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Abstract

Civil engineering structures – such as bridges – form
an essential component of the transportation infrastructure.
A failure of an individual structure can result in enormous
damage and costs. The economic costs caused by the clo-
sure of a bridge due to congestion can be many times the
costs of the bridge itself and its maintenance. Thus, it is
mandatory to keep these structures in a safe and operational
state. In order to ensure this, they are frequently inspected.
However, the current inspection process is error-prone and
lengthy. Especially the damage documentation using a
hand-drawn sketch causes inconsistencies in the building
assessment. On the other hand, recent advancements in
hardware enable the deployment of computer vision mod-
els for increasing the quality, traceability, and efficiency of
structural inspections. Such models are the key element of
digitized structural inspections and the basis for automated
damage classification, measurement and localization on a
pixel-level. Current datasets available for this task suffer
from limitations in both size and diversity of classes, rais-
ing concerns about their applicability in real-world con-
texts and their effectiveness as benchmarks. Addressing this
problem, we introduced “dacl10k” (damage classification),
a diverse dataset designed for multi-label semantic segmen-
tation. Comprising 9,920 images extracted from real-world
bridge inspections, “dacl10k” stands out by its comprehen-
sive coverage. It includes 13 damage classes and 6 crucial
bridge components pivotal in assessing structures and guid-
ing decisions on restoration, traffic restrictions, and bridge
closures. To accelerate progress in baseline development,
we organized the “dacl-challenge”, inviting enthusiasts in
damage recognition to vie for training the best performing
model on the “dacl10k” dataset. The competition is at the
core of the “1st Workshop on Vision-Based Structural In-
spections in Civil Engineering”, hosted at WACV 2024.

In total, 23 participants registered for the challenge, with

Figure 1. Screenshot of the eval.ai challenge website.

eight achieving a performance superior to our baseline. The
best result shows a mean intersection-over-union of 51%.
This paper delineates the challenge’s structure, introduces
the dataset utilized, presents the achieved outcomes, and
outlines prospective avenues for further exploration in this
domain.

1. Introduction

Civil engineering structures are the key element of pub-
lic infrastructure. They can be subdivided into the fields of
transportation (e.g., road and railway bridges, tunnels, air-
ports, harbors), energy supply (for instance, wind turbines,
offshore constructions, power plants), water supply (for ex-
ample dams, pumping stations, pipelines) and waste man-
agement (e.g., sewers, wastewater and storage facilities). It
is of great importance for our daily life that these structures
operate technically faultlessly and their maintenance mea-
sures are well planned. A failure of an individual structure
can result in enormous damage and costs. For example, the
economic damage caused by the closure of a bridge due to
congestion can be many times the cost of the bridge itself
and its maintenance. To avoid this, such structures need to

This WACV workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Example annotations from dacl10k. Top row: original image. Middle row: polygonal annotations. Bottom row: stacked
masks. From left to right, the images display the individual classes: 1. Rockpocket, Hollowarea, Rust, Cavities; 2. Crack, Cavities;
3. Rust, Alligator Crack; 4. Hollowareas, Rockpockets, Cavities; 5. Spalling, Exposed Rebars, Rust; 6. Efflorescence, Rust, Spallings,
Cracks, Wetspot, Cavities, Hollowarea, Weathering, ACrack; 7. Rust, Weathering, Bearing, Crack, Spallings; 8. Protective Equipment,
Efflorescence, Drainage, Cavities, Hollowarea, Weathering, ACrack. The following classes are abbreviated: Alligator Crack (ACrack),
Washouts/Concrete corrosion (WConccor), Expansion Joint (EJoint), Protective Equipment (PEquipment) and Joint Tape (JTape).

be frequently inspected, in order to: (i) plan maintenance
works, (ii) prevent abrupt failure, and (iii) avoid unneces-
sary closures or load limitations.

Facing a continually growing percentage of infrastruc-
ture reaching a critical age concerning the occurrence of
damage, their inspection is more important than ever. In
the case of bridges, many governmental reports describe the
current state as severe. For instance, “more than 222,000
U.S. bridges need major repair work or should be replaced
[In 2023]” [1] or “... at least 25,000 road bridges [in France]
are in poor structural condition ...” [4]. At the same time,
governments have to deal with a lack of funding and the
construction industry is confronted with a reduced avail-
ability of skilled staff [3]. This underlines the demand for a
more efficient examination pipeline.

However, the current inspection process for civil engi-
neering structures, consisting of damage recognition, as-
sessment and documentation, is mostly performed in an
analogue way. In the case of bridge inspection, this means
that an inspector visually recognizes each defect, noting the
damage class, values of measurements, and the location in a
2D sketch. In addition, the inspector assigns an image file-
name in order to combine the defect information with the
corresponding image later when writing the assessment, or
rather the inspection report.

Using computer vision methods to automatically clas-
sify, measure and localize defects and building compo-
nents as part of smartphone applications or software for

unmanned aircraft systems (UAS) makes the inspection of
such infrastructure much more efficient [27]. As damage
recognition and documentation is in large parts performed
automatically by software, the inspector can concentrate
on damage assessment and interactions between defects.
In addition, the assessment can be done more frequently.
This leads to a higher confidence in the determination of
structural integrity, traffic safety and long-term durability.
Additionally, a higher frequency of inspections allows for
extending the useful life of buildings in a critical condi-
tion, or avoiding/postponing load limitations (e.g., ban of
heavy traffic on bridges). Furthermore, capturing the dam-
age (and objects) may be executed by non-professionally
trained personnel, which can compensate for the problem
of staff shortages to some extent. This problem is present in
many countries such as Germany, France, and the US.

Compared to other domains, such as autonomous driv-
ing [7,11,15,30,35] or medicine [26,29,31], infrastructure
defect recognition received only little attention in the past.
Furthermore, the existing datasets for this particular task are
constrained by their limited size and the lack of diversity in
the classes. This raises doubts about how well they com-
ply with real-world situations and questions their efficacy
as benchmarks.

A central contribution to this problem is the dacl10k
dataset [14], which includes images collected during in-
spections of concrete bridges acquired from databases at
authorities and engineering offices, thus, representing real-
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world scenarios. Concrete bridges are the most common
bridge type along with steel, steel composite, and wooden
bridges. The dataset provides polygonal annotations for 13
bridge defects as well as six bridge components that play a
key role in the structure assessment. Two groups of anno-
tators, civil engineering students and a professional annota-
tion team, tagged the images with a semantic segmentation
by hand. Yet, dacl10k is not restricted to concrete bridges.
Its concrete and general defect groups can appear on any
building made of concrete (e.g., Crack, Spalling, etc.), and
some on steel structures (for instance, Rust, Graffiti, etc.).
Therefore, it is relevant for most civil engineering struc-
tures.

To popularize dacl10k, we organize the “dacl-
challenge”, which aims to find the best multi-label
semantic segmentation models for the novel, highly di-
verse, large-scale dataset. The aim of the challenge is to
provide a benchmarking platform for the automatic visual
inspections of bridges. The platform of the challenge will
be maintained also after completion of the challenge for
future benchmarking.

The challenge is the central part of the “1st Workshop on
Vision-Based Structural Inspections in Civil Engineering”.
It focuses on the visual recognition of defects and building
components utilizing innovative computer vision methods
to increase the efficiency of the laborious inspection pro-
cess of civil engineering structures. We invite experts who
successfully employ computer vision for visual inspections
to present their applications and emerging challenges at the
workshop.

The challenge and the workshop will highlight the yet
mostly unnoticed problem of visual structural inspections
for public infrastructure. Furthermore, a community for
the field of computer vision-based inspections of civil en-
gineering structures is to be created promoting research in
this field. The gain in efficiency for inspections will lead to
safer and more cost-effective public infrastructure.

2. Related Work
Damage Recognition on Built Structures. In recent
years, the application of damage recognition on built struc-
ture has evolved. Former datasets and models focus on im-
age classification only. Several datasets deal with binary
classification (mostly crack vs. no crack) [19, 23] and a
few also with multiple classes [18, 28]. Recently, the focus
has moved towards pixel-level segmentation tasks, which is
more challenging but also more helpful for the inspection
process. Important work in this field is given by Crack-
Seg9k [22] and UAV75 [5] for semantic crack segmentation
and S2DS [6] for multi-class semantic segmentation.

Multi-label Semantic Segmentation. Semantic Segmen-
tation is the task to predict object classes in images on pixel

level. Many powerful models have been developed in recent
years, e.g. DeepLabV3+ [8, 9], Feature Pyramid Network
(FPN) [20] or SegFormer [34]. But with most datasets,
there is only one correct class per pixel. In our case, a pixel
can belong to several classes. For example, there may be
Spalling that shows also signs of Rust. Therefore, we are no
longer referring to multi-class semantic segmentation, but
to multi-label semantic segmentation.

Workshops. Civil engineering, particularly visual inspec-
tion has recently increased its visibility in the form of work-
shops at computer vision conferences. For example, at
ECCV2022 the Computer Vision for Civil and Infrastruc-
ture Engineering Workshop [16] was organized. The work-
shop is motivated by ”Civil and infrastructure engineering
are corner stones in modern society”. It aims at different
built structures such as bridges, roads, sewerage, and build-
ings. Computer vision is seen as an important component
for automated inspection, but it is also emphasized that it
can ”analyze work patterns or detect hazardous situations
at, e.g., construction sites”.

The 1st workshop on Vision-based InduStrial InspectiON
(VISION) [2] strived to be a platform for sharing improve-
ments in research and addressing emerging practical chal-
lenges in industrial inspection using computer vision. It
included the two challenges object detection for industrial
products (metal cylinder, rings, etc.) and object generation.

3. Challenge Design

After our challenge was accepted on August 22, 2023,
we set it up on eval.ai1 and started on September 9, 2023.
See Fig. 1 for a screenshot of the challenge website and
Tab. 1 for a detailed timetable. In Tab. 2 you can see which
release the splits belong to and which splits were used for
the leaderboard.

For promotion a Hugging Face Space2 was created to
give an impression how results can look like (see Fig. 3).
Moreover, an interactive data visualization tool was made
available via Voxel51.3 The team also provided a Python
toolkit4 to lower the entry barrier to the challenge. Partici-
pants were kept up to date via X.5 The challenge was split
into two phases: the development phase and the final test
phase.

Development Phase. In the development phase, images
for the training (n=6,935), validation (n=975) and testing

1https://eval.ai/web/challenges/challenge-page/2130/overview
2https://huggingface.co/spaces/phiyodr/dacl-challenge
3https://try.fiftyone.ai/datasets/dacl10k/samples
4https://github.com/phiyodr/dacl10k-toolkit
5https://x.com/dacl ai/
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Figure 3. Hugging Face Space with dacl-challenge demo using
SegFormer MiT-b1.

(n=1,012) split were made available via AWS and Gig-
aMove. For the training and validation split, addition-
ally annotation files in a labelme-like format6 were pro-
vided. Participants could upload their results to eval.ai to
receive feedback about their model performance. Some re-
sults were publicly visible in the leaderboard, others opted
for a private listing only. We also provided a baseline
(cf. Sec. 3.3) to act as a reference point for the participants.
The development phase was active until October 27, 2023
(48 days).

Testfinal Phase. In the second phase another 998 images
– called “testchallenge” – were provided. The task in this
phase was to create predictions for the images from test-
dev and testchallenge combined, termed “Testfinal”. Partic-
ipants could only see their own results and could no longer
compare themselves with others. Due to server problems at
eval.ai, the end of the challenge had to be postponed from
November 10th to November 14th. This phase has been ac-
tive for 18 days.

6https://github.com/wkentaro/labelme

September 9, 2023 Start of Development Phase
October 27, 2023 Start of Final Phase
November 14, 2023 End of Challenge
November 14, 2023 Fact-Sheet Submission
November 21, 2023 Release of Final Results
January 7, 2024 Workshop and Prize Ceremony

Table 1. Timetable of the dacl-challenge.

Released in phase Used in leaderboard
Split Devel. Testfinal Devel. Testfinal
train ✓
validation ✓
testdev ✓ ✓ ✓
testchallenge ✓ ✓

Table 2. Splits released and used in different phases.

Fact Sheet. In order to win prizes, a fact sheet7 had to
be submitted via the Uni-Weimar cloud. Participants had to
explain their approach on two pages and provide a variety
of relevant parameters concerning their best model. We also
encouraged everyone to openly share their code.

Workshop. The workshop is scheduled to take place on
January 7, 2024. It will include keynote presentations and
the prize ceremony at which the three best results will be
honored. Prize money of $3,000, $2,000 and $1,500, re-
spectively, will be awarded. To this end, the ranking on the
“Testfinal” leaderboard for the mIoU metric (see Sec. 3.2)
is used combined with the submission of a proper fact sheet.
After the end of the challenge, we have moved the evalua-
tion process to CodaLab8 so that the testdev split can still
be used in research.

3.1. Challenge Dataset: dacl10k-v2

The challenge dataset is the second version of dacl10k,
a multi-label segmentation dataset consisting of (mostly
smartphone) images from bridge inspections in Germany
(see Figure 2). Its images are highly diverse with respect
to the lighting condition, camera pose and resolution. The
annotations were created by civil engineering students and
an external team using a detailed annotation guideline.

“dacl10k-v2” is an improved version of the initial
dataset, which was introduced in Flotzinger et al. [14].
Apart from a general cleaning, the main difference between
v2 and v1 is the separation of the Rockpocket and Cavity de-
fect class. In Figure 2 example 1 shows Rockpocket in pale
orange and example 2 displays Cavity in pale purple. This
step has been taken due to the fact that in [14] weak perfor-
mance has been reported on the Rockpocket damage (29%),
noting that from the application point of view a further dif-
ferentiation would be beneficial. In the previous version,

7https://dacl.ai/assets/call-for-fact-sheets.pdf
8https://codalab.lisn.upsaclay.fr/competitions/16317
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both defects were included in Rockpocket. They were orig-
inally merged in one class as their cause is similar, namely
insufficient deaeration of the concrete. Additionally, a Cav-
ity looks, when zoomed in, like a small Rockpocket. So,
they mainly differ in size.

Figure 4 shows the significantly differing number of pix-
els for each class in the dataset. The classes Weathering and
PEquipment have the highest number of pixels under all the
classes within the dacl10k dataset, while Exposed Rebars,
Joint Tape, Rockpocket and Restformwork show the lowest
number of pixels.

Tab. 3 depicts a more detailed insight about the dataset.
While Cavity has the topmost number of instances, ACrack
has only a few instances. Yet, ACrack shows the highest
pixels to polygon and pixel to image ratio – hence indi-
cate large surface damages. The damage with the smallest
area per polygon is Cavity. Furthermore, Crack is the dam-
age with the lowest number of pixels per image. Regarding
the major change from dacl10k-v1 to dacl10k-v2 (splitting
the Rockpocket class) it can be noted that the share of this
class with respect to the total pixel area was reduced from
1.48% to 0.14%. The share of Cavity in the second version
amounts 0.39% signifying that many false positives were
deleted.

The data files for the development phase9 and the final
test phase10 are available online.

3.2. Evaluation Protocol

In the context of the challenge the standard metric for
semantic segmentation is used, the Intersection-over-Union
(IoU, also referred to as Jaccard index). Since multiple la-
bels for each pixel are allowed, the IoU is computed class-
wise and subsequently aggregated to the mean IoU (mIoU).
The mIoU is the (unweighted) arithmetic average of the
class IoUs. The metrics are defined as:

IoU =
TP

TP + FP + FN
(1)

mIoU =
1

N

N∑
i=1

IoUi (2)

TP, FP, and FN refer to the true positives, false positives,
and false negatives, respectively. N represents the number
of classes, here N = 19, and IoUi refers to the IoU of the
i-th class. The ranking and challenge winner is determined
based on the highest mIoU.

3.3. Baseline

In [14], three architectures were compared. These
were DeepLabV3+ and FPN with MobileNetV3-Large,

9https://dacl10k.s3.eu-central-1.amazonaws.com/dacl10k-
challenge/dacl10k v2 devphase.zip (4.8 GB)

10https://dacl10k.s3.eu-central-1.amazonaws.com/dacl10k-
challenge/dacl10k v2 testchallenge.zip (0.5 GB)
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Figure 4. Pixel counts with respect to each class in dacl10k based
on the original image sizes. The bars are arranged according to
group affiliations.

Class #polyg./
image

#pixels/
polyg.

#pixels/
image %polyg. %pixels

Crack 1.8 27,434 49,503 4.07 0.3
ACrack 1.12 947,430 1,062,822 0.48 1.23
Efflorescence 2.3 208,256 478,408 4.6 2.59
Rockpocket 1.74 71,039 123,780 0.74 0.14
WConccor 1.35 457,780 617,008 0.45 0.56
Hollowareas 1.21 415,309 504,532 1.74 1.95
Cavity 6.77 13,470 91,182 10.67 0.39
Spalling 2.61 85,484 223,106 11.33 2.62
Restformw. 1.2 50,146 59,929 1.2 0.16

Wetspot 1.47 273,825 403,511 1.89 1.4
Rust 3.62 46,640 168,782 16.2 2.04
Graffiti 2.29 172,849 396,007 2.47 1.15
Weathering 1.43 615,624 881,279 5.21 8.66

ExposedR. 2.25 25,770 58,035 2.29 0.16
Bearing 1.45 422,297 613,103 1.38 1.57
EJoint 1.12 701,120 784,370 0.55 1.05
Drainage 1.37 230,665 316,051 1.85 1.15
PEquipment 1.22 641,596 785,870 2.12 3.67
JTape 1.19 49,370 58,529 1.26 0.17

Background 3.3 925,898 3,051,636 29.49 73.72

Table 3. Overall statistics of the dataset regarding average number
of polygons per image, number of pixels per polygon, number of
pixels per image, share of polygons and share of pixels. Midrules
separate the classes according to their group affiliations.

EfficientNet-B2 and EfficientNet-B4 encoders respectively,
and SegFormer MiT-b1. Each model was trained on
dacl10k-v1 dataset with different learning rates and only the
best results were reported.

For the challenge we use “dacl10k-v2” (cf. above). We

720



O
ve
rla
p
P
a
tch

E
m
b
e
d
d
in
g
s

T
ra
n
sfo
rm
e
r

B
lo
ck
1 M
LP

Layer

!

"
× #

"
×𝐶$

!

%
× #

%
×𝐶&

!

'&
× #

'&
×𝐶"

!

$(
× #

$(
×𝐶'

!

"
× #

"
×4𝐶

M
L
P

!

"
× #

"
×𝑁)*+

T
ra
n
sfo
rm
e
r

B
lo
ck
2

T
ra
n
sfo
rm
e
r

B
lo
ck
3

T
ra
n
sfo
rm
e
r

B
lo
ck
4

O
ve
rla
p
P
a
tch

M
e
rg
in
g

E
fficie

n
t

S
e
lf-A
ttn

M
ix-F

F
N

×𝑁

U
p
S
a
m
p
le

M
L
P

!
"!"#

× #
"!"#

×𝐶$
!
"!"#

× #
"!"#

×𝐶 !
%
×#

%
×𝐶

Encoder Decoder

Figure 2: The proposed SegFormer framework consists of two main modules: A hierarchical Transformer
encoder to extract coarse and fine features; and a lightweight All-MLP decoder to directly fuse these multi-level
features and predict the semantic segmentation mask. “FFN” indicates feed-forward network.

29]; introducing boundary information [30–37]; designing various attention modules [38–46]; or
using AutoML technologies [47–51]. These methods significantly improve semantic segmentation
performance at the expense of introducing many empirical modules, making the resulting framework
computationally demanding and complicated. More recent methods have proved the effectiveness of
Transformer-based architectures for semantic segmentation [7, 46]. However, these methods are still
computationally demanding.

Transformer backbones. ViT [6] is the first work to prove that a pure Transformer can achieve
state-of-the-art performance in image classification. ViT treats each image as a sequence of tokens and
then feeds them to multiple Transformer layers to make the classification. Subsequently, DeiT [52]
further explores a data-efficient training strategy and a distillation approach for ViT. More recent
methods such as T2T ViT [53], CPVT [54], TNT [55], CrossViT [56] and LocalViT [57] introduce
tailored changes to ViT to further improve image classification performance.

Beyond classification, PVT [8] is the first work to introduce a pyramid structure in Transformer,
demonstrating the potential of a pure Transformer backbone compared to CNN counterparts in
dense prediction tasks. After that, methods such as Swin [9], CvT [58], CoaT [59], LeViT [60] and
Twins [10] enhance the local continuity of features and remove fixed size position embedding to
improve the performance of Transformers in dense prediction tasks.

Transformers for specific tasks. DETR [52] is the first work using Transformers to build an end-to-
end object detection framework without non-maximum suppression (NMS). Other works have also
used Transformers in a variety of tasks such as tracking [61, 62], super-resolution [63], ReID [64],
Colorization [65], Retrieval [66] and multi-modal learning [67, 68]. For semantic segmentation,
SETR [7] adopts ViT [6] as a backbone to extract features, achieving impressive performance.
However, these Transformer-based methods have very low efficiency and, thus, difficult to deploy in
real-time applications.

3 Method

This section introduces SegFormer, our efficient, robust, and powerful segmentation framework
without hand-crafted and computationally demanding modules. As depicted in Figure 2, SegFormer
consists of two main modules: (1) a hierarchical Transformer encoder to generate high-resolution
coarse features and low-resolution fine features; and (2) a lightweight All-MLP decoder to fuse these
multi-level features to produce the final semantic segmentation mask.

Given an image of size H × W × 3, we first divide it into patches of size 4 × 4. Contrary to ViT
that uses patches of size 16 × 16, using smaller patches favors the dense prediction task. We then
use these patches as input to the hierarchical Transformer encoder to obtain multi-level features at
{1/4, 1/8, 1/16, 1/32} of the original image resolution. We then pass these multi-level features to the
All-MLP decoder to predict the segmentation mask at a H

4 × W
4 × Ncls resolution, where Ncls is the

3

Figure 5. SegFormer architecture. Picture credit: [34].

only provide one model, which serves as a simple baseline
and reference point for the participants.

As baseline SegFormer MiT-b1 [34] is used, which has
a relatively small 13.1 million parameter encoder with a
mulit-label segmentation head. The model was pre-trained
on the ImageNet-1k dataset and the architecture can be
investigated in Fig. 5. For the baseline, SegFormer was
trained for 10 epochs for the development leaderboard
(mIoU of 34.6%) and 30 epochs for the Testfinal leader-
board (37.2%). All other training parameters remained un-
changed from [14]. In Tab. 4 we named the baseline dacl-
squad.

4. Challenge Results
In this section the results of the challenge are presented.

Furthermore, information about the submitted approaches
is provided.

4.1. Leaderboard

Testfinal. Tab. 4 shows the state of the leaderboard at the
end of the challenge. The winner is determined based on the
Testfinal leaderboard. With an mIoU of 51% Sheoran wins
the dacl-challenge at WACV 2024 followed by Bridge Pro-
tector (50.5%) and Winning Wieners (50%). Sheoran per-
forms on top of five of the 19 classes. The runner-up Bridge
Protector performs best on six classes, however, showing
comparatively low performance on the Washouts/Concrete
corrosion and Wetspot class. It performs noticeably well on
the Crack class surpassing all others by 4.5% points. Sheo-
ran shows a relatively balanced performance over all classes
and performs particularly well on the Wetspot and Drainage
class, which paved the road to victory. The mIoU of the top
3 is within a range of 1% indicating that nuances lead to the
final ranking.

In terms of class performance, Washouts/Concrete cor-
rosion is found to be particularly difficult. As pointed out
by Bridge Protector, this class is underrepresented in the
training set. Furthermore, Cavity and Crack are challeng-
ing classes for all approaches. PEquipment is the class best

predicted across all approaches peaking at 83.1% for Bridge
Protector.

Development. The bottom part of Tab. 4 provides insights
into the performance of the participants during the develop-
ment phase. Some participants including Bridge Protector
and mp269546 did not submit results in the development
phase. Apart from Shivesh Khaitan, the order of the other
approaches corresponds to the Testfinal set, with Sheoran
also ranking first.

4.2. Overview

Despite noticeable overlap in the architectures, the land-
scape of the top 10 approaches is diverse with respect to
the choice of backbones and training configurations. Many
submissions are based on established segmentation models
such as FPN, SegFormer, ConvNeXt, UPerNet, U-Net, and
Mask2Former. Others also explore EfficientNet and Yolo-
v8. Winning Wieners propose a novel method by combin-
ing FPN with MaxViT. Used backbones include EVA-02,
ConvNeXt, InternImage, MaxViT, and BEiT, mostly pre-
trained on ADE20K or ImageNet. The submissions usually
rely on standard augmentation strategies including crops
and flips. Sheoran emphasizes the use of CutMix and Win-
ning Wieners apply RandAugment. Color jittering showed
minor effectiveness especially for color sensitive classes, as
mentioned by mp269546.

A recurring and effective feature is the use of ensembles.
Sheoran selectively groups together predictions from mul-
tiple models while Winning Wieners combine the predic-
tions trained on different folds of the dataset. A number of
approaches apply test time augmentation (TTA). The used
losses span from BCE, Jaccard, Dice over recall, focal up to
Lovasz loss. AdamW is the prevailing optimizer, only Sheo-
ran (RangerLars) and Winning Wieners (MADGRAD [12])
use different losses. Post-processing by filtering for small
object removal is reported by Bob der Baumeister.

Four out of the top 10 approaches report the use of the
MMSegmentation library even though multi-label segmen-
tation is not natively supported. Bridge Protector circum-
vents this problem by learning 19 separate models, each
covering one class. Sheoran later moved to segmentation-
models-pytorch for finetuning. In total three out of the top
10 report to use the segmentation-models-pytorch library.

4.3. Top 3 Approaches

First Place. The winning approach by Sheoran11 is based
on an ensemble of the predictions of multiple models. After
training using the MMSegmentation framework, the model
was transferred to the segmentation-models-pytorch library
for handling of the multi-label segmentation. Softmax was

11https://github.com/HarshitSheoran/dacl10k
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Testfinal

1 Sheoran 51.0 34.1 58.2 49.9 35.3 13.6 64.7 22.2 53.4 39.9 33.6 52.1 73.4 43.8 44.6 74.4 66.3 76.7 82.5 49.4
2 Bridge Protector 50.5 41.1 58.8 50.0 30.7 10.4 62.0 22.9 51.4 45.9 26.7 52.3 73.0 42.2 46.0 76.6 66.9 71.6 83.1 48.4
3 Winning Wieners 50.0 35.9 50.7 48.9 28.0 16.1 63.8 19.3 50.7 42.2 31.4 52.3 73.0 45.7 47.3 77.2 63.8 71.8 82.8 50.0
4 Bob der Baumeister 49.7 36.6 50.4 48.3 37.3 20.3 61.7 19.4 50.2 38.9 29.8 52.3 71.9 43.7 42.3 73.7 64.1 75.2 79.3 48.8
5 mp269546 47.6 29.5 50.1 46.6 27.6 15.0 59.2 16.5 50.0 37.1 29.7 51.0 72.5 42.7 42.1 69.2 68.9 69.1 82.6 44.3
6 Shivesh Khaitan 45.7 30.4 48.9 43.8 22.6 14.2 57.4 23.2 48.3 33.4 25.9 49.0 70.1 42.0 37.4 68.7 65.3 64.7 78.0 44.4
7 Lars Nieradzik 45.1 31.2 55.5 42.9 29.5 12.5 58.4 26.1 46.2 31.4 27.1 47.7 66.3 40.5 34.2 67.7 58.5 62.3 74.6 44.5
8 SoloLearn 37.3 20.3 33.4 34.1 18.9 12.5 49.3 10.2 38.0 28.0 20.4 35.6 69.6 34.7 10.2 69.0 55.1 56.5 78.7 33.3
9 dacl-squad (30 epochs) 37.2 23.5 38.1 40.1 19.4 7.8 46.4 10.6 42.9 24.7 20.2 44.7 62.5 36.0 33.2 53.9 49.0 52.1 69.2 33.1
10 whis 36.1 15.1 25.7 36.0 19.9 11.0 45.5 14.5 43.3 35.7 8.0 3.1 45.2 36.3 33.8 62.4 61.4 71.1 77.7 40.4

Development

1 Sheoran 49.8 35.9 49.3 46.4 31.7 13.6 63.5 29.0 53.0 41.6 35.5 50.9 71.3 44.9 34.9 70.0 67.5 78.0 81.1 47.9
2 Winning Wieners 48.5 37.1 49.5 42.8 19.4 19.6 62.8 19.9 52.2 41.9 29.7 50.6 69.8 45.4 39.2 71.0 65.9 69.2 82.5 53.4
3 Bob der Baumeister 48.3 38.3 44.2 44.5 32.4 17.8 58.9 24.4 49.9 38.6 29.8 51.5 70.1 42.6 33.9 66.0 66.1 77.8 80.5 50.0
4 Lars Nieradzik 43.3 32.8 46.2 38.1 19.7 15.3 54.3 32.1 45.8 30.1 26.5 47.0 63.2 40.1 25.1 65.9 61.0 55.5 78.0 46.3
5 SoloLearn 35.6 18.4 25.4 29.8 22.8 14.1 40.9 24.6 35.5 28.2 18.3 31.1 64.6 40.7 20.7 58.9 44.8 51.4 73.5 32.1
6 whis 35.3 14.2 19.4 30.1 32.0 12.4 40.4 18.9 41.1 34.6 4.6 2.6 42.2 36.6 23.2 62.4 62.3 74.3 75.8 43.7
7 dacl-squad (10 epochs) 34.6 22.8 34.4 34.8 12.4 7.4 45.4 19.7 41.8 22.2 20.2 42.2 54.8 35.6 32.6 49.4 45.8 47.1 54.8 33.8
8 Shivesh Khaitan 31.7 13.7 33.7 27.8 8.7 8.6 45.2 14.8 37.2 18.2 19.6 29.5 55.8 33.8 24.5 49.2 47.1 43.9 61.1 30.2
9 Untitled 31.4 22.9 23.5 25.3 16.3 8.5 44.4 20.0 38.5 22.1 18.3 39.6 50.8 34.4 31.3 47.3 39.6 20.1 60.9 32.4
10 ComputingStones 31.3 24.2 25.7 32.1 5.3 8.9 37.1 21.2 34.8 24.7 16.6 36.8 48.8 30.4 12.2 53.6 46.2 40.5 60.3 36.1

Table 4. Results on the Testfinal and the Development phase. The final ranking is based on the Testfinal set.

replaced by sigmoid and JaccardLoss and BCELoss were
employed. Various augmentations based on the albumen-
tations library were applied (randomly resized crops, flips,
rotations, coarse dropout, and the ImageNet normalization)
complemented by CutMix [36] augmentations. Optimiza-
tion was performed with the RangersLars optimizer and the
scheduler CosineAnnealingLR adjusted the learning rate.
The two models ConvNeXt-Large [25] and EVA-02-Large
[13] pre-trained on ADE20K were trained with different ini-
tial learning rates, augmentation schemes, and heads (UPer-
Net and U-Net) resulting in six different models. Scor-
ing about 40% mIoU with MMSegmentation, the EVA-02-
Large with all augmentations and a UPerNet head achieved
47.8% after transfer to the segmentation-models-pytorch li-
brary. The predictions of the six models were combined for
some classes, improving the overall performance.

Second Place. Bridge Protector also used the MMSeg-
mentation library to train the Mask2Former [10] model with
InternImage-H [33] as backbone. The pre-trained weights
from ADE20K were used. In terms of augmentation, crop-
ping and flipping were used followed by normalization. The
multi-label property of the dataset is approached by decom-
posing the task into separate models for each category, re-

sultng in 19 separate models. The predictions of the 19
models are concatenated.

Third Place. The Winning Wieners12 combine the feature
pyramid network (FPN) [21, 24] with a multi-axis vision
transformer (MaxViT) [32]. FPN joins a bottom-up with a
top-down pathway to handle objects across scales more ef-
fectively. MaxViT serves as a backbone, which integrates
convolutional blocks based on MobileNets [17] with the at-
tention logic from vision transformers. The xlarge MaxViT
pre-trained on ImageNet was used. Standard augmentations
were applied based on the RandAugment suite. The model
is trained using five-fold cross-validation yielding five dif-
ferent models. Threshold tuning is performed for generat-
ing an ensemble on the level of predictions.

4.4. Results and Findings

The result of the dacl-challenge indicates that transfer
learning on established models is a powerful tool for the
domain of visual bridge inspections. Available libraries
such as segmentation-models-pytorch and MMSegmenta-
tion provide good starting points for learning effective

12https://github.com/MIC-DKFZ/semantic segmentation/tree/challenge/
DACL
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models. The drawback of MMSegmentation not provid-
ing multi-label functionality is resolved by training sepa-
rate models for each class or moving to the segmentation-
models-pytorch library, respectively. Training separate,
class-wise models, however, induces significant computa-
tional overhead. Furthermore, ensembles appear crucial to
achieve top performance by exploiting the strengths of dif-
ferent models. Even though achieving a good performance,
the customized method from Winning Wieners did not ex-
ceed that of the transfer learning approaches. Apparently,
the specific method configuration during training including
augmentation schemes, optimizer, and other hyperparame-
ters, are the major determinants of performance, rather than
architectural considerations.

5. Conclusions
In conclusion, the dacl-challenge hosted at the “1st

Workshop on Vision-Based Structural Inspections in Civil
Engineering”, held during WACV 2024, marks a pivotal
moment in advancing the field of computer vision for struc-
tural assessments. The participation of 23 teams under-
scores the interest and significance of leveraging computer
vision in ensuring the safety and integrity of civil engineer-
ing structures.

The competition witnessed remarkable achievements,
yet only eight teams surpassed the established baseline.
Notably, the team Sheoran utilizing a prediction ensemble
from multiple models emerged as the frontrunner, showcas-
ing an mIoU of 51%. Their methodology sets a new bench-
mark in pixel-level damage recognition, laying the ground-
work for future advancements in this domain.

The outcomes of this challenge highlight the potential
of computer vision models in revolutionizing the inspection
process for civil engineering structures. While celebrating
the progress made, it also underscores the need for contin-
ued efforts in refining algorithms, enhancing dataset diver-
sity, and exploring new avenues for more accurate, efficient,
and reliable structural assessments.

As we move forward, the insights gleaned from this chal-
lenge serve as a springboard for further exploration and col-
laboration within the realm of vision-based structural in-
spections. We think that the successes and lessons learned
from this will catalyze continued innovation, contributing
to safer, more resilient infrastructure.
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