm. ˆVray ray vectors are first calculated. T0 and R0 are then found via an optimizer, so

the initial pose is T0 in depth on the rays. We then run the optimization algorithm 1000 times. In each step, keypoints are moved toward

the rays, represented by X̃0 in the figure, and are also sent to the diffusion model to adjust the pose to get X0. In the last step X1000 the

ground truth in blue is quite close to our prediction in red.

SMIL shape and pose parameters. Later, in total of 700

weak ground truth of 3D keypoints in [13] were manually

corrected and made available. In this paper, we also train on

their 600 weak ground truth 3D labels and test on the 100

real images.

Human3.6m (H36m) [14] is a single-frame 3D human

pose benchmark, containing about 3.6 million 2D-3D hu-

man pose pairs. This dataset was collected in an indoor

setting, consisting of 17 various actions. As this adult 3D

pose dataset includes more actions and diversity than infant

3D poses, we intend to transfer its 3D poses to the infant

domain for data augmentation.

4.2. Implementation Details

We pre-train our adult prior model on Human3.6m [14],

which includes millions of adult 3D pose data, and further

train all three adaptation strategies for 5000 epochs with a

learning rate of 2 × 10−4. During training, we set the total

diffusion step as 1000 with a uniform noise level of [0, 1.0].
We use the Adam Optimizer with a batch size of 5000.

In inference, we choose a noise level t in (0, 0.1] and

run the optimization for 1000 iterations. We keep the depth

distance unchanged in the first 950 iterations.

The guided diffusion data augmentation diffusion model

shares the same training configuration as the prior model.

We choose a noise level in the range (0, 1.0] and only run

100 iterations for the diversity of augmented data. In exper-

iments, we add 600 augmented data to SyRIP and 4000 to

MINI-RGBD.

Methods MPJPE (↓)

Kolotouros et al. [18] 105.8

Liu et al. [21] 97.2

Liu et al. (Finetuned) 78.3

ZeDO-i (GT) 43.6

ZeDO-i (DT) 47.7

Table 1. 3D infant pose estimation results on SyRIP dataset under

12 joints setting. For a fair comparison, we list the performance

of ZeDO-i with both estimated 2D keypoints and ground truth 2D

keypoints.Estimated 2D keypoints and other method performance

are provided in [13].

4.3. Experiment Results

In this section, we first compare our method’s results to

the previous SOTA in terms of MPJPE. In addition, we also

test if our method can be efficiently adapted to the infant

domain with 20 and 100 data only in order to simulate ex-

treme situations. Further, we evaluate all domain adaptation

strategies of our model including the controllable adapta-

tion method (CA), fine-tuning from the adult-based diffu-

sion model (FT), and training from scratch on infant data to

seek the best adaptation approach.

4.4. Results on SyRIP

Similar to previous works, we have the same training and

testing sets as [13] with only 12 keypoints of limbs for fair
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Methods MPJPE (↓)

Hesse et al. [8] 44.9

Ellershaw∗ et al. [6] 34.2

Ellershaw et al. 28.5

ZeDO-i 21.2

Table 2. 3D infant pose estimation results on MINI-RGBD under

16 joints setting. We list the best performance among the three

strategies. ∗ denotes w/o adult pre-training. We evaluate 16 key-

points to keep aligned with the setting of the previous SOTA.

Datasets CA FT From Scratch

SyRIP (S=20) 67.8 69.4 72.3

SyRIP (S=100) 56.4 60.8 60.6

SyRIP(GT) 49.4 47.7 54.0

SyRIP (augmented) 45.5 43.6 48.9

Table 3. MPJPE performance of different strategies on SyRIP. The

controllable adaptation approach achieves better performance than

the other two approaches when the data number is small.

comparison. Observed from Table 1, our method clearly

achieves the SOTA performance even with only 20 train-

ing data. Moreover, as shown in Table 3, we observe that

the controllable adaptation approach achieves better results

than fine-tuning when the data number is small, therefore

controllable adaptation is more suitable for limited data in

such more practical and diverse scenarios. Both adaptation

and fine-tuning from the adult domain are better than train-

ing from scratch, indicating that knowledge from the adult

domain is necessary.

4.5. Results on MINI­RGBD

For a fair comparison with previous works [6], we follow

their keypoint definitions and show the results in Table 2.

Our method beats all previous SOTA to a great extent.

Besides, as shown in Table 4, direct fine-tuning adult pre-

trained model on MINI-RGBD attains lower error, which

is different from SyRIP. We suspect that the discrepancy

between training and testing sets leads to this observation,

as MINI-RGBD is full of synthetic images with rather less

discrepancy compared to the SyRIP dataset. Moreover, we

also include the results of 16 keypoints like the previous

SOTA, showing that our model is already comparable to the

previous SOTA with only 100 training data.

5. Ablation Studies

5.1. Data Augmentation Diversity

In this section, we demonstrate how our condition-

guided data augmentation method enhances the diversity

in the MINI-RGBD dataset as its data are all synthesized

Datasets CA FT From Scratch Best(J = 16)

MINI-RGBD (S=20) 38.7 36.8 36.4 34.6

MINI-RGBD (S=100) 34.8 31.9 33.7 29.4

MINI-RGBD Full 25.5 24.1 27.4 22.8

MINI-RGBD (Augmented) 20.7 19.9 21.3 21.2

Table 4. MPJPE performance of different strategies on MINI-

RGBD. Here, we not only evaluate all 17 keypoints according to

H36M’s keypoint definition but also list their performance in 16

keypoints for the convenience of fair comparison with previous

works.

2 3 4 5 6 7 8
Bone length in  cm

0.00

0.01
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0.04

Ra
tio

mini-rgbd bone length
augmentation bone length

Figure 5. The data distribution of bone length in the augmented

dataset is better than the original MINI-RGBD. Our augmented

dataset spans over a wider range of bone lengths.
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Figure 6. The data distribution of bone angle in the augmented

dataset is better than the original MINI-RGBD. Our augmented

data have a wider range of bone angles.

and narrow-distributed. We analyze bone lengths and bone

angles of the original dataset and our augmented data. As

shown in Figure 5, we randomly choose one bone and com-

pare their lengths. Our augmented bone length spans over

a wider range of scales. Similarly, we show comparisons of

bone angles in Figure 6 and get the same conclusion. Tables

4 and 3 also justify this conclusion quantitatively.
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Figure 7. Visualizations of 2D ground truths and our 3D predictions on MINI-RGBD(Top Line) and SyRIP(Middle and Bottom Line). Our

3D predictions are colored in red, and the ground truth are in blue. The shapes and poses in general are well aligned.

0.1
0.0

0.1 0.1
0.0

0.1

0.1

0.0

0.1

0.1
0.0

0.1 0.1
0.0

0.1

0.1

0.0

0.1

Figure 8. One of the failure examples achieves the highest MPJPE

of 160mm in MINI-RGBD. Left side: our prediction. Right side:

ground truth.

Datasets ZeDO-i VideoPose3D [27]

SyRIP 49.6 145.7

MINI-RGBD 27.4 106.7

Table 5. MPJPE performance of different pose estimation models

trained from scratch without augmentation. Clearly, ZeDO-i is

more suitable for infant small dataset than learning-based models.

5.2. Comparison with 3D pose estimation model

To prove the efficiency of our two-stage optimization

method, we compare its performance with other classic

learning-based 3D pose estimation models widely applied

in human pose estimation tasks. We train all the models

from scratch on infant datasets without data augmentation.

As shown in Table 5, our method outperforms the clas-

sic 2D-3D lifting human pose estimation model, Video-

Pose3D [27], which further proves our claim that the pro-

posed optimization method can better fit the task of small-

dataset domain adaption in 3D pose estimation than other

learning-based models.

6. Limitation

Though our method achieves impressive performance in

small datasets like infant 3D pose, it still needs accurate

2D keypoints. Additionally, the prediction results of our

method also depend on the depth distance T0 defined in

initialization since we find that the generation model only

learns root-relative priors with little knowledge of spatial

depth. Besides, like all optimization works aiming to min-

imize 2D-3D projection error, our method may also suf-

fer from one-to-many mappings. For example, we show

one failure example in MINI-RGBD in Figure 8. Here our

model fails to predict the correct T of 3D keypoints in spite

of the matched 2D projections. We calculated the median

MPJPE error which is 4mm lower than the mean, which

implies that these extreme outlines are very rare.

7. Conclusion

We propose an optimization method which applies gen-

erative priors of the infant pose to predict 3D infant key-

points. We show that our method achieves SOTA on MINI-

RGBD and SyRIP and attains efficient domain adaptation

using a small amount of data. Besides, we compare three

training strategies for our model, in which fine-tuning an

adult pre-trained generative model seems more efficient for

MINI-RGBD and the whole SyRIP dataset, but the con-

trollable adaptation version performs better in SyRIP when

only 20 and 100 data are available. We also introduce a

condition-guided diffusion model which enhances the kine-

matic diversity and boosts overall results. In general, we

state that our method fits the small-dataset 3D infant pose

estimation very well and attains outstanding performance.

47



References

[1] Mykhaylo Andriluka, Umar Iqbal, Eldar Insafutdinov,

Leonid Pishchulin, Anton Milan, Juergen Gall, and Bernt

Schiele. Posetrack: A benchmark for human pose estima-

tion and tracking. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 5167–5176,

2018. 2

[2] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter

Gehler, Javier Romero, and Michael J Black. Keep it smpl:

Automatic estimation of 3d human pose and shape from a

single image. In Computer Vision–ECCV 2016: 14th Euro-

pean Conference, Amsterdam, The Netherlands, October 11-

14, 2016, Proceedings, Part V 14, pages 561–578. Springer,

2016. 1, 2

[3] Shidong Cao, Wenhao Chai, Shengyu Hao, Yanting Zhang,

Hangyue Chen, and Gaoang Wang. Difffashion: Reference-

based fashion design with structure-aware transfer by diffu-

sion models. arXiv preprint arXiv:2302.06826, 2023. 3

[4] Claire Chambers, Nidhi Seethapathi, Rachit Saluja, Helen

Loeb, Samuel R Pierce, Daniel K Bogen, Laura Prosser,

Michelle J Johnson, and Konrad P Kording. Computer vision

to automatically assess infant neuromotor risk. IEEE Trans-

actions on Neural Systems and Rehabilitation Engineering,

28(11):2431–2442, 2020. 2

[5] Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, and Bo

Dai. Revisiting skeleton-based action recognition. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 2969–2978, 2022. 2

[6] Simon Ellershaw, Luca Schmidtke, Nidal Khatib, Jonathan

Eden, Sofia Dall’Orso, Silvia Muceli, Etienne Burdet, Ni-

amh Nowlan, Tomoki Arichi, and Bernhard Kainz. 3d infant

pose estimation using transfer learning. 2, 6

[7] Nikolas Hesse, Christoph Bodensteiner, Michael Arens, Ul-

rich Hofmann, Raphael Weinberger, and Andreas Schroeder.

Computer Vision for Medical Infant Motion Analysis: State

of the Art and RGB-D Data Set: Munich, Germany, Septem-

ber 8-14, 2018, Proceedings, Part VI, pages 32–49. 01 2019.

2, 4

[8] Nikolas Hesse, Gregor Stachowiak, Timo Breuer, and

Michael Arens. Estimating body pose of infants in depth im-

ages using random ferns. In 2015 IEEE International Con-

ference on Computer Vision Workshop (ICCVW), pages 427–

435, 2015. 6

[9] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-

fusion probabilistic models. Advances in neural information

processing systems, 33:6840–6851, 2020. 3

[10] Nicholas Howe, Michael Leventon, and William Freeman.

Bayesian reconstruction of 3d human motion from single-

camera video. Advances in neural information processing

systems, 12, 1999. 2

[11] Xiaofei Huang, Nihang Fu, Shuangjun Liu, and Sarah Os-

tadabbas. Invariant representation learning for infant pose

estimation with small data. In 2021 16th IEEE International

Conference on Automatic Face and Gesture Recognition (FG

2021), pages 1–8. IEEE, 2021. 1, 2, 4

[12] Xiaofei Huang, Lingfei Luan, Elaheh Hatamimajoumerd,

Michael Wan, Pooria Daneshvar Kakhaki, Rita Obeid, and

Sarah Ostadabbas. Posture-based infant action recogni-

tion in the wild with very limited data. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 4911–4920, 2023. 2

[13] Xiaofei Huang, Michael Wan, Lingfei Luan, Bethany Tunik,

and Sarah Ostadabbas. Computer vision to the rescue: Infant

postural symmetry estimation from incongruent annotations.

In Proceedings of the IEEE/CVF Winter Conference on Ap-

plications of Computer Vision, pages 1909–1917, 2023. 2,

5

[14] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian

Sminchisescu. Human3. 6m: Large scale datasets and pre-

dictive methods for 3d human sensing in natural environ-

ments. IEEE transactions on pattern analysis and machine

intelligence, 36(7):1325–1339, 2013. 4, 5

[15] Zhongyu Jiang, Haorui Ji, Samuel Menaker, and Jenq-Neng

Hwang. Golfpose: Golf swing analyses with a monocular

camera based human pose estimation. In 2022 IEEE In-

ternational Conference on Multimedia and Expo Workshops

(ICMEW), pages 1–6. IEEE, 2022. 2

[16] Zhongyu Jiang, Zhuoran Zhou, Lei Li, Wenhao Chai, Cheng-

Yen Yang, and Jenq-Neng Hwang. Back to optimization:

Diffusion-based zero-shot 3d human pose estimation. arXiv

preprint arXiv:2307.03833, 2023. 2, 3

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 4

[18] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and

Kostas Daniilidis. Learning to reconstruct 3d human pose

and shape via model-fitting in the loop. In Proceedings of

the IEEE/CVF international conference on computer vision,

pages 2252–2261, 2019. 2, 5

[19] Min Li, Fan Wei, Yu Li, Sicong Zhang, and Guanghua Xu.

Three-dimensional pose estimation of infants lying supine

using data from a kinect sensor with low training cost. IEEE

Sensors Journal, 21(5):6904–6913, 2020. 2

[20] Hanbing Liu, Jun-Yan He, Zhi-Qi Cheng, Wangmeng Xiang,

Qize Yang, Wenhao Chai, Gaoang Wang, Xu Bao, Bin Luo,

Yifeng Geng, et al. Posynda: Multi-hypothesis pose synthe-

sis domain adaptation for robust 3d human pose estimation.

In Proceedings of the 31st ACM International Conference on

Multimedia, pages 5542–5551, 2023. 2

[21] Shuangjun Liu, Xiaofei Huang, Nihang Fu, and Sarah Os-

tadabbas. Heuristic weakly supervised 3d human pose esti-

mation in novel contexts without any 3d pose ground truth.

arXiv preprint arXiv:2105.10996, 2021. 5

[22] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard

Pons-Moll, and Michael J Black. Smpl: A skinned multi-

person linear model. ACM transactions on graphics (TOG),

34(6):1–16, 2015. 2

[23] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher

Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting

using denoising diffusion probabilistic models. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 11461–11471, 2022. 3

[24] Mengmeng Ma, Jian Ren, Long Zhao, Sergey Tulyakov,

Cathy Wu, and Xi Peng. Smil: Multimodal learning with

48



severely missing modality. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, volume 35, pages 2302–

2310, 2021. 2, 4

[25] Lea Muller, Ahmed AA Osman, Siyu Tang, Chun-Hao P

Huang, and Michael J Black. On self-contact and human

pose. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 9990–9999,

2021. 2

[26] Atsuhiro Noguchi and Tatsuya Harada. Image genera-

tion from small datasets via batch statistics adaptation. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 2750–2758, 2019. 2

[27] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and

Michael Auli. 3d human pose estimation in video with tem-

poral convolutions and semi-supervised training. In Proceed-

ings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 7753–7762, 2019. 2, 7
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