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Abstract

Observed variations in face recognition accuracy across
demographics, often viewed as “bias”, have motivated re-
search into the causes of such variations. Variations in
facial hairstyle are an important potential cause of accu-
racy differences for males. In this work, we first explore
how face recognition accuracy is affected by the facial hair
region - clean-shaven, mustache, chin-area beard, side-to-
side beard. Results show that mustache area facial hair has
a greater effect on accuracy than either chin-area beard or
side-to-side beard. We then employ a synthetic facial hair
method to verify the consistency of the observation across
five synthetic facial hair colors and three face matchers. Re-
sults of these experiments indicate that, the larger the dif-
ference in brightness between facial hair region and skin
region, the larger impact of the mustache area. To reduce
accuracy differences caused by facial hairstyle, quantified
by ∆d′, we adjust the training dataset distribution to have
increased representation of facial hair, resulting in an over
40% reduction in accuracy difference.

1. Introduction
Face recognition technologies [15, 20, 23, 34] have

demonstrated robust accuracy across a range of conditions.
However, the issue of accuracy disparity, or ”bias,” has be-
come controversial [5, 10, 11, 16, 21, 29, 30, 40]. To bet-
ter understand the causes of accuracy disparity, researchers
have explored factors such as face region brightness [35],
hairstyle [3, 9], facial morphology [7, 37], gender ratio in
the training sets [6], and beard area [36]. [36] showed that
the fraction of the face covered by facial hair has strong dif-
ferences across demographics. This motivates the impor-
tance of understanding the effect of facial hair on accuracy
in order to understand demographic differences. This pa-

Figure 1. How is the similarity score for a pair of face images
affected by facial hairstyles? This work explores this question for
mustache, chin-area beard and side-to-side beard. We demonstrate
that, despite mustache occupying the smallest area on face, it has
the largest influence in face recognition accuracy. In addition, the
impact of facial hair can be reduced by increasing the fraction of
facial hair images in the training set.

per explores the effect of the location and size of the facial
hair region across different demographics on state-of-the-art
face matchers. The rest of the paper is organized as follows.
Section 2 provides related literature about facial hair effect
in face recognition and synthetic facial hair generation. Sec-
tion 3 investigates the effect of three facial hair areas in face
recognition based on real image pairs. Section 4 uses syn-
thetic facial hair to explore effects of facial hairstyles that
occur rarely in existing test sets. Section 5 mitigates the ac-
curacy disparity between facial hair areas by manipulating
the facial hair distribution in the training sets. Contributions
of this work include the following:

• We demonstrate that, for both real and synthetic facial
hair samples, when the facial hair pixel distribution is
not close to the face skin pixel distribution, a clean
shaven with mustache isolated (CS-MI) has greater im-
pact on the similarity value of image pairs than does
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a chin area with no mustache (CA-MN) beard or a
side-to-side with no mustache (S2S-MN) beard, even
though the CS-MI occludes less than half as many pix-
els on the face.

• A systematic evaluation is conducted by superimpos-
ing different pixel values across varying amounts of
typical facial hair locations to explore the generality of
the observed pattern. The consistent observations from
this study suggest that the position of the pixels carries
more impact than either their value or the total area of
the face involved.

• Experiments manipulating the fraction of mustache
samples per identity in the training data show that ap-
propriate design of the training set can mitigate accu-
racy differences due to facial hair.

2. Literature Review
Effect of Facial Hair on Face Recognition. Bhatta et
al. [9] investigated the effect of beards on face recognition
across demographics. They fused results of the Microsoft
Face API and Amazon Rekognition to obtain a binary clas-
sification of beard / no beard. They found that matching
beard vs. no beard images decreases the similarity score,
and both images having no beard results in a higher similar-
ity score. However, facial hairstyle can vary significantly in
area, length, and connectedness, motivating a more detailed
analysis. Wu et al. [36] proposed a face attribute scheme
which provides more descriptive facial hair attributes. They
reported that a larger difference in beard area type decreases
the similarity score and the same beard area attribute affects
accuracy differently for each race. This also motivates a
more detailed investigation of the effect of mustache, con-
nectedness, and facial hair length in face recognition. Oz-
turk et al. [28] assembled a facial hair segmentation dataset
in order to investigate the effect of the facial hair area size in
face recognition accuracy. Terhörst et al. [33] reported that
having facial hair enhances the performance of face recog-
nition model. Due to the poor description of facial hair (i.e.
Mustache, 5 O’clock Shadow, Goatee, No Beard) in CelebA
attributes, this conclusion cannot represent the effect of fa-
cial hair area in face recognition. Our results show the op-
posite conclusion on both bias-factor controlled datasets.

Synthetic Facial Hair. Synthetic beard editing is
achieved in three ways: statistical formulation, Generative
Adversarial Networks (GANs), and language-enhanced
multi-modal approaches.

Nguyen et al. [26] treated beards as outliers of the non-
beard subspace to extract layers and utilize them to add and
remove beards from images. Mohammed et al. [24] consid-
ered face images as samples from a texture with spatially

varying statistics and described this texture with a local
non-parametric model. They combined the local and global
models to add facial hair. These two pre-deep-learning pa-
pers formulated facial hair as a statistical problem.

Brock et al. [12] proposed an Introspective Adversar-
ial Network which integrates both GANs and Variational
Autoencoders (VAEs) to leverage the power of adversar-
ial learning. Olszewski et al. [27] introduced an algorithm
that enables flexibility in controlling styles of added facial
hair by simply drawing masks and strokes. Yao et al. [38]
proposed a latent transformation network and a novel loss
function that disentangles features while preserving iden-
tity. They measured identity preservation by calculating
the similarity value between the original image and edited
image, rather than using a face matching similarity score.
Moreover, while GAN models can generate visually real-
istic beards, their expressive power is constrained by the
variations present in the training dataset.

Thanks to the contributions of CelebA-HQ [22] and
CelebA-Dialog [19], it is possible to use multi-modal mod-
els to edit facial attributes. Jiang et al. [19] added text de-
scriptions of the facial attributes of each image in CelebA-
HQ, which enables training large-scale networks. More-
over, they used the CelebA-Dialog dataset to achieve fine-
grained face attribute editing. Huang et al. [18] combined
pre-existing uni-modal diffusion models, thereby facilitat-
ing multi-modal face generation and editing without ne-
cessitating further training. Multi-modal models provide a
fine-grained level of face attribute editing, but there is no
guarantee of identity preservation.

In this paper, due to different social habits across demo-
graphics, and the uniqueness of the attribute, the number
of images of Asians with side-to-side beard does not sup-
port a conclusive observation. Hence, we add synthetic fa-
cial hair to no-facial-hair images for each race. Note that,
although face attribute editing models achieve good visual
quality, there is no available method that can generate syn-
thetic facial hair to a specific region only. GAN approaches
to adding facial hair change more of the image than only the
facial hair region. Therefore, we use face landmarks to add
different types of synthetic facial hair regions to images, to
efficiently gain an overview of the effects.

3. Analysis Based On Natural Facial Hair
To ensure observations that apply across datasets and

matchers, we conducted experiments with a popular
controlled-acquisition dataset, MORPH3 [2, 31] and also a
dataset, BA-test [37], selected from a popular in-the-wild
dataset, and with two face matchers. MORPH3 images
are frontal, neural expression, consistent indoor lighting
and plain background. The version of MORPH3 used has
56,245 images of 8,839 African-American males (AAM)
and 35,276 images of 8,835 Caucasian males (CM). Faces
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Figure 2. The genuine and impostor distributions comparisons between CS-MN and {CA-MN, S2S-MN, and CS-MI} in BA-test datasets.
The face matcher is ArcFace-R100 trained with MS1MV2. Note that results derived from insufficient data are rendered in a semi-
transparent format.

were detected and aligned using img2pose [4]. Different
from MORPH3, BA-test is an in-the-wild dataset assem-
bled from VGGFace2 [14], with images selected based on
head pose, brightness, and image quality, and with miti-
gation of label noise. BA-test has 8 demographic groups:
45,642 images of 3,631 White males (WM), 13,311 im-
ages of 288 Asian males (AM), 10,610 images of 577 Black
males (BM), 11,091 images of 244 Indian males (IM). Since
facial hair is a gender-related attribute, we only use male

images from both datasets. We use two versions of ArcFace
(R100 backbone) for real facial hair analysis, one trained
with MS1MV2 [15] and one trained with Glint360K [8].
These two datasets are in-the-wild, identity-cleaned, with
millions of images.

We evaluate four facial hair conditions: (1) no facial hair,
(2) mustache with no beard, (3) chin-area beard, and (4)
side-to-side beard. In the terminology of [36], these corre-
spond to attributes of clean-shaven and mustache-none (CS-
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Figure 3. Examples of synthetic facial hair pixel value and pixel
area manipulation. Pixel area: chin area beard + mustache none
attribute (Top two rows), side-to-side + mustache none attribute
(Middle two rows), and clean shaven + mustache isolated attribute
(Bottom two rows). Pixel value: black, average value of hair, av-
erage value of skin, white, and cropped beard (from left to right).

MN), clean-shaven beard and mustache-isolated (CS-MI),
chin-area beard and mustache-none (CA-MN) and side-to-
side beard and mustache-none (S2S-MN), respectively. Ta-
ble 1 shows the number of images for each attribute, for
each race, for MORPH3 and BA-test. We use the attribute
classifier from [1,36] with a threshold value of 0.9 to select
images. The backbone of this classifier is SE-ResNeXt101.
Note that some races do not have sufficient samples of some
attributes. For example, there are only 9 S2S-MN AM sam-
ples selected from BA-test, 60 S2S-MN IM samples se-
lected from BA-test, and 60 S2S-MN AAM samples se-
lected from MORPH3. Results for this groups are inher-
ently less reliable due to the small number of images.

3.1. Chin Area, Side to Side, Mustache Isolated

The difference, measured by d′ between CS-MN and
{CA-MN, CS-MI, S2S-MN} across four races within the
BA-test dataset is shown in Figure 2. Due to s2s beard with
no mustached being a rare hairstyle, we disregard results
not supported by a sufficient amount of data. There are fa-
cial hair effects for impostor image pairs that are consistent
across across three races and two face matchers. CS-MI
impostor pairs have the highest similarity, S2S-MN the next

Dataset Race CS∗ CA∗ CS† S2S∗

BA-test

BM 1,899 492 111 112
WM 18,968 757 426 533
AM 9,102 282 168 9
IM 2,598 144 1,060 60

MORPH AA-M 2,267 931 1,531 60
C-M 4,958 2,314 978 324

Table 1. Number of images selected from MORPH and BA-test
for each race and attribute. * does not have mustache (MN), † has
isolated mustache (MI). CS, CA and S2S are clean shaven, chin
area beard, and side-to-side beard.

highest, and CA-MN the lowest similarity. For impostor im-
age pairs, lower similarity means better accuracy. So, im-
postor image pairs with mustache-only facial hairstyle are
at increased risk of a false match. The other results are in
Figure 1 and Figure 2 of the Supplementary Material. Note
that, AAM and BM have inconsistent pattern than the other
race. We speculate that it is caused by the close pixel distri-
bution between facial hair and face skin for dark skin peo-
ple. To evaluate this speculation and find the potential trend
of the rarely appeared facial hair attributes, we conducted
additional experiments with synthetic facial hair regions.

4. Effects of Synthetic Facial Hair Regions

Current GAN tools for face attribute editing are not
strongly identity preserving and do not enable facial hair
edits to the specific regions analyzed here. Therefore, we
use face landmark points to target synthetic facial hair edits
to specific regions, without changing pixel values in the rest
of the face image. Since this approach does not produce as
photo-realistic facial hair results as a GAN might, we con-
ducted experiments with five different brightness/color val-
ues for the synthetic facial hair region, in order to ensure the
patterns of results are consistent across five synthetic facial
hair edits and three matchers. We add MagFace matcher
results in this section, using R100 backbone trained with
MS1MV2.

We use the same attribute classifier with a threshold
value of 0.9 to select no-facial-hair images. There results in
2,267 AAM and 4,958 CM images selected from MORPH3
dataset. We use [13] to obtain 68 landmark points on each
face, and use a subset of the landmark points to anchor edits
for synthetic facial hair regions. Pixels in the synthetic fa-
cial hair region are assigned one of five color values: black,
white, average RGB of skin region of the particular image,
average RGB of scalp hair region of the particular image,
and a sample of real beard pixel values. These variations
are illustrated in Figure 3. To get the value of hair and skin,
we use BiSeNet [39] to segment the face skin and scalp hair
regions, then average the pixel values for those regions.
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(CS-MN, CS-MN) vs. (CA-MN, CA-MN) (CS-MN, CS-MN) vs. (S2S-MN, S2S-MN) (CS-MN, CS-MN) vs. (CS-MI, CS-MI)

Figure 4. How Does Facial Hair Change Impostor and Genuine Distributions? The baseline impostor and genuine distributions for no
facial hair are the same across the three plots in the 1st and 3rd rows for Caucasian, and across the three plots in the 2nd and 4th rows for
African-American. Comparison plots in the {left, middle, right} column are for the same images with a {chin-area beard region, mustache
region, side-to-side beard region} edited into each image. The beard pixels (top two rows) and hair pixels (bottom two rows) are added.
The face matcher is ArcFace-R100, trained on the MS1MV2 dataset.

Effects of facial hair on impostor and genuine distribu-
tions. We evaluate the effect of facial hair on the impos-
tor and genuine distributions by comparison to the distribu-
tions for images with no facial hair. Figure 3 shows that
CS-MI occupies fewer pixels than CA-MN, which occupies
fewer pixels than S2S-MN. On average, the number of pix-

els added in the chin area beard is more than twice the
number for mustache area, and the side-to-side area is over
4.5 times the number of pixels for the mustache area. A
reasonable initial expectation is that the size of effect on the
impostor and genuine distributions would follow the size of
the facial hair region.
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Dataset CS CA S2S MN MI M-CTB
MSV2 54.8 10.9 9.7 70.7 9.8 9.9
Glint 50.7 10.1 13.4 64.4 10.5 12.9

Table 2. Fraction of images classified with various facial hair at-
tributes, MS1MV2 and Glint360K. CS = clean shaven, CA = china
area beard, S2S = side-to-side beard, MN = no mustache, MI =
mustached isolated from beard, M-CTB = mustache connected to
beard.

Figure 4 contrasts the genuine and impostor distributions
resulting from three facial hair conditions with the baseline
no-facial-hair condition. The impact of each facial hair con-
dition is measured by ∆d′ for each of the impostor and the
genuine distributions. The results indicate that, for both
Caucasian and African-American, adding synthetic facial
hair has negligible effect on the genuine distribution. That
is, it makes little to no difference in the similarity score for
two images of the same person whether the person is clean-
shaven in both, or has the same facial hairstyle in both.
However, for the impostor distribution, CS-MI and S2S-
MN facial hairstyles substantially degrade the impostor dis-
tribution by shifting it to higher similarity, while CA-MN
does not have as strong of an impact as CS-MI and S2S-
MN with two different pixel distributions added. It echos
back to the conclusions in the real facial hair experiments.

With the respect to the filled pixels {real beard, hair},
for Caucasian males, S2S-MN area type has a {150% and
299%} ∆d′ increase compared to CA-MN, and mustache
isolated has a {396%, 330%} increase compared to CA-
MN. For African American, S2S-MN has a {117%, 635%}
increase and mustache isolated has a {659%, 598} increase
of ∆d′ compared to CA-MN, respectively. More results are
in Figure 3 to Figure 8 in the Supplementary Material. Note
that, the inconsistent pattern when adding average skin pix-
els is because of the low pixel distribution difference be-
tween the facial hair area and face skin. It is consistent with
the observations on AAM and BM in real facial hair exper-
iments.

General conclusions from these results are as follows.
One, similar facial hairstyle in a pair of images affects im-
postor comparisons more than genuine comparisons. Two,
as the difference between face skin area pixel distribution
and facial hair area pixel distribution going larger, the effect
of position becomes larger than the area size. These two
conclusions are consistent with the observations in the real
facial hair experiments and it provides a potential trend of
how pixel area and value affect the face recognition model.

5. Accuracy Disparity Mitigation

To investigate the observed patterns’ cause, we col-
lected facial hair predictions from two training sets. Im-
ages with logically inconsistent predictions, such as both

clean-shaven and beard-at-chin-area predicted as True, are
not included in the analysis. However, logically inconsis-
tent predictions occurred for only around 1.5% of the im-
ages, so any effect from dropping them should be small.
Table 2 illustrates the fraction of each attribute in MS1MV2
and Glint360K. For both datasets, CA, S2S, and MI images
occur with very similar frequency, in both datasets. This
suggests that the accuracy differences observed for these
facial hairstyles likely cannot be attributed to an imbalance
in their occurrence in the training data.

The difference effect of CA-MN and S2S-MN on ac-
curacy could be explained by the size of the face region
involved in each, and the explanation of the reduced ac-
curacy for CS-MI image pairs is that central part is more
important than peripheral part for face recognition mod-
els. Subsequently, we focus on the CS-MI hairstyle in this
section and try to answer Can the accuracy discrepancy
be mitigated by frequency of facial hairstyles in the train-
ing data? To explore this possibility, we create three sub-
sets of MS1MV2 with the same number of images but dif-
ferent distributions of facial hairstyle (mustache), and the
same with the Glint360K. The we train matchers with the
training sets that have equal numbers of images but differ-
ent frequencies of mustache, and compare the accuracies
achieved. Matchers are trained on four RTX6000 GPUs.
Due to GPU memory size, we utilized an R100 backbone
for ArcFace loss training with MS1MV2, but an R50 back-
bone for the larger Glint360K-derived training sets. We use
the same package1 in [6].

5.1. Varying Mustache Representation in Training
Data

First, images in MS1MV2 and in Glint360K are catego-
rized into three categories - having mustache, no mustache,
and mustache information not visible (mustache-inv). Fig-
ure 5 shows the distribution of identity densities (width) at
each fraction (y-axis) for each group (x-axis). Figure 5a in-
dicates that only a small fraction of identities in the training
set have images with mustaches. This under-representation
of mustache images in the training data is a factor that could
affect the learned model’s accuracy of handling mustache
images.

To explore this, we created three same-image-number
subsets of each of MS1MV2 and Glint360K. For the first
and second of the three subsets, we dropped half of the no
mustache and mustache-inv images (i.e. 2,315,779 from
MS1MV2 and 6,472,392 from Glint360K). This gives us
a baseline matcher trained with higher mustache represen-
tation ratio in the training data. For the third of the three
subsets, we drop the same number of images including
all having mustache images and part of no mustache and
mustache-inv images to make sure that all three subsets have

1https://github.com/vitoralbiero/face analysis pytorch
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(a) Original (b) ZM (c) HMR-Random (d) HMR-ID

Figure 5. Density of identities corresponding to the fraction of each mustache attribute across three dataset manipulation strategies. ZM
means the dataset does not have mustache images. HMR-Random means the dataset has higher ratio of mustache images by randomly
dropping no-mustache and mustache-inv images from the original dataset, and HMR-ID means the dataset has higher ratio of mustache
images by preferentially dropping no-mustache and mustache-inv images from the identities that have large fraction of no-mustache and
mustache-inv images. MS1MV2 (top), Glint360K (bottom).

C M AA M
∆d′ Dataset Strategies CA-MN S2S-MN CA-MN S2S-MN

Original 0.3675 0.5563 0.0494 -
ZM 0.4356 0.6044 0.0407 -

HMR-Random 0.3407 0.4659 0.0379 -MS1MV2

HMR-ID 0.3613 0.4297 0.0296 -
Original 0.2793 0.4376 0.0155 -

ZM 0.2904 0.4106 0.048 -
HMR-Random 0.1909 0.3724 0.0405 -

Genuine

Glint360K

HMR-ID 0.2025 0.3537 0.0012 -
Original 0.3379 0.1125 0.0086 -

ZM 0.2631 0.0488 0.1235 -
HMR-Random 0.2054 0.0228 0.0018 -MS1MV2

HMR-ID 0.2416 0.0491 0.042 -
Original 0.3089 0.1587 0.0446 -

ZM 0.4948 0.1491 0.1558 -
HMR-Random 0.3844 0.148 0.0426 -

Impostor

Glint360K

HMR-ID 0.3905 0.1463 0.0061 -

Table 3. ∆d′ measurement between CS-MI and listed attributes on both genuine and impostor distributions of the MORPH dataset. Eight
models trained with three training set manipulation strategies and two training sets are used to calculate the values. The worst and the best
performances are shown in Red and Green.

the same number of images. We use different strategies
for dropping no mustache images for the first and second
subsets. For one, no mustache and mustache-inv images
are randomly selected and dropped. Randomly selecting
images leaves the number of identities that have and that
do not have mustache images relatively unaffected. For
the second, no mustache and mustache-inv images are se-
lected preferentially from identities that have the highest

frequency of no mustache and mustache-inv images. There
are many identities that have 100% no mustache images,
and some of these identities are then no longer represented
in the dataset. The result is that the first and second training
sets have the same number of mustache images, but the third
dataset also has a higher ratio of identities with mustache
images. We refer to the three training sets as high mustache
ratio - random (HMR-Random), high mustache ratio - iden-
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Dataset LFW CFP-FP AgeDB-30 Acc
Original 99.81 98.40 98.05 98.75
ZM 99.81 97.89 98.12 98.61
HMR-Random 99.77 97.89 97.98 98.55
HMR-ID 99.70 98.14 97.97 98.60
Original 99.80 98.61 98.33 98.91
ZM 99.82 98.63 98.08 98.84
HMR-Random 99.78 98.63 98.20 98.87
HMR-ID 99.77 98.61 98.17 98.85

Table 4. Accuracy of the models trained with manipulated
datasets. MS1MV2 (top) and its variations are used to train
ArcFace-R100. Glint360K (bottom) and its variations are used
to train ArcFace-R50.

tity (HMR-ID) and zero mustache (ZM). Figure 5c shows
that HMR-Random has a similar distribution pattern com-
pared to the full original dataset in terms of identity density
at each fraction. However, Figure 5d shows that HMR-ID
has a noticeably altered distribution pattern compared to the
full original dataset.

Table 4 shows the performance of the two face match-
ers (ArcFace-R100 trained with MS1MV2 and MS1MV2-
derived trainings sets, and , ArcFace-R50 trained with
Glint360K and Glint360K-derived training sets. We use
LFW [17], CFP-FP [32], and AgeDB-30 [25] to measure
the performance. The largest accuracy model difference
for ArcFace-R100 and ArcFace-R50 in going from the full
dataset to the mustache-manipulated subsets is 0.2% and
0.07%, respectively. This suggests that reducing the num-
ber of images by the amount done here does not impact the
general performance of the face matcher.

Due to different style preferences across demographics
and the uniqueness of S2S-MN, the number of samples
does not support strong conclusions for AM (9 samples),
BM (112 samples), and IM (60 samples) in the BA-test
dataset. We conclude the pattern mainly based on the data
from MORPH3, shown in Table 3. One general conclu-
sion is that, across both datasets and races, dropping no
mustache samples from the dataset reduces the difference
between CS-MI and CA-MN and S2S-MN. Also, dropping
all mustache samples increases the difference between mus-
tache and other two beard areas. To give a general trend for
each strategy, the trend is measured as:

1

2

∑
D∈D′

δd′{s;D} − δd′{orig.;D}

δd′{orig.;D}
(1)

Where δd{s;D} is the d′ value from the model trained with
dataset D manipulated by strategy s.

For genuine pairs, on average, Caucasian males have
a 6.24% increase on ∆d′ for the model trained with ZM
dataset than trained with original dataset, a 16.43% de-
crease for the model trained with HMR-Random dataset,

and a 17.82% decrease for the model trained with HMR-ID
dataset. African American males have a 96% increase on
∆d′ for the model trained with ZM dataset, and a 69.01%
increase for the model is trained with a HMR-Random
dataset, but a 66.17% decrease for the model trained with
HMR-ID dataset. For impostor pairs, on average, Caucasian
males, surprisingly, have a 6.16% decrease on ∆d′ when
the model trained with ZM dataset than trained with orig-
inal dataset, a 25.31% decrease for HMR-Random, and a
16.56% decrease for HMR-ID. African American males ex-
perience a 7.93% increase on ∆d′ when the model trained
with ZM dataset, a 41.78% decrease for HMR-Random, and
a 151% increase for HMR-ID.

6. Conclusion and Discussion

This work investigates the impact of the region size and
location of facial hair on face recognition accuracy. The
results from real facial hair experiments indicate that CS-
MI has competitive or larger impact than S2S-MN, which
is larger than CA-MN. This trend holds across four races
and two face matchers.

Due to the a low number of real facial hair images for
some races, and mis-classification on AAM, we adopt a
strategy of adding synthetic facial hair regions to images
to dig out the potential trend for these cases. The CS-MI
facial hair region is less than half the size of CA-MN and
S2S-MN but causes over two times the shift in impostor
distribution of the other two. Our results show that the pat-
tern of impact of CS-MI, CA-MN, S2S-MN is consistent
with the observation on real facial hair when the added pix-
els have larger difference from skin color. When the added
pixels (i.e. average value of face skin pixels) is similar with
the skin color, S2S-MN has the largest impact.

To reduce the accuracy discrepancy among facial hair
areas, we adjust the facial hair distributions in the train-
ing sets in three ways: 1) dropping all mustache samples,
2) randomly dropping no mustache samples, and 3) tar-
geted dropping no mustache samples. After re-training face
recognition models, the general performance does not have
a considerable difference. The results show that adjusting
frequency of the attribute occurrence can change the accu-
racy disparity across demographics. Specifically, omitting
all mustache samples accentuates the discrepancy, while ex-
cluding samples without mustaches decreases this discrep-
ancy by at least 40%. This suggests that adding more im-
ages containing mustaches to the training datasets can result
in less accuracy disparity among samples with different fa-
cial hairstyles.
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