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Abstract

With the emergence of Large Language Models (LLMs)
and Vision Foundation Models (VFMs), multimodal Al sys-
tems benefiting from large models have the potential to
equally perceive the real world, make decisions, and con-
trol tools as humans. In recent months, LLMs have shown
widespread attention in autonomous driving and map sys-
tems. Despite its immense potential, there is still a lack of
a comprehensive understanding of key challenges, opportu-
nities, and future endeavors to apply in LLM driving sys-
tems. In this paper, we present a systematic investigation in
this field. We first introduce the background of Multimodal
Large Language Models (MLLMs), the multimodal models
development using LLMs, and the history of autonomous
driving. Then, we overview existing MLLM tools for driv-
ing, transportation, and map systems together with exist-
ing datasets and benchmarks. Moreover, we summarized
the works in The 1st WACV Workshop on Large Language
and Vision Models for Autonomous Driving (LLVM-AD),
which is the first workshop of its kind regarding LLMs in
autonomous driving. To further promote the development
of this field, we also discuss several important problems re-
garding using MLLMs in autonomous driving systems that
need to be solved by both academia and industry.

1. Introduction

Large Language Models (LLMs) have gained signifi-
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Figure 1. This survey paper focuses on the use of Multimodal
Large Language Models (MLLMs) in the advancement of au-
tonomous driving. The organization of the paper will delve into
various aspects related to this topic.

cant attention recently, showing remarkable potential in em-
ulating human-like intelligence. The advancements have
sparked a surge of enthusiasm in Multimodal Large Lan-
guage Models (MLLMs) [199], which merge the sophisti-
cated reasoning prowess of LLMs with image, video, and
audio data. The modality alignment enables them to ex-
ecute a diverse array of tasks with higher proficiency, in-
cluding categorizing images, matching text to correspond-
ing videos, and speech detection. Besides, [174] proved that
LLMs can deal with easy tasks within the robotics domain
including basic logical, geometrical, and mathematical rea-
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Question / Prompt: You are a professional self-driving agent and good at
observing LiDAR point clouds and making driving decisions. I will show \
you some BEV point cloud images. Please use simple, clear, structured .
language to describe the road condition, surroundings, abnormal situation :
and driving strategy.

GPT-4V Answer: The BEV LiDAR image suggests a multi-lane road,
but the exact number of lanes and presence of traffic are unclear. There are
no visible obstacles, pedestrians, or significant environmental features in the
immediate vicinity of the vehicle. The image lacks detail on road surface
quality and surrounding signage or traffic lights. In this scenario, maintain-
ing a steady speed while staying within the detected lanes, and being alert
for unseen hazards is advisable.

Input LiDAR Point Cloud: [163]

-

Question / Prompt: As the Al system on an autonomous vehicle, your
role is to analyze the driving context and make informed decisions. You will
receive an image from the forward-facing camera of the ego vehicle. Please
use concise and organized language to describe the current environment,
any anomalies, and plan the next steps.

GPT-4V Answer: Driving in an urban setting, the forward-facing camera
captures a clear day with multi-story buildings lining both sides of a road,
with some patches appearing wet or muddy. The road, populated with cars,
motorcycles, and a three-wheeled vehicle. An anomaly to note is the three-
wheeled vehicle on the left, which is carrying a heavy load that might affect
its stability. Given the situation, the next steps involve maintaining a safe
distance from this vehicle, monitoring motorcycles for sudden movements,
scanning for traffic signals or signages, and adjusting speed to match the
traffic flow.

Question / Prompt: Make a right lane change.
GPT-4 Code Genration:
def right_lane_change () :
target_lane = get_right_lane (vehicle=ego)
while True:
if is_safe_enter_lane (target_lane) :
break
yield autopilot ()
set_target lane(target_ lane)

Simulation [92]:

Figure 2. Exploring GPT-4V [127] to understand driving scenes and make driving actions. Our findings reveal that while GPT-4V adeptly
identifies scene components such as objects, it falls short in recognizing critical traffic elements like lane information. This underscores
the significant challenges yet to be overcome in advancing multimodal language models for reliable autonomous vehicle navigation.

soning, to complex tasks such as aerial navigation, manip-
ulation, and embodied agents. However, the integration of
LLMs into the realm of transportation and autonomous ve-
hicles is at a pioneering stage. Merging linguistic commu-
nication with multimodal sensory inputs like panoramic im-
ages, LiIDAR point clouds, and driving actions could rev-
olutionize the foundation models that govern current au-
tonomous driving systems.

Recently, the emergence of more capable foundation
models has made SAE L3 driving automation practica-
ble [28]. However, the integration of multimodal LLMs in
autonomous driving has not followed these advancements,

and one natural question is, do LLM-based models like
GPT-4, PaLM-2, and LLaMA-2 have the potential to en-
hance autonomous driving? Figure 2 shows us a very good
example. It is undeniable that integrating LLMs into the au-
tonomous vehicle industry can bring a significant paradigm
shift in vehicle intelligence, decision-making, and passen-
ger interaction [30, 3 1], offering a more user-centric, adapt-
able, and trustworthy future of transportation.

In the context of autonomous driving, LLMs will offer
a transformative impact across crucial modules: percep-
tion, motion planning, and motion control [180]. In terms
of perception, LLMs can harness external APIs to access
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real-time text-based information sources, such as HD maps,
traffic reports, and weather updates, enabling the vehicle to
attain a more comprehensive understanding of its surround-
ings [30]. A good example is to improve the navigation
in the vehicle-mounted maps. LLMs can process real-time
traffic data to identify congested routes and suggest alterna-
tive paths, ultimately optimizing navigation for efficiency
and safety [159]. For motion planning, LLMs play a role
by utilizing their natural language understanding and rea-
soning [110]. They facilitate user-centric communication
and enable passengers to express their intentions and pref-
erences using everyday language. Additionally, LLMs also
process textual data sources such as maps, traffic reports,
and real-time information, and then make high-level deci-
sions for optimized route planning [124]. In the context
of motion control, LLMs, firstly, enable the customization
of controller parameters to align with driver preferences,
achieving personalization in the driving experience [150].
Additionally, LLMs can provide transparency by explain-
ing each step of the motion control process.

MLLMs represent the next level of LLMs, bringing
together the power of language understanding with the
capability to process and integrate diverse data modali-
ties [39, ]. Within the landscape of autonomous driv-
ing, the significance of MLLMs is huge and transforma-
tive. Vehicles equipped with MLLMs can deal with infor-
mation from textual input with other features captured by
onboard cameras and other sensors, offering easier learning
of complex traffic scenes and driving behaviors. Beyond au-
tonomous driving, MLLMs can also significantly enhance
personalized human-vehicle interaction through voice com-
munication and user preference analysis. In future SAE
L4-L5 autonomous vehicles, passengers could communi-
cate their requests while driving using language, gestures,
or even gazes, with the MLLMs offering real-time in-cabin
feedback by integrating visual displays or voice responses.

In our pursuit to bridge the domains of autonomous driv-
ing and advanced modeling, we co-organized the inaugu-
ral Workshop on Large Language and Vision Models for
Autonomous Driving (LLVM-AD) at the 2024 IEEE/CVF
Winter Conference on Applications of Computer Vision
(WACV). This event is designed to enhance collabora-
tion between academic researchers and industry profes-
sionals, exploring the possibility and challenges of imple-
menting multimodal large language models in the field of
autonomous driving. LLVM-AD also launched a follow-
up open-source real-world traffic language understanding
dataset, catalyzing practical advancements.

The main contributions of this paper are summarized as
follows:

* A brief overview of the background of current MLLMs
and autonomous driving technologies is provided.

e The benefits of using LLMs and MLLMs in au-
tonomous driving are outlined, highlighting their roles
and current works in perception, motion planning, mo-
tion control, and recently declared industry applica-
tions.

* Datasets relevant to autonomous driving are summa-
rized, with an emphasis on driving language datasets
for traffic scenes.

* The accepted papers from the WACV LLVM-AD
Workshop are reviewed, providing insights into future
directions of LLMs and MLLMs in autonomous driv-
ing.

As Figure 1 shows, our survey paper aims to provide a
comprehensive overview of MLLMs for autonomous driv-
ing and discuss growing trends, and future directions. The
following two sections provide a brief description of the
developmental history of autonomous driving and MLLMs
separately. Section 4 presents current published works
about MLLMs for autonomous driving in perception, mo-
tion planning, and motion control. Section 5 introduces
related autonomous driving industry applications utilizing
MLLMs. In the last three sections, we summarize the pa-
pers in the 1st WACV LLVM-AD workshop and discuss
potential research directions for LLMs and MLLMs for au-
tonomous driving.

2. Development of Autonomous Driving

The quest for autonomous driving has been a progres-
sive journey, marked by a continuous interplay between
visionary aspirations and technological capabilities. The
first wave of comprehensive research on autonomous driv-
ing started in the late 20th century. For example, the
Autonomous Land Vehicle (ALV) project launched by
Carnegie Mellon University utilized sensor readings from
stereo cameras, sonars, and the ERIM laser scanner to per-
form tasks like lane keeping and obstacle avoidance [70,

]. However, these researches were constrained by lim-
ited sensor accuracy and computation capabilities.

The last two decades have seen rapid improvements in
autonomous driving systems. A classification system pub-
lished by the Society of Automotive Engineers (SAE) in
2014 defined six levels of autonomous driving systems [28].
The classification method has now been widely acknowl-
edged and illustrated important milestones for the research
and development progress. The introduction of Deep Neu-
ral Networks (DNNs) has also played a significant role
[48, 85]. Backed by deep learning, computer vision has
been crucial for interpreting complex driving environments,
offering state-of-the-art solutions for problems such as ob-
ject detection, scene understanding, and vehicle localiza-
tion [65,90,136]. Deep Reinforcement Learning (DRL) has
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Figure 3. The figure outlines the chronological development of autonomous driving technology. It begins with representative early explo-
ration and advancements like the ALV Project by Carnegie Mellon University [70, 172], Mitsubishi Debonair the first to offer LIDAR-based
ADAS system [120], and winner of 2005 DARPA Grand Challenge Stanley by Stanford University [166]. It then showcases recent achieve-
ments after the introduction of a standardized level of automation [28] and rapid progress in Deep Neural Networks. Autonomous driving
platform-wise, various open source and commercialized software solutions are introduced, such as Tesla Autopilot [1 18], NVIDIA DRIVE,
Autoware.Al [73,74], Baidu Apollo [8], and PonyAlpha [135]. Regulatory and service-wise, autonomous driving technology are receiving
increasing government acceptance and public acknowledgment, with numerous companies receiving permits to operate autonomous driv-
ing vehicles on public roads in designated regions while more vehicles with autonomous driving capabilities are being mass-produced [49].
Overall, it demonstrates the evolution and increasing sophistication of AD systems over several decades.

additionally played a pivotal role in enhancing the control
strategies of autonomous vehicles, refining motion plan-
ning, and decision-making processes to adapt to dynamic
and uncertain driving conditions [16,75,78,93],. Moreover,
sensor accuracy and computation power improvements al-
low larger models with more accurate results to be run on
the vehicle. With such improvements, More L1 to L2 level
Advanced Driver Assistance Systems (ADAS) like lane
centering and adaptive cruise control are now available on
everyday vehicles [11,21]. Companies like Waymo, Zoox,
Cruise, and Baidu are also rolling out Robotaxis with Level
3 or higher autonomy. Nevertheless, such autonomous sys-
tems still fail in many driving edge cases such as extreme
weather, bad lighting conditions, or rare situations [32].

Inspired by current limitations, part of the research on
autonomous driving is now focusing on addressing the
safety of autonomous systems and enhancing the safety of
autonomous systems [200]. As Deep Neural Networks
are often considered black boxes, trustworthy Al aims at
making the system more reliable, explainable, and verifi-
able. For example, generating adversarial safety-critical
scenarios for training autonomous driving systems such that
the system is more capable of handling cases with low
probability [, 36]. Another way to improve the overall
safety is through vehicle-to-infrastructure and vehicle-to-
vehicle communication. With information from nearby in-
stances, the system will have improved robustness and can
receive early warnings [99, ]. Meanwhile, as Large
Language Models show their powerful reasoning and scene-
understanding capability, research is being conducted to uti-
lize them to improve the safety and overall performance of

the autonomous driving system.

3. Development of Multimodal Language Mod-
els

3.1. Development of Language Models

The development of language models has been a jour-
ney marked by significant breakthroughs. Since the early
1960s, many linguists, most renowned Noam Chomsky, at-
tempted to model natural languages [24]. Early efforts fo-
cused mainly on rule-based approaches [9, 56, 123]. How-
ever, in the late 1980s and early 1990s, the spotlight shifted
onto statistic models, such as N-gram [13], hidden Markov
models [40], which relied on counting the frequency of
words and sequences in text data. The 2000s witnessed the
introduction of neural networks into natural language mod-
eling. Recurrent Neural Networks (RNNs) [148] and Long
Short-Term Memory (LSTM) networks [55] were used for
various NLP tasks.

Despite their potential, early neural models had limita-
tions in capturing long-range dependencies and struggled
with complex language tasks. In 2013, Tomas Mikolov and
his team at Google introduced Word2Vec [113], a ground-
breaking technique for representing words as dense vectors,
providing a better understanding of semantic relationships
between words. This laid down the foundation for the rise of
deep learning [27, 162], which eventually led to the pivotal
work, Attention is all you need [!73], which kick-started
the new era of large language models. [14,25,34, s 1.
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Figure 4. A timeline of recent advancements in Multimodal Large Language Models (MLLMs).

3.2. Advancements in Large Language Models

LLMs are a category of Transformer-based language
models known for their extensive number of parameters, of-
ten numbering in the hundreds of billions. These models
are trained on vast amounts of internet data, which enables
them to perform a wide range of language tasks, primar-
ily through text generation. Some well-known examples of
LLMs include GPT-3 [14], PaLM [25], LLaMA [169], and
GPT-4 [126]. One of the most notable characteristics of
LLMs is their emergent abilities, such as in-context learn-
ing (ICL) [14], instruction following [129], and reasoning
with chain-of-thought (CoT) [184].

There is a growing area of research that utilizes LLMs
to develop autonomous agents with human-like capabili-
ties. These agents leverage the extensive knowledge stored
in pre-trained LLMs to create coherent action plans and ex-
ecutable policies [2,39,60,61,96, ]. Embodied language
models [39] directly integrate real-world sensor data with
language models, establishing a direct connection between
words and perceptual information. Voyager [176] intro-
duces lifelong learning by incorporating three main compo-
nents: an automatic curriculum that promotes exploration,
a skill library to store and retrieve complex behaviors, and
an iterative prompting mechanism to generate executable
code for embodied control. Voxposer [01] utilizes LLMs to
generate robot trajectories for a wide range of manipulation
tasks, guided by open-ended instructions and objects.

In parallel with these advancements, the use of LLMs
in the field of autonomous driving is gaining momentum.
Recent research [4 1, 68] has investigated the application of
LLMs to comprehend driving environments. These stud-
ies have demonstrated the impressive ability of LLMs to
handle complex scenarios by converting visual information
into text representation, enabling LLMs to interpret the sur-
rounding world. Similarly, in RRR [30], authors propose a
human-centric autonomous driving framework that breaks

down user commands into a series of intermediate reason-
ing steps, accompanied by a detailed list of action descrip-
tions to accomplish the objective.

3.3. Early Efforts in Modality Fusion

Over the past few decades, the fusion of various modal-
ities such as vision, language, video, and audio has been
a key objective in artificial intelligence (Al). Initial efforts
in this domain focused on simple tasks, such as image or
video captioning and text-based image retrieval, which were
mostly rule-based and relied on hand-crafted features. A
classic example of early AI problems in the 1970s and
1980s was the "Blocks World” [158], where the goal was
to rearrange colored blocks on a table based on textual in-
structions. This early attempt bridged vision (understanding
block configurations) with language (interpreting and exe-
cuting instructions), even though it was not based on deep
learning.

3.4. Advancements in Vision-Language Models

In the following years, the field of multimodal mod-
els saw significant advancements. Over the last decade,
the advent of deep learning has revolutionized approaches
to visual-language tasks. Convolutional Neural Networks
(CNNs) [83] became the de facto standard for image
and video processing, while Recurrent Neural Networks
(RNNs) [55, ] emerged as the go-to models for pro-
cessing sequential data, such as natural languages. During
this period, popular tasks included image and video cap-
tioning, which involves generating descriptive sentences for
images and videos, and visual question answering (VQA),
where models answer questions related to visual data. Typ-
ical vision-language models employed joint embeddings,
with image features (processed by CNNs) and text fea-
tures (processed by RNNs or Transformers [173]) mapped
to a shared semantic space to facilitate multimodal learn-
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ing [6, 72, R ]. Beyond vision and language, re-
searchers also proposed models for other modalities, such
as audio, speech, and 3D data. For instance, Mroueh et
al. (2015) developed a deep multimodal learning model
for audio-visual speech recognition that utilizes CNNs for
visual data and RNNs for audio data [119]. Arandjelovié
and Zisserman (2017) explored the relationship between vi-
sual and auditory data by developing a model that learns
shared representations from unlabeled videos, using CNNs
for both image and audio processing [7]. Furthermore, Qi
et al. (2016) introduced models that process 3D data, in-
cluding point clouds, for object classification tasks, employ-
ing CNNss to learn representations from volumetric data and
multiple 2D views of 3D objects [137]. These works high-
light the potential of multimodal learning in capturing com-
plex relationships between different types of data, leading
to richer and more accurate representations.

3.5. Pre-Training and Multimodal Transformers

Building on this momentum, the field of multimodal
models has continued to evolve, with researchers explor-
ing the potential of pre-training multimodal models on ex-
tensive datasets before fine-tuning them on specific tasks.
This approach has resulted in significant performance im-
provements across a range of applications. Inspired by
the success of pre-trained NLP models like BERT [34],
T5[142], and GPTs [14, ], researchers developed multi-
modal Transformers that can process cross-modality inputs
such as text, image, audio, pointcloud [45,51,59]. Notable
examples of visual-language models include CLIP [139],
ViLBERT [100], VisualBERT [95], SimVLM [181], BLIP-
2 [94] and Flamingo [3], which were pre-trained on large-
scale cross-modal datasets comprising images and lan-
guages. Other works have explored the use of multimodal
models for tasks such as video understanding [210], audio-
visual scene understanding [4], and even 3D data process-
ing [53]. Pre-training allows the models to align different
modalities and enhance the representation learning ability
of the model encoder. By doing so, these models aim to cre-
ate systems that can generalize across tasks without the need
for task-specific training data. Furthermore, the evolution of
multimodal models has also given rise to new and exciting
possibilities. For instance, DALL-E [144] extends the GPT-
3 architecture to generate images from textual descriptions,
Stable Diffusion [145] and ControlNet [204] utilized CLIP
and UNet-based diffusion model to generate images con-
trolled by text prompt. They showcase the potential for us-
ing multimodal models in many application scenarios such
as healthcare [97], civil engineering [133], robotics [71]
and, art [80].

3.6. Emergence of Multimodal Large Language
Models

Recently, MLLMs have emerged as a significant area of
research. These models leverage the power of LLMs, such
as ChatGPT [125], InstructGPT [129], FLAN [26, 1, and
OPT-IML [64] to perform tasks across multiple modalities
such as text and images. They exhibit surprising emer-
gent capabilities, such as writing stories based on images
and performing OCR-free math reasoning, which are rare
in traditional methods. This suggests a potential path to
artificial general intelligence. Key techniques and appli-
cations in MLLMs include Multimodal Instruction Tuning,
which tunes the model to follow instructions across differ-
ent modalities [98, , ]; Multimodal In-Context Learn-
ing, which allows the model to learn from the context of
multimodal data [38, 52, s , 1; Multimodal Chain
of Thought, which enables the model to maintain a chain
of thought across different modalities [43,54, ,206]; and
LLM-Aided Visual Reasoning (LAVR), which uses LLMs
to aid in visual reasoning tasks [52, s , s , '

, ]. MLLMs are more in line with the way hu-
mans perceive the world, offering a more user-friendly in-
terface and supporting a larger spectrum of tasks compared
to LLMs. The recent progress of MLLMs has been ignited
by the development of GPT-4V [127], which, despite not
having an open multimodal interface, has shown amazing
capabilities. The research community has made significant
efforts to develop capable and open-sourced MLLMs, ex-
hibiting surprising practical capabilities.

4. Multimodal Language Models for Au-
tonomous Driving

In the autonomous driving industry, MLLMs have the
potential to understand traffic scenes, improve the decision-
making process for driving, and revolutionize the inter-
action between humans and vehicles. These models are
trained on vast amounts of traffic scene data, allowing them
to extract valuable information from different sources like
maps, videos, and traffic regulations. As a result, they
can enhance a vehicle’s navigation and planning, ensuring
both safety and efficiency. Additionally, they can adapt to
changing road conditions with a level of understanding that
closely resembles human intuition.

4.1. Multimodal Language Models for Perception

Traditional perception systems are often limited in their
ability to recognize only a specific set of predefined object
categories. This restricts their adaptability and requires the
cumbersome process of collecting and annotating new data
to recognize different visual concepts. As a result, their gen-
erality and usefulness are undermined. In contrast, a new
paradigm is emerging that involves learning from raw tex-
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Model Year Backbone Task

Modality Learning Input Output

Driving with LLMs [22] 2023 LLaMA Perception Vector FT Vector Response
Control Language Query Actions
Talk2BEV [35] 2023 Flan5XXL Perception Vision ICL Image Response
Vicuna-13b  Planning Language Query
GAIA-1 [57] 2023 - Planning Vision PT Video Video
Language Prompt
LMaZP [60] 2022  GPT-3 Planning Language ICL Text Plan
Codex
Dilu [185] 2023  GPT-3.5 Planning Language ICL Text Action
GPT-4 Control
DaYS [31] 2023 GPT-4 Planning Language ICL Text Code
RRR [30] 2023 GPT-4 Planning Language ICL Text Action
Control
DlaH [42] 2023  GPT-3.5 Planning Language ICL Text Action
Control
GPT-Driver [110] 2023 GPT-3.5 Planning Vision ICL Text Trajectory
Language
SurrealDriver [68] 2023 GPTH4 Planning Language ICL Text Text
Control Action
LanguageMPC [150] 2023  GPT-3.5 Planning Language ICL Text Action
DriveGPT4 [193] 2023 Llama 2 Planning Vision ICL Image Text
Control Language Text Action
Action

Table 1. Summary of recent research on MLLMs for autonomous driving. The main backbone for current models are LLaMA [168],
Llama 2 [169], GPT-3.5 [125], GPT-4 [126], Flan5XXL [26], Vicuna-13b [165]. FT, ICL and PT refer to fine-tuning, in-context learning

and pretrained respectively.

tual descriptions and various modalities, providing a richer
source of supervision.

Multimodal Large Language Models (MLLMs) have
gained significant interest due to their proficiency in analyz-
ing non-textual data like images and point clouds through
text analysis [3, s , ]. These advancements have
greatly improved zero-shot and few-shot image classifica-
tion [130, ], segmentation [79, ], and object detec-
tion [115].

Pioneering models like CLIP [139] have shown that
training to match images with captions can effectively cre-
ate image representations from scratch. Building on this,
Liu et al. introduced LLaMa [98], which combines a vision
encoder with an LLM to enhance the understanding of both
visual and linguistic concepts. Zhang et al. further extended
this work with Video-LLaMa [203], enabling MLLMs to
process visual and auditory information from videos. This
represents a significant advancement in machine perception
by integrating linguistic and visual modalities.

Furthermore, researchers have explored the use of vec-
torized visual embeddings to equip MLLMs with environ-
mental perception capabilities, particularly in autonomous
driving scenarios. DriveGPT4 [193] interprets video in-
puts to generate driving-related textual responses. HiLM-

D [37] focuses on incorporating high-resolution details into
MLLMs, improving hazard identification and intention pre-
diction. Similarly, Talk2BEV [35] leverages pre-trained
image-language models to combine Bird’s Eye View (BEV)
maps with linguistic context, enabling visuo-linguistic rea-
soning in autonomous vehicles.

At the same time, progress in autonomous driving is
not limited to discriminative perception models; genera-
tive models are also gaining popularity. One example is
the Generative Al for Autonomy model (GAIA-1), which
generates realistic driving scenarios by integrating video,
text, and action inputs. This generative world model can
anticipate various potential outcomes based on the vehi-
cle’s maneuvers, showcasing the sophistication of genera-
tive models in adapting to the changing dynamics of the
real world [57]. Similarly, UniSim [194] aims to repli-
cate real-world interactions by combining diverse datasets,
including objects, scenes, actions, motions, language, and
motor controls, into a unified video generation frame-
work. Moreover, the Waymo Open Sim Agents Challenge
(WOSAQ) [50, 117] is the first public challenge to develop
simulations with realistic and interactive agents.
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4.2. Multimodal Language Models for Planning and
Control

The use of language in planning and control tasks has a
longstanding history in robotics, dating back to the use of
lexical parsing in natural language for early demonstrations
of human-robot interaction [187], and it has been widely
studied being used in the robotics area. There exists com-
prehensive review works on this topic [104, 164]. It has
been well-established that language acts as a valuable in-
terface for non-experts to communicate with robots [82].
Moreover, the ability of robotic systems to generalize to
new tasks through language-based control has been demon-
strated in various works [2, 66]. Achieving specific plan-
ning or control tasks or policies, including model-based [5,

s ], imitation learning [105, ], and reinforcement
learning [47,67, ], has been extensively explored.

Due to the significant ability in zero-shot learning [167],
in-context learning [ 14] and reasoning [184], many works
showed that LLMs could enable reasoning of planning [ 152,

] and perceiving the environment with textual descrip-
tion [157] to develop user in the loop robotics [174]. [81]
broke down natural language commands into sequences of
executable actions through a combination of text comple-
tion and semantic translation to control the robot. Say-
Can [2] utilized weighted LLMs to produce reasonable ac-
tions and control robots while [62] uses environmental feed-
back, LLMs can develop an inner monologue, enhancing
their capacity to engage in more comprehensive processing
within robotic control scenarios. Socratic Models [202] em-
ploys visual language models to replace perceptual infor-
mation within the language prompts used for robot action
generation. [96] introduces an approach that uses LLMs to
directly generate policy code for robots to do control tasks,
specify feedback loops, and write low-level control primi-
tives.

In autonomous driving, LLMs could serve as the bridge
to support human-machine interactions. For general pur-
poses, LLMs can be task-agnostic planners. In [60], the au-
thors discovered that pre-trained LLMs contain actionable
knowledge for coherent and executable action plans without
additional training. Huang et al. [01] proposed the use of
LLM:s for converting arbitrary natural language commands
or task descriptions into specific and detail-listed objectives
and constraints. [185] proposed integrating LLMs as deci-
sion decoders to generate action sequences following chain-
of-thoughts prompting in autonomous vehicles. In [31], au-
thors showcased that LLMs can decompose arbitrary com-
mands from drivers to a set of intermediate phases with a
detailed list of descriptions of actions to achieve the objec-
tive.

Meanwhile, it is essential to enhance the safety and
explainable of autonomous driving. The multimodal lan-
guage model provides the potential to comprehend its sur-

roundings and the transparency of the decision process. [77]
showed that video-to-text models can help generate textual
explanations of the environment aligned with downstream
controllers. Deruyttere et al. [33] compared baseline mod-
els and showed that LLMs can identify specific objects in
the surroundings that are related to the commands or de-
scriptions in natural language. For the explainability of the
model, Xu et al. [193] proposed to integrate LLMs to gener-
ate explanations along with the planned actions. In [31], the
authors proposed a framework where LLMs can provide de-
scriptions of how they perceive and react to environmental
factors, such as weather and traffic conditions.

Furthermore, the LLMs in autonomous driving can also
facilitate the fine-tuning of controller parameters, aligning
them with the driver’s preferences and thus resulting in a
better driving experience. [150] integrates LLMs into low-
level controllers through guided parameter matrix adapta-
tion.

Besides the development of LLMs, great progress has
also been witnessed in MLLMs. The MLLMs have the
potential to serve as a general and safe planner model for
autonomous driving. The ability to process and fuse vi-
sual signals such as images enhanced navigation tasks by
combining visual cues and linguistic instructions [69, 84].
Interoperability challenges have historically been an issue
for autonomous planning processes [23, 46]. However, re-
cent advancements in addressing interoperability challenges
in autonomous planning have leveraged the impressive rea-
soning capabilities of MLLMs during the planning phases
of autonomous driving [22,41]. In one notable approach,
Chen et al. [22] integrated vectorized object-level 2D scene
representations into a pre-trained LLM with adapters, en-
abling direct interpretation and comprehensive reasoning
about various driving scenarios. Additionally, Fu et al. [41]
employed LLMs for reasoning and translated this reason-
ing into actionable driving behaviors, showing the versa-
tility of LLMs in enhancing autonomous driving planning.
Additionally, GPT-Driver [ 10] reformulated motion plan-
ning as a language modeling problem and utilized LLM
to describe highly precise trajectory coordinates and its in-
ternal decision-making process in natural language in mo-
tion planning. SurrealDriver [68] simulated MLLM-based
generative driver agents that can perceive complex traffic
scenarios and generate corresponding driving maneuvers.
[76] investigated the utilization of textual descriptions along
with pre-trained language encoders for motion prediction in
autonomous driving.

4.3. Industrial Applications

The integration of MLLMs in the autonomous driving in-
dustry has been developed by several significant initiatives.
Wayve introduces LINGO-1, which enhances the learning
and explainability of foundational driving models by inte-

965



grating vision, language, and action [182]. They also devel-
oped GAIA-1, a generative world model for realistic driv-
ing scenario generation, offering fine-grained control over
vehicle behavior and scene features [57].

Tencent T Lab generated traffic, map, and driving-related
context from their HD map Al system [163], creating
MAPLM, a large map and traffic scene dataset for scene
understanding.

Waymo’s contribution, MotionLM, improved motion
prediction in multi-agent environments. By conceptualizing
continuous trajectories as discrete motion tokens, it trans-
fers multi-agent motion prediction to a language modeling
task [149]. This approach transforms the dynamic interac-
tion of road agents into a manageable sequence-to-sequence
prediction problem.

Research from the Bosch Center focuses on using natural
language for enhanced scene understanding and predicting
future behaviors of surrounding traffic [76]. Meanwhile,
researchers from the Hong Kong University of Science and
Technology and Huawei Noah’s Ark Lab have leveraged
MLLMs to integrate various autonomous driving tasks, in-
cluding risk object localization and intention and suggestion
prediction from videos [37].

These developments in industry illustrate the expanding
role of MLLMs in enhancing the capabilities and function-
alities of autonomous driving systems, marking a significant
improvement in vehicle intelligence and situational aware-
ness.

5. Datasets and Benchmarks
5.1. Vision Datasets for Autonomous Driving

Publicly available datasets have played a crucial role in
advancing autonomous driving technologies. Tab. 3 pro-
vides a comprehensive overview of the latest representa-
tive datasets for autonomous driving. In the past, datasets
mainly focused on 2D annotations, like bounding boxes and
masks, primarily for RGB camera images [131,171]. How-
ever, achieving autonomous driving capabilities that can
match human performance requires precise perception and
localization in the 3D environment. Unfortunately, extract-
ing depth information from purely 2D images poses signif-
icant challenges.

To enable robust 3D perception or mapping, researchers
have created many multimodal datasets. These datasets in-
clude not only camera images but also data from 3D sensors
like radar and LiDAR. An influential example in this field
is the KITTT dataset [44], which provides multimodal sen-
sor data, including front-facing stereo cameras and LiDAR.
KITTTI also includes annotations of 3D boxes and covers
tasks such as 3D object detection, tracking, stereo, and op-
tical flow. Subsequently, NuScenes [15] and the Waymo
Open dataset [161] have emerged as representative multi-

Dataset Year RGB LiDAR Text Map
KITTI [44] 2012 15K 15K X X
nuScenes [15] 2019 14M 400K v v
Argol [19] 2019 107K 22K X v
Waymo Open [161] | 2019 1M 200K X v
Argo2 [186] 2021 5.4M 6M X v
V2V4Real [192] 2023 40K 20K X v

Table 2.
datasets.

Comparison of representative autonomous driving

modal datasets. These datasets set new standards by offer-
ing a large number of scenes. These datasets represent a
significant advancement in the availability of large data for
advancing research in autonomous driving.

5.2. Multimodal-Language Datasets for Traffic
Scene

Several pioneering studies have explored language-
guided visual understanding in driving scenarios. These
studies either enhance existing datasets with additional tex-
tual information or create new datasets independently. The
former category includes works such as Talk2Car [33],
nuScenes-QA [138], DriveLM [29], and NuPrompt [189].
Among these, Talk2Car [33] stands out as the first object
referral dataset, which contains natural language commands
for autonomous vehicles. On the other hand, datasets like
BDD-X [77] and DRAMA [109] were independently cre-
ated. DRAMA [109] specifically focuses on video and
object-level inquiries regarding driving hazards and asso-
ciated objects. This dataset aims to enable visual caption-
ing through free-form language descriptions and uses both
closed and open-ended responses to multi-tiered questions.
It allows for the evaluation of various visual captioning abil-
ities in driving contexts.

Despite the advancements in language comprehension in
traffic scenes with MLLMs, their performance is still far
below the human level. This is because traffic data-text
pairs contain diverse modalities, such as 3D point clouds,
panoramic 2D imagery, high-definition map data, and traffic
regulations. These elements significantly differ from con-
ventional domain contexts and question-answer pairs, high-
lighting the unique challenges of deploying MLLMs in that
autonomous driving context. The datasets mentioned above
are limited in terms of scale and quality, which hinders ef-
forts to fully address these emerging challenges.

6. LLVM-AD Workshop Summary

The 1st LLVM-AD is held together with WACV 2024
on Jan 8th, 2024 in Waikoloa, Hawaii. we seek to bring to-
gether academia and industry professionals in a collabora-
tive exploration of applying MLLMs to autonomous driv-
ing. Through a half-day in-person event, the workshop
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Modality

Dataset Year QA Caption Scenario Text
Image. Point Cloud. Map Info.

BDD-X [77] 2018 X v 7K 26K v X X
Talk2Car [33] 2019 X v 34K 12K v X X
DRAMA [109] 2023 X v 18K 102K v X X
nuScenes-QA [138] 2023 v X 340K 460K v v X
NuPrompt [189] 2023 X v 34K 35K v v X
DriveLM [29] 2023/ v 34K 375K v X X
MAPLM [86, 163] 2023/ v 2M 16M v v v

Table 3. Multimodal-Language datasets for self-driving can be split to two types: (1) Added additional texts for existing nuScenes [
], and NuPrompt [

dataset such as Talk2Car [
X [77], and DRAMA [

], nuScenes-QA [
1.

], DriveLM [

will showcase regular and demo paper presentations and in-
vited talks from famous researchers in academia and indus-
try. Additionally, LLVM-AD will launch two open-source
real-world traffic language understanding datasets, catalyz-
ing practical advancements. The workshop will host two
challenges based on this dataset to assess the capabilities
of language and computer vision models in addressing au-
tonomous driving challenges.

6.1. Multimodal Large Language Models for Au-
tonomous Driving Challenges

MAPLM Dataset. Tencent’s THMA HD Map Al la-
beling system is utilized to create descriptive paragraphs
from HD map labels, offering nuanced portrayals of traffic
scenes [ 163]. Participants worked with various data modal-
ities, including 2D camera images, 3D point clouds, and
Bird’s Eye View (BEV) images, enhancing our understand-
ing of the environment. This innovative initiative explores
the intersection of computer vision, Al-driven mapping, and
natural language processing, highlighting the transforma-
tive potential of Tencent’s THMA technology in reshaping
our understanding and navigation of our surroundings.

UCU Dataset. The primary objective of this challenge is
the development of algorithms that are proficient in under-
standing drivers’ commands and instructions represented as
natural language input. These commands and instructions
could encompass a diverse array of command types, rang-
ing from safety-oriented instructions such as “engage the
emergency brakes” or “adjust headlight brightness”, to driv-
ing operational instructions such as “shift to park mode”
or “set the cruise control to 70 mph”, and comfort-related
requests such as “turn up the AC” or “turn off seat heat-
ing”. The scope of commands can even be extended to
vehicle-specific instructions like “open sunroof” or “enable
ego mode”.

96

1
1; (2) independent collected datasets such as BDD-

6.2. Workshop Summary

Nine papers were accepted in the inaugural Workshop on
Large Language and Vision Models for Autonomous Driv-
ing (LLVM-AD) at the 2024 IEEE/CVF Winter Confer-
ence on Applications of Computer Vision (WACV). They
cover topics on MLLMs for autonomous driving focusing
on integrating LLMs into user-vehicle interaction, motion
planning, and vehicle control. Several papers explored the
novel use of LLMs to enhance human-like interaction and
decision-making in autonomous vehicles. For example,
“Drive as You Speak” [31] and “Drive Like a Human” [41]
presented frameworks where LLMs interpret and reason
in complex driving scenarios, mimicking human behavior.
“Human-Centric Autonomous Systems With LLMs” [195]
emphasized the importance of user-centric design, utilizing
LLMs to interpret user commands. This approach repre-
sents a significant shift towards more intuitive and human-
centric autonomous systems.

In addition to LLM integration, the workshop featured
methodologies in vision-based systems and data process-
ing. “A Safer Vision-based Autonomous Planning System
for Quadrotor UAVs” [208] and “VLAAD” [132] demon-
strated advanced approaches to object detection and trajec-
tory planning, enhancing the safety and efficiency of UAVs
and autonomous vehicles.

Optimizing technical processes was also a significant fo-
cus. For instance, “A Game of Bundle Adjustment” [10]
introduced a novel approach to improving 3D reconstruc-
tion efficiency, while “Latency Driven Spatially Sparse Op-
timization” [201] and “LIP-Loc” [156] explored advance-
ments in CNN optimization and cross-modal localization,
respectively. These contributions represent notable progress
towards more efficient and accurate computational models
in autonomous systems.

Furthermore, the workshop presented innovative ap-
proaches to data handling and evaluation. For example,
NuScenes-MQA [63] introduced a dataset annotation tech-
nique for autonomous driving. Collectively, these papers
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illustrate a significant stride in integrating language mod-
els and advanced technologies into autonomous systems,
paving the way for more intuitive, efficient, and human-
centric autonomous vehicles.

7. Discussion

New Datasets for Multimodal Large Language Models
in Autonomous Driving. Despite the success of LLMs
in language understanding, applying them to autonomous
driving presents a unique challenge. This is due to the
necessity for these models to integrate and interpret in-
puts from diverse modalities, such as panoramic images,
3D point clouds, and HD map annotations. The current
limitations in data scale and quality mean that existing
datasets struggle to address all these challenges comprehen-
sively. Furthermore, almost all multimodal LLMs like GPT-
4V [127] have been pre-trained on a wealth of open-source
datasets including traffic and driving scenes, the visual-
language datasets annotated from nuScenes may not pro-
vide a robust benchmark for visual-language understand-
ing in driving scene. Consequently, there is an urgent need
for new, large-scale datasets that encompass a wide range
of traffic and driving scenarios, including numerous corner
cases, to effectively test and enhance these models in au-
tonomous driving applications.

Hardware Support for Large Language Models in Au-
tonomous Driving. In the use case of LLMs as the plan-
ner for autonomous driving, the perception reasoning for
the LLMs and the subsequent control decision should be
generated in real-time with low latency in order to meet
safety requirements for autonomous driving. The number of
(Floating-point operations per second)FLOPs of the LLMs
has a positive correlation with the latency as well as the
power consumption, which should be of consideration if
LLMs are hosted in the vehicle. For LLMs deployed re-
motely, the bandwidth of perception information and con-
trol decision transfer will be a great challenge.

Another use case for LLMs in autonomous driving is a
navigation planner [143, 151]. Unlike driving planners, the
tolerance of response time for the LLMs is much higher, and
the number of queries for navigation planners is far less in
general. Consequently, the hardware performance demand
is easier to meet, and even moving the host to remote servers
is a reasonable proposal.

The user-vehicle interaction could also be a use case of
LLMs in autonomous driving [31]. LLMs could interpret
drivers’ intentions into control commands given to the ve-
hicle. For intentions unrelated to driving, e.g. entertain-
ment control, the high latency of the response from LLMs
could be accepted. However, if the intentions involve taking
over autonomous driving, then the hardware requirements
would be similar to the counterpart of using LLMs as an

autonomous driving planner where LLMs are expected to
respond with low latency.

LLMs in the applications of autonomous driving could
potentially be compressed, which reduces the computation
power requirements and the latency and lowers the HW lim-
itation. However, the current effort in this field is still unde-
veloped.

Using Large Language Models for Understanding HD
Maps. HD maps play a crucial role in autonomous vehicle
technology, as they provide essential information about the
physical environment in which the vehicle operates. The se-
mantic map layer from the HD map is of utmost importance
as it captures the meaning and context of the physical sur-
roundings. To effectively encode this valuable information
into the LLMs-powered next-generation autonomous driv-
ing, it is important to find a way to represent and compre-
hend the details of the environment in the language space.

Inspired by transformer-based language models, Tesla
proposes a special language that they developed for en-
coding lanes and their connectivities. In this language of
lanes, the words and tokens represent the lane positions in
3D space. The ordering of the tokens and predicted modi-
fiers in the tokens encode the connectivity relationships be-
tween these lanes. Producing a lane graph from the model
output sentence requires less post-processing than parsing a
segmentation mask or a heatmap [20]. Pre-trained models
(PTMs) have become a fundamental backbone for down-
stream tasks in natural language processing and computer
vision. Baidu Maps has developed a system called ERNIE-
GeoL, which has already been deployed in production. This
system applies generic PTMs to geo-related tasks at Baidu
Maps since April 2021, resulting in significant performance
improvements for various downstream tasks [58].

Tencent has developed an HD Map Al system called
THMA which is an innovative end-to-end, Al-based, active
learning HD map labeling system capable of producing and
labeling HD maps with a scale of hundreds of thousands of
kilometers [163] [207]. To promote the development of this
field, they proposed the MAPLM [86] dataset containing
over 2 million frames of panoramic 2D images, 3D LiDAR
point cloud, and context-based HD map annotations, and a
new question-answer benchmark MAPLM-QA.

User-Vehicle Interaction with Large Language Models.
Non-verbal language interpretation is also an important as-
pect to consider for user-autonomy teaming. Driver dis-
traction poses a critical road safety challenge, including all
activities such as smartphone use, eating, and interacting
with passengers that divert attention from driving. Accord-
ing to the National Highway Traffic Safety Administration
(NHTSA), distractions were a factor in 8.1% of the 38,824
vehicle-related fatalities in the U.S. in 2020 [160]. This
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issue becomes more pressing as semi-autonomous driving
systems, particularly SAE Level 3 systems, gain promi-
nence, requiring drivers to be ready to take control when
prompted [147].

To detect and mitigate driver distraction, driver action
recognition strategies are commonly employed. These
strategies involve continuous monitoring using sensors like
RGB and infrared cameras, coupled with deep learning al-
gorithms to identify and classify driver actions. Significant
advancements have been made in this field [12, , s

,190].

Assessing the driver’s cognitive state is also crucial, as
it greatly indicates distraction levels. Physiological moni-
toring, such as through EEG signals, can provide insights
into a driver’s cognitive state [177, ], but the intrusive-
ness of such sensors and their impact on regular driving
patterns must be taken into account. Besides, behavior
monitoring works such as through facial analysis, gaze,
human pose, and motion [17, 18, 87-89, 91] can also be
used to analyze driver’s driving status. Furthermore, cur-
rent datasets on driver action recognition often lack men-
tal state annotations required to train models in recogniz-
ing these states from sensory data, highlighting the need for
semi-supervised learning methods to address this relatively
unexplored challenge [106].

Personlized Autonomous Driving. The integration of
LLMs into autonomous vehicles marks a paradigm shift
characterized by continuous learning and personalized en-
gagement. LLMs can continuously learn from new data
and interactions, adapting to changing driving patterns, user
preferences, and evolving road conditions. This adaptabil-
ity results in a refined and increasingly adept performance
over time. Moreover, LLMs have the capability to be pre-
cisely fine-tuned or in-context learned to match individual
driver preferences, furnishing personalized assistance that
significantly improves the driving experience. This person-
alized approach enriches the driving experience, providing
assistance that not only offers information but also aligns
closely with the distinct requirements and subtleties of each
driver.

Recent studies [30, 31] have indicated the potential for
LLMs to enhance real-time personalization in driving sim-
ulations, demonstrating their capacity to adapt driving be-
haviors in response to spoken commands. As the LLM-
based personalization in autonomous driving is not well-
developed, there are numerous opportunities for further re-
search. Most recent studies focus on utilizing LLMs in the
simulation environment instead of real vehicles. Integrat-
ing LLMs into actual vehicles is an exciting area of poten-
tial, moving beyond simulations to affect real-world driving
experiences. Additionally, future investigations could also
explore the development of LLM-driven virtual assistants

that align with drivers’ individual preferences, the employ-
ment of LLMs for the enhancement of safety features like
fatigue detection, the application of these models in predic-
tive vehicle maintenance, and the personalization of rout-
ing to align with drivers’ unique inclinations. Furthermore,
LLMs have the potential for personalizing in-vehicle enter-
tainment, learning from drivers’ behaviors to improve the
driving experience.

Trustworthy and Safety for Autonomous Driving. An-
other crucial takeaway is enhancing transparency and trust.
When the vehicle makes a complex decision, such as over-
taking another vehicle on a high-speed, two-lane highway,
passengers and drivers might naturally have questions or
concerns. In these instances, the LLM doesn’t just execute
the task but also articulates the reasoning behind each step
of the decision-making process. By providing real-time, de-
tailed explanations in understandable language, the LLM
demystifies the vehicle’s actions and underlying logic. This
not only satisfies the innate human curiosity about how au-
tonomous systems work but also builds a higher level of
trust between the vehicle and its occupants.

Moreover, the advantage of “zero-shotting” was par-
ticularly evident during the complex overtaking maneu-
ver on a high-speed Indiana highway. Despite the LLM
not having encountered this specific set of circumstances
before—varying speeds, distances, and even driver alert-
ness—it was able to use its generalized training to safely
and efficiently generate a trajectory for the overtaking ac-
tion. With some uncertainty estimation techniques [112,

, ], this can ensure that even in dynamic or edge
case scenarios, the system can make sound judgments while
keeping the user informed, therefore building confidence in
autonomous technology.

To sum up, LLMs demonstrate their potential to revo-
lutionize autonomous driving by enhancing safety, trans-
parency, and user experience. Tasked with complex com-
mands like overtaking, the LLM considered real-time data
from multiple vehicle modules to make informed decisions,
clearly articulating these to the driver. The model also lever-
aged its zero-shot learning capabilities to adapt to new sce-
narios, providing personalized, real-time feedback. Overall,
the LLM proved effective in building user trust and improv-
ing decision-making in autonomous vehicles, emphasizing
its utility in future automotive technologies.

8. Conclusion

In this survey, we explored the pattern of integrating
multimodal large language models (MLLMs) into the next
generation of autonomous driving systems. Our study be-
gan with an overview of the development of both MLLMs
and autonomous driving, which have traditionally been con-
sidered distinct fields but are now increasingly intercon-
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nected. Then, we conducted an extensive literature review
on the specific algorithms and applications of multimodal
language models for autonomous driving and then focused
on the current state of research and benchmarking datasets
that apply MLLMs to autonomous driving. A significant
highlight of our study was the synthesis of key insights and
findings from the first LLVM-AD workshop such as propos-
ing new datasets and improving current MLLMs algorithms
on autonomous driving. Finally, we engaged in a forward-
looking discussion on vital research themes and the promis-
ing potential for enhancing MLLMs in autonomous driv-
ing. We discussed both challenges and opportunities that lie
ahead, aiming to show the pathway for further exploration.
In general, this paper serves as a valuable resource for re-
searchers in the autonomous driving area. It offers a com-
prehensive understanding of the significant role and vast po-
tential that MLLMs hold in revolutionizing the landscape
of autonomous transportation. We hope this paper could
facilitate research in integrating MLLMs with autonomous
driving in the future.
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