
NuScenes-MQA: Integrated Evaluation of Captions and QA for Autonomous
Driving Datasets using Markup Annotations

Yuichi Inoue, Yuki Yada, Kotaro Tanahashi, Yu Yamaguchi
Turing Inc.

{y.inoue, yu.yamaguchi}@turing-motors.com

Abstract

Visual Question Answering (VQA) is one of the most im-
portant tasks in autonomous driving, which requires accu-
rate recognition and complex situation evaluations. How-
ever, datasets annotated in a QA format, which guaran-
tees precise language generation and scene recognition
from driving scenes, have not been established yet. In this
work, we introduce Markup-QA, a novel dataset annota-
tion technique in which QAs are enclosed within markups.
This approach facilitates the simultaneous evaluation of
a model’s capabilities in sentence generation and VQA.
Moreover, using this annotation methodology, we designed
the NuScenes-MQA dataset. This dataset empowers the de-
velopment of vision language models, especially for au-
tonomous driving tasks, by focusing on both descriptive
capabilities and precise QA. The dataset is available at
https://github.com/turingmotors/NuScenes-MQA.

1. Introduction

Generating accurate text explanations for visual scenes
has become crucial in the progress of Vision Language
Models (VLMs) integrated with Large Language Models
(LLMs). It is believed that many challenges can be more
effectively tackled by describing visuals in natural language
using VLMs. Specifically, autonomous driving requires ac-
curate recognition and complex situation evaluations. This
context underscores the potential benefits of VLMs, which
can harness the superior logical reasoning capabilities of
LLM. As a result, the pursuit of VLMs tailored for au-
tonomous driving is currently a topic of intense research
interest [15].

The trend of using autonomous driving datasets en-
riched with natural language annotations has been growing
steadily [11, 16, 17, 28, 34, 41]. By using the data described
in natural language, we can align with LLMs that possess
general knowledge and high logical reasoning capabilities.
By incorporating LLMs, there is potential to create a more

intelligent autonomous driving system. To achieve this, it
might be necessary to formulate a VLM and curate a rel-
evant dataset for its training. However, datasets annotated
in a QA format, which ensures precise language generation
and scene recognition from driving scenes, are still a chal-
lenge to obtain.

Interpreting visual content accurately is not only es-
sential for autonomous driving research, but is also cru-
cial across diverse tasks. Among them, VQA, which pro-
vides accurate descriptions of the visual scenes, is partic-
ularly important. Various VQA datasets have been pro-
posed, continuously demonstrating their significant value in
training and evaluating state-of-the-art VLMs. Traditional
QA tasks have predominantly focused on predicting a sin-
gular word. However, with the recent proliferation of so-
phisticated high-performance LLMs [7], predicting just one
word may not fully harness their potential and may even
suppress their inherent linguistic generative abilities. To
holistically validate the model’s comprehension of the vi-
sual content, LLaVA-RLHF [37] employed RLHF (Rein-
forcement Learning from Human Feedback) to counteract
the vision language model’s hallucination. However, this
proved to be both time-consuming and costly.

To address this, we introduced ”Markup-QA”, wherein
the QA segment within a naturally composed text is en-
closed by our unique markups. Post-processing extracts
this markup-wrapped segment, enabling the evaluation of
the accuracy of QAs embedded in the text. By removing
the markup, the text retains its completeness, allowing us to
assess the model’s text generation capabilities using stan-
dard evaluation metrics. Another advantage of Markup-QA
is its flexibility, allowing for the extraction of QAs from any
text segment and embedding multiple QAs within a single
sentence, marking an innovative departure in QA tasks.

Using the rich annotations of nuScenes [8] concerning
spatial object information, we systematically generated nat-
ural language annotations embedded with Markup-QA in a
rule-based manner. This dataset, named NuScenes-MQA,
comprises 1, 459, 933 annotations, covering aspects such as
object presence, counts, proximity, and relative positions.
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Question: How many <obj>cars</obj> are in <cam>front</cam> of the ego car?
  Answer: There are <target><cnt>2</cnt> <obj>cars</obj></target>.

Question: Can you specify the exact location of the closest objects and its category?
  Answer: The closest object to the ego-car is a <obj>car</obj> located at 
                coordinates <loc>(4.24, -9.08)</loc>.

Question: What is the object in <cam>front right</cam> of the ego car?
  Answer: There are <target><cnt>1</cnt> <obj>truck</obj></target> and
               <target><cnt>1</cnt> <obj>traffic cone</obj></target> in the front right.

Question: What is the closest object to the ego vehicle?
  Answer: The closest object to the ego vehicle is the <obj>traffic cone</obj>,
                with a distance of <dst>3.66</dst> meters.

Figure 1. Example Scenes and Annotations from NuScenes-MQA Dataset

Using NuScenes-MQA ensures simultaneous evaluations of
accurate QA capabilities and natural language proficiency.

Our contributions can be summarized as follows:

• We introduced Markup-QA, a novel dataset annotation
technique in which QAs are enclosed within markups.
By using data annotated with Markup-QA, QA tasks
can be embedded within natural sentences, allowing a
concurrent evaluation of textual quality and QA accu-
racy.

• We proposed and publicly released the NuScenes-
MQA dataset annotated in the Markup-QA style, along
with its evaluation methodology.

• Using VLMs capable of handling multiple images, we
established a baseline for the NuScenes-MQA dataset.

2. Related Work

2.1. Vision Language Datasets in Driving Scenes

Datasets for autonomous driving are inherently multi-
modal, curated from a variety of sensors [8, 9, 36, 42]. Re-
cently, several existing autonomous driving datasets col-
lected from these sensors have been augmented with textual
annotations. For example, the BDD-X [20] supplements
driving conditions with textual descriptions that explain the
underlying reasons. In addition to describing driving sce-
narios, DriveGPT4 [41] uses off-the-shelf object detection
models in conjunction with GPT, improving BDD-X with
recognition tasks and textual captions. The Honda DRAMA

dataset [27] introduces the challenge of localizing risk ob-
jects and explicating their risks. In pursuing recognition-
specific datasets, NuScenes-QA [33] utilizes pre-annotated
object information to propose a 3D VQA task. Moreover,
DriveLM [14] constructs a dataset for nuScenes that encap-
sulates perception, prediction, and planning, all described in
text. The trend underscores the growing attention towards
leveraging rich sensor data in autonomous driving to rec-
ognize spatial object information and articulate it through
natural language.

2.2. VQA

The task of VQA involves processing an image and
a natural language question to produce a concise natural
language response. A wide variety of datasets, such as
VQA [4], VQA v2.0 [18], GOA [19], and Visual Genome
[21], have been introduced. In particular, in the field
of autonomous driving, NuScenes-QA [33], which incor-
porates position information from surrounding objects, is
noteworthy. Early research predominantly combined CNN-
based image feature extractor with RNNs [3, 26, 29]. How-
ever, with the emergence of Transformer architecture [39],
transformer-based language models have become the dom-
inant choice for performance. This trend is evident with the
introduction of models such as the encoder-decoder-based
PALI [1, 12, 13], decoder-only LLaVA [24, 25] and Mini-
GPT4 [10, 44], BLIP-2 [22] with the resampling qformer
module, and Flamingo [2] with gated cross-attentions.
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2.3. Special Words in Vision Language Prompts

Special words improve the efficiency of vision language
tasks by better linking visual information to text. The
<image> token, for instance, ties image data directly to
specific sentences [2, 5, 32]. QwenVL [5] further innovates
using tokens such as <box> and <ref> to address the vi-
sual grounding task, specifying which textual phrases corre-
spond to the regions of the image. Kosmos-2 [32] expands
on this by associating multiple bounding boxes with phrases
using tokens like <box>, <delim>, and location <loc>
tokens. These tokens enrich prompts by conveying details
not captured by natural language alone.

3. Proposed Dataset
We introduce a novel QA dataset, called NuScenes-

MQA, based on nuScenes [8]. Moving away from the
conventional short-answer paradigm, our method empha-
sizes full-sentence responses, enriching both the content
and structure of the answers. The dataset targets key as-
pects of autonomous driving, such as the presence of ob-
jects and relative positioning. Using unique markups, we
can highlight and evaluate specific information within the
answers. With this methodology, we generated 1, 459, 933
QA pairs derived from 34, 149 driving scenarios. Example
annotations are shown in Fig. 1.

3.1. Dataset Construction

In order to create a QA dataset, we employed the annota-
tions provided as ground truth in nuScenes. Contrary to tra-
ditional QA datasets that typically structure their response
sections with one word, we decided to make our answers
as full sentences. To enrich the diversity of our QA tem-
plates, we used GPT-4 [30] and crafted 50 expressions per
template, ensuring semantic consistency. Human reviewers
then curated and adjusted a subset of 20 to 30 from these
generated expressions.

Our dataset is based on four core concepts.

• Specific Object Presence: Questions that ask about
the existence and number of specific objects.

• Objects in Specific Direction: Questions asking for
the number and category of objects in a specific direc-
tion.

• Relative Distance to Ego Vehicle: Questions about
the relative distance to vehicles. For simplicity, we
identify the object closest to the vehicle and its cor-
responding distance.

• Relative location to Ego vehicle: Questions about the
location of objects. Similarly, we simplified the task to
identify the closest object and its coordinates.

Using the extensive information available in the
nuScenes annotations, such as the class and location of rec-
ognized objects, and the cameras that capture them, we
were able to automate the QA creation process.

3.2. Markup Implementation

Traditional QA evaluation often revolves around predict-
ing a single word, a method that tends to compromise sen-
tence generation capabilities. To address this, we incorpo-
rated special markups in our dataset. These markups were
differentiated for each QA type as follows:

<target>: Encapsulates <cnt> and <obj>.

<obj>: Represents an object, restricted to a single word.

<cnt>: Represents a count, restricted to a single word.

<ans>: Represents a binary response, a single word.

<cam>: Represents one of the six cameras.

<dst>: Represents distance.

<loc>: Represents (x, y) coordinates.

By enveloping the target objects with these markups, we
can easily extract the relevant words from the answers. For
example:

• In the <cam>back</cam>, <target><cnt>3</cnt>
<obj>trucks</obj></target>are detected.

• The closest object to the ego-car is a <obj>car</obj>
located at coordinates <loc>(3.43, 1.41)</loc>.

This method allows for the simultaneous evaluation of
multiple detections. For example, in the phrase ”3 trucks”,
it is necessary to recognize both the class ”trucks” and its
count ”3”. In this particular regard, conventional methods
are insufficient. Using our markup methodology, we can si-
multaneously evaluate both elements. Similarly, this frame-
work facilitates the recognition of two or more classes at the
same time. In the example provided above, it is possible to
accurately respond to two distinct questions regarding the
object category and the location of the object. Hence, the
usage of markups enables the design of tasks that can si-
multaneously answer multiple queries.

3.3. Dataset Statistics

In this section, we discuss the statistics of the NuScenes-
MQA dataset. An overview of this dataset is provided
through word clouds representing the most frequent terms
found within the questions and answers. These visualiza-
tions are depicted in Fig. 2 (a) and (b), showing the re-
sults for the questions and answers, respectively. The word
clouds display a particularly diverse range of phrases, espe-
cially in the answers.
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Yes No

(f) Relative Distance to Ego-vehicle (g) Relative Location to Ego-vehicle

1 98765432

(c) Distribution of Yes / No (d) Number of Object Count (e) Number of <target> in a sentence(a) Word Cloud of Question

(b) Word Cloud of Answer

Figure 2. Statistics of the NuScenes-MQA dataset

3.3.1 Simple QA Task

Specific Object Presence and Objects in Specific Direction
tasks facilitate recognition-based QA from images, essen-
tially assessing the presence and count of objects. In Fig.
2 (c), simple QA tasks seeking binary ”Yes” or ”No” an-
swers show a slight dominance of ”Yes” responses, but
the bias does not significantly influence model outcomes.
To maintain task feasibility and prevent undue complexity,
we excluded questions that required counting more than 20
objects. The distribution of the number of objects to be
counted is depicted in Fig. 2 (d).

Our dataset harnesses the <target> markup, enabling
the embedding of multiple QAs within a single statement.
Fig. 2 (e) illustrates the number of targets encapsulated in
a single statement, highlighting tasks that predict counting
and category. Although tasks identifying a single target are
common, tasks requiring multiple target responses are also
prevalent. This variety allows for an extended evaluation
beyond typical simple QA.

3.3.2 Distance and position distribution

The nuScenes annotations provide valuable information on
the location of objects. Using positional relationships be-
tween objects and the ego vehicle, we created QA tasks
designated as Relative Distance to Ego vehicle and Rel-
ative Location to Ego vehicle. Drawing inspiration from
the range of recognition tasks, such as the occupancy pre-
diction [35, 38], we delimited our focus to objects situated
within a 40-meter radius. Fig. 2 (f) and (g), which plot the
distance and positional relationship of objects, reveal that

most are within a 20-meter range in all directions. To the
best of our knowledge, our tasks are the first to require tex-
tual answers regarding the spatial information of objects.

4. Methodology

4.1. Model Architecture for Markup-QA

For our Markup-QA tasks, we introduce a model that
combines a vision transformer (ViT) and a decoder-only
language model via a simple linear module. The efficiency
of this architecture is supported by previous works such as
GIT [40], LLaVA [24,25], and MiniGPTv2 [10]. The archi-
tecture of our model is illustrated in Fig. 3.

The visual input undergoes feature extraction using a
ViT pre-trained in CLIP, subsequently extracting patch fea-
tures from the final layer. Considering the nuScenes dataset
accommodates images from six distinct camera orienta-
tions, we use six ViTs, each dedicated to extracting features
from its corresponding camera’s image. The ViT shares
the parameters. These extracted features are subsequently
added with six trainable positional embeddings, in a manner
similar to [40]. The ViT patch features are then projected,
using a single layer adapter module, to match the size of the
text embeddings, thus formulating the visual embeddings.
These visual embeddings, similar to text embeddings, are
fed into the language model for both training and inference.
During training, a causal mask is applied to text embed-
dings to negate the influence of future information during
self-attention computations. However, this constraint is not
imposed on visual embeddings, as shown in Fig. 4.
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ViT ViT ViT ViT ViT ViT

What is the object in <cam>back</cam> of the ego car?

Tokenizer

Language model

PE PE PE PE PE PE
PE

In the <cam>back</cam>, <target><cnt>1</cnt> <obj>car</obj></target> and 
<target><cnt>1</cnt> <obj>construction vehicle</obj></target> are detected.

Input text

Output text

Adapter Adapter Adapter Adapter Adapter Adapter

Figure 3. Vision Language Model Architecture for NuScenes-MQA
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Figure 4. Attention Mask for Vision Language Model

4.1.1 Tokenization

Words used for markup adopt a format rarely seen in con-
ventional text. Based on previous studies [5, 32], these
markups were typically incorporated as additional tokens.
In the results section, we provide a comparison between to-
kenization using conventional tokenizers and tokenization
that treats these markups as additional tokens.

5. Experiments

5.1. Evaluation Metrics

To evaluate the quality of the generated text, we used
n-gram-based standard metrics, notably BLEU-1 [31],
BLEU-4 [31], METEOR [6], and ROGUE-1 F-score [23].
QA tasks were evaluated in the accuracy metric, while dis-
tance measurement tasks were evaluated using the mean ab-
solute error (MAE).

Due to the inherent nature of sentence generation as an
evaluation method, inference requires considerable time.
To efficiently assess the model’s performance, we chose a
smaller subset for the model evaluation. From our test set,

we carefully extracted 2, 000 samples, ensuring a balanced
representation of the tasks. Then, our evaluations were exe-
cuted on this curated subset.

5.2. Training Details

For the ViT, we utilized OpenAI’s ViT large patch14,
which is pre-trained using CLIP. We used an image reso-
lution of 224x224 during training and evaluation. The lan-
guage model was OPT [43], with parameter sizes of 125M,
1.3B, and 6.7B. Both the ViT and the language model were
initialized using pre-trained parameters, while the adapter
module started with random initialization. All parameters
spanning the ViT, the language model, and the adapter mod-
ule were trained.

Our training data combined random QAs from a given
scene, ensuring that all types of question were present in a
sample. The maximum sequence length for the text seg-
ment, excluded from visual embeddings, was set at 256.
AdamW optimizer was used, with a learning schedule out-
lined by a one-cycle scheduler starting at 1e− 6, peaking at
1e− 4, and dropping back to 1e− 6. The other parameters
retained their default values. Training was carried out for
10 epochs using the standard cross-entropy loss. The com-
prehensive training regimen was orchestrated on 8 Nvidia
A100 GPUs or 8 Nvidia H100 GPUs.

5.3. Results

Table 1 shows the performance differences in the Sen-
tence Generation Performance (SGP) and VQA models, ac-
cording to the size of the model and to the use of markup
tokens as additional tokens.
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Model SGP VQA

LM
Special 
token

BLEU-1 BLEU-4 METEOR ROUGE Avg. SGP Yes/No Cat.
Cat. & 
Count

RD Cat. RD Loc. x Loc. y Cat. Loc.

OPT-125M 0.659 0.371 0.679 0.616 0.581 0.795 0.710 0.319 3.546 0.424 5.903 6.420 0.458

OPT-1.3B 0.698 0.404 0.677 0.626 0.601 0.795 0.703 0.315 4.287 0.430 6.306 6.088 0.462

OPT-6.7B 0.674 0.384 0.676 0.624 0.589 0.815 0.700 0.317 4.208 0.426 6.511 6.469 0.460

OPT-125M ✓ 0.644 0.360 0.455 0.474 0.483 0.820 0.763 0.331 2.644 0.504 6.158 6.408 0.520

OPT-1.3B ✓ 0.681 0.388 0.439 0.477 0.496 0.800 0.714 0.325 4.221 0.434 6.252 6.090 0.458

Table 1. Results of different model settings on the NuScenes-MQA test set. We evaluated the natural language generation capability (SGP)
and VQA. Cat. means the accuracy of the object category. RD and Loc. represent the relative distance to the ego vehicle and the relative
location to the ego vehicle, respectively.

5.3.1 Sentence Generation Performance

When evaluating models without the special token, the
OPT-1.3B model consistently outperformed its counterparts
in most metrics. It achieved the highest scores of BLEU-1,
BLEU-4, and ROUGE, with values of 0.698, 0.404, and
0.626, respectively. Although the METEOR scores were
comparably high across all three models, the OPT-125M
slightly surpassed the others with a score of 0.679. Further-
more, the OPT-1.3B model achieved a peak Avg. SGP score
of 0.601.

In contrast, using markups as a special token led to
a marked decline in METEOR scores across all models.
Specifically, the OPT-125M model showed the most sig-
nificant drop, falling to 0.455. Furthermore, not only ME-
TEOR, but other scores also experienced a general decline.
Interestingly, for BLEU-1, the OPT-1.3B model with the
special token retained a slight advantage, recording a score
of 0.681. The Avg. SGP also decreased with the incorpo-
ration of the special token. These observations suggest that
integrating markup as a special token may adversely impact
the language generation capabilities of the models.

5.3.2 VQA Performance

Focusing on models without additional tokens, the perfor-
mance in the Yes/No metric remained consistent across all
models. In the accuracy of categories, Cat., the OPT-125M
model had a slight advantage, achieving a score of 0.710.
Interestingly, for Loc. x and Loc. y, none of the models
showed impressive results, indicating that the task was par-
ticularly challenging.

When the special token was integrated, the OPT-125M
model showed notable improvements in several metrics
such as Yes/No, Cat., and Cat. & Count, with scores of
0.820, 0.763, and 0.331, respectively. Both the OPT-125M
and OPT-1.3B models showed improvement in the RD and
Cat. RD metrics. Remarkably, the OPT-125M model ex-

hibited significant gains, with the scores for RD and Cat.
RD to 2.644 and 0.504, respectively. The OPT-1.3B model
exhibited a slight improvement in most of the VQA metrics
upon the addition of markup tokens as a special token.

5.3.3 Quantifying the difficulty of multiple QAs

In our dataset, following the criteria defined under Objects
in Specific Direction, a single sentence encompasses mul-
tiple QA tasks that require identification of both the cate-
gories of objects and their counts. Table 2 delineates the ac-
curacy rates based on the number of QAs present in a single
sentence (n-QA). As the number of QAs increases, tasks be-
come more complex, leading to lower accuracy rates. This
decrease is more noticeable in Cat. & count than in Cat..
Given these challenges, there is a pressing need for further
research to effectively address multiple QAs in a single sen-
tence.

n-QA Cat. Cat. & Count
1 0.88 0.42
2 0.59 0.16
3 0.49 0.14
4 0.53 0.16
5 0.51 0.13
6 0.51 0.10

Table 2. Accuracy based on the number of QAs per sentence

6. Conclusion
In this work, we introduced the NuScenes-MQA dataset,

which employs a Markup-QA approach where QA is en-
capsulated within the text using markup. Through the im-
plementation of the Markup-QA scheme, we established a
framework that facilitates the simultaneous evaluation of a
model’s capabilities in sentence generation and VQA. This
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dataset empowers the development of vision language mod-
els, especially for autonomous driving tasks, by focusing on
both descriptive capabilities and precise QA. We have also
established a baseline model that provides a starting point
to demonstrate the practical value of our approach.

7. Limitation

While our research offers significant insight, it comes
with certain constraints worth noting. First, the dataset has
been constructed using a rule-based approach. As a con-
sequence, it may lack the rich diversity often inherent in
natural language. This limitation could potentially make it
less ideal for training larger models, such as OPT-6.7B, due
to potential insufficiency. Furthermore, the limited variety
of tasks that address spatial information raises concerns.
Specifically, it remains uncertain whether the model truly
captures expressions pertaining to positional data. These
limitations underscore areas for deeper future research. We
believe that future work will overcome these challenges and
further advance the field.
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