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Abstract

While interpretable decision-making is pivotal in au-
tonomous driving, research integrating natural language
models remains a relatively untapped. To address this, we
introduce a multi-modal instruction tuning dataset that fa-
cilitates language models in learning visual instructions
across diverse driving scenarios. This dataset encompasses
three primary tasks: conversation, detailed description, and
complex reasoning. Capitalizing on this dataset, we present
a multi-modal LLM driving assistant named VLAAD. After
fine-tuned from our instruction-following dataset, VLAAD
demonstrates proficient interpretive capabilities across a
spectrum of driving situations. We open our work, dataset,
and model, to public on github. https://github.
com/sungyeonparkk/vision-assistant-for-
driving

1. Introduction

In recent years, the field of autonomous driving has wit-
nessed rapid advancements in both academia and indus-
try. While significant progress [3, 4, 35] has been made
in learning the latent representations of driving data us-
ing deep neural models in an end-to-end manners for vehi-
cle control, interpretability in autonomous vehicles remains
an unresolved issue. Interpreting driving actions, particu-
larly through natural language, has remained largely unad-
dressed.

These interpretable models not only facilitate effective
interaction between humans and autonomous vehicles but
also, more importantly, play a vital role in making the
underlying causes of autonomous vehicle behaviors and
decision-making processes readily comprehensible to hu-
mans. This understanding is essential for ensuring safety in
various driving scenarios.

In this paper, we introduce the Vision-and-Language
Assistant for Autonomous Driving (VLAAD), which ex-
tends the concept of visual instruction-tuning [21] into
the domain of autonomous driving. We focused on the
scarcity of high-quality video captioning datasets in the au-
tonomous driving domain and the near absence of conver-
sation datasets capturing interactions between drivers and
vehicles in driving scenarios. These datasets play a piv-
otal role in connecting visual modality and language within
the framework of visual instruction-tuning. To address
this gap, we created a high-quality 64K video instruction-
following dataset that features complex reasoning, detailed
descriptions, and conversation. We used GPT4 to gener-
ate the dataset from front-view RGB camera footage, and it
is publicly accessible. For our research, we harnessed the
Berkeley Deep Drive (BDD) dataset, its annotated counter-
part, BDD-X [19], and the Honda Research Institute Driv-
ing Dataset (HDD) [26]. Our architectural approach in-
volved connecting the Video-Qformer [39] encoder with
the LLaMA-2-7B model, using off-the-shelf unimodal pre-
trained models. We subsequently conducted end-to-end
fine-tuning using this newly created high-quality 64K video
instruction-following dataset.

In summary, our contributions can be summarized as fol-
lows: (1) Development of a comprehensive visual instruc-
tion tuning dataset, comprising 64K samples, with the spe-
cific aim of enhancing the interpretability of autonomous
driving systems. (2) Open-sourcing of the complete code-
base, which facilitates model fine-tuning on the LLaMA-2-
7B [30] architecture using Video-Qformer. (3) Public re-
lease of VLAAD weights, making it readily accessible to
the research and development community, thereby driving
progress in interpretable autonomous driving technology.
(4) In addition, we also provide the necessary code and
prompts for generating the visual instruction tuning dataset
based on captions for front-view RGB camera footage.
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2. Related Works

2.1. Interpretable AVs via Natural Languages

In autonomous driving research, there has been a notable
emphasis on enhancing explainability through the genera-
tion of visual explanations [16, 28, 31]. There is a grow-
ing focus on enhancing the interpretability of autonomous
vehicles (AVs) using natural language recently. Research
is underway to generate natural language captions for driv-
ing scenes [13,20] in a human-understandable manner. [23]
provides explanations by describing surrounding objects
and predicting potential risks. Furthermore, There have
been studies that aim to enable self-driving vehicles to com-
prehend and obey natural language instructions such as [8].
Some studies employ methods such as imitation learning
[27] and the use of end-to-end controllers [17]. This serves
as a foundation for achieving interactive autonomous vehi-
cles through the use of natural language for action planning.
Notably, [18] combines language captioning and planning,
summarizing visual data into natural language descriptions
and predicting actions. Similarly, [36] annotates driving
actions and their associated natural language explanations,
with a focus on prediction.

Datasets Various driving scene video datasets have
been valuable resources in driving scene understanding
[26, 38]. These datasets contain a substantial amount of
video footage depicting driving scenarios. For interpretable
AV, some derived datasets with detailed annotations and ex-
planations have been created from these driving scene video
datasets [19,36] .Additionally, DRAMA [24] offers insights
into risk objects and driver suggestions, while nuScenes-
QA [25] creates question-answer pairs based on 3D object
relationships. Despite the growing trend of actively utiliz-
ing large language models like GPT-3.5 and GPT-4 to cre-
ate instruction tuning datasets [21], research in the context
of driving scenes remains limited, indicating the need for
further exploration.

2.2. Visual Instruction Tuning

Visual Instruction Tuning on Specific Domain In re-
cent developments within the realm of multimodal conver-
sational AI, models like LLaVA [21], trained on numer-
ous image-text pairs from the public web, have showcased
significant advancements. However, while these vision-
language models excel in general areas, they sometimes fall
short in specialized fields. To address this gap, several ini-
tiatives have been introduced, with LLaVA-Med [5] being a
notable example. This model offers a cost-effective strategy
for adapting a vision-language model to a specific domain.
At its core, the method relies on a comprehensive domain-
specific figure-caption dataset taken from academic articles.
Using GPT-4, LLaVA-Med derives open-ended instruction-
based data from these captions and then refines a broad

vision-language model through a refined curriculum learn-
ing approach..

Video Instruction Tuning Following the introduction
of BLIP [11], there has been a surge of endeavors aimed
at developing LLM models proficient in video understand-
ing, primarily by leveraging the technique of synchroniz-
ing image vectors to embedding space of LLMs. BLIP2
[14] presents a Q-Former that connects image queries that
have been learned to the text embedding realm of LLMs.
Meanwhile, Instruct BLIP [34] introduces an instruction-
aware Query Transformer, which derives features specific
to the provided instruction. Adding to this, BLIVA [33]
integrates query embeddings from InstructBLIP and also
directly maps encoded patch embeddings into the LLM, a
method inspired by LLaVA [21]. On a related note, Video-
Chat [21] expands upon image encoders, setting itself apart
from other models by emphasizing both spatial and time-
based video characteristics, thereby allowing larger models
to comprehend the visual elements in videos.

Another standout example of this approch is Video-
LLaMA [39], which enhances cross-modal training using
pre-existing visual & audio encoders in tandem with fixed
LLMs. Consequently, Video-LLaMA showcases a marked
superiority compared to other vision-LLMs, like MiniGPT-
4 [9] and LLaVA [21], with a distinct prowess in grasp-
ing temporal variations within visual contexts. To integrate
a pre-trained image encoder into the video encoder and
introduce a video-to-text generation task to master video-
language relationships, video-llama employ new strucuture
Video Q-former.

2.3. Large Language Models for AVs

In recent years, there has been a rapid advancement
in Large Language Models (LLMs), and this progress has
spurred numerous attempts to apply these models to the do-
main of Autonomous Driving [1, 7, 15, 23].

Researchers have explored leveraging the decision-
making capabilities of LLMs for planning in autonomous
vehicle control. MTD-GPT [22], for instance, addresses
complex decision-making problems at intersections using
a sequence modeling approach and fine-tuning. Similarly,
DiLu [32] employs LLM agents to solve decision-making
challenges in closed-loop driving tasks with a focus on
clear prompt design, showcasing remarkable performance
comparable to state-of-the-art RL-based models. [6] also
adopts a prompt-based approach, showcasing the model’s
proficiency in decision-making, including high-speed lane
changes on the highway. Notably, experiments reveal its
adaptability to new scenarios without retraining. The use
of in-context learning prompts, tailored to driving nuances,
demonstrates the model’s flexibility. The study also inves-
tigates chain-of-thought prompts, introducing logical steps
for potential accident scenarios. Efforts have been made

981



to overcome the scarcity of driving scenario datasets using
LLMs. GAIA-1 [12], for example, generates data on traf-
fic scenarios, environment elements, and potential risks by
incorporating video, text, and action inputs. Additionally,
there are attempts to approach driving situations through
Question-Answering tasks, as evidenced by initiatives like
DriveGPT4 [37].

These endeavors collectively demonstrate the growing
interest and exploration of the application of Large Lan-
guage Models in the field of Autonomous Driving, show-
casing their potential in decision-making, planning, and
data augmentation for overcoming challenges in this dy-
namic domain.

3. Video Instruction Following Data for AVs

3.1. Dataset Generation

In the field of autonomous driving, datasets containing
videos with natural language captions are rare. Further-
more, there’s a notable absence of conversation datasets
between drivers and vehicles in driving scenarios. Such
datasets are pivotal for instruction tuning in multi-modal
LLM. To bridge this gap, we curated a multi-modal
instruction-following dataset, derived from driving videos
and their annotations. The primary datasets leveraged for
this study are the Berkeley Deep Drive (BDD), its anno-
tation counterpart BDD-X [19], and the Honda Research
Institute Driving Dataset (HDD) [26].

BDD-X offers 77 hours of footage across 6,970 videos,
each 40 seconds in length. Every video captures approx-
imately 3-4 distinct driving actions—like acceleration, de-
celeration, or turns—all annotated with both a description
and an explanation. HDD, on the other hand, is a 104-hour
driving dataset rich in natural language description. This
advice is bifurcated into goal-oriented (top-down signals),
influencing vehicular navigation tasks, and stimulus-driven
advice (bottom-up signals) that highlights visual cues the
driver expects the vehicle to notice.

Data Enrichment. To create a high-quality instruction
tuning dataset using a cost-effective method, we employed
GPT-4 to produce question-answer pairs for each video.
Given that we utilize a language-only GPT-4, it’s crucial to
feed it comprehensive information about the driving video.
Even though GPT-4 cannot view the video, such in-depth
instructions enable it to grasp the video’s content. As de-
picted in Fig. 1, supplementary data from BDD-X includes
time-stamped explanations and, when available, bounding
boxes of significant objects. This methodology empowers
GPT-4 to discern driving conditions in each frame, taking
into account the spatial relationship of road elements in the
scene [21]. As for HDD, it offers a more granular perspec-
tive from the vehicle’s point of view, encompassing car ma-
neuvers, road events, focal points, causative elements, and

both goal-oriented and stimulus-driven actions. We con-
catenate these with their timestamps and also incorporate
data like velocity and steering wheel angles per second.

Instruction Following Data Generation with GPT4.
In total, we crafted three categories of video instruction-
following data: detailed description, conversation, and
complex reasoning as described in Fig. 2. Detailed descrip-
tions provide an overview of the entire video, highlighting
maneuvers, current traffic conditions, and driver behavior.
Conversations contain questions directly inferred from the
video, such as the vehicle’s reactions and their underlying
reasons. Complex reasoning tasks delve deeper, necessi-
tating profound understanding of the scenario, such as pre-
dicting a car’s future actions given specific conditions. The
prompts used to generate Q&A pairs vary for each task,
and every dataset employs a distinct prompt. Ultimately,
we synthesized 64K instruction-following data points from
11K videos. Our efforts to further expand base datasets to
generate instruction-following datasets and frame-level cap-
tioning datasets for pre-training are ongoing.

3.2. Dataset Comparison

Tab. 1 presents a comparison of the VLAAD dataset
with existing natural language-captioned datasets on driv-
ing scenes. Datasets such as BDD-X [19], HDD [26],
and CAP-DATA [10] provide free-form captions, describ-
ing scenes and justifying them with the driver’s intention or
ego-car controls. However, these datasets are not designed
for QA tasks and lack reasoning tasks, such as hypothet-
ical situations. CAP-DATA, while offering reasoning on
current situations, is limited to road accidents and does not
cover a range of driving scenes. In contrast, DRAMA [24],
NuScenes-QA [25], and T2C [8] are specifically tailored for
QA tasks on diverse scenes. However, there are significant
differences with our dataset: NuScenes-QA, which contains
34K captions accounting for half of our dataset’s size, offers
only short answers. While T2C focuses on driver-car inter-
actions, it primarily deals with driver commands and ob-
ject localization for command execution. DRAMA closely
aligns with our dataset by considering driver intention in
QA tasks, but it is limited to short-answer responses. More-
over, its video length is a mere 2 seconds, insufficient for
comprehensive driving scene understanding and QA with
scene reasoning. In comparison, our dataset boasts nearly
64K instructional datasets with videos ranging from 20 to
40 seconds, encompassing free-form QA that accounts for
driver intention and is capable of complex reasoning tasks.

4. Adapting Multi-modal LLM to Driving Sit-
uations

We opted for Video-LLaMA [39] as our foundational
model to assist LLM (LLaMA-2) in comprehending video
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Figure 1. An example of data generation process in HDD.

Dataset Ours BDD-X [19] HDD [26] CAP-DATA [10] T2C [8] DRAMA [24] NuScenes-QA [25]

# of scenarios 10,379 6,984 7,744 11,727 850 17,758 1,000
Video length(s) 20, 40 40 20 5 20 2 20
# of captions 64K 26,539 - - 11,959 17,066 34K
Visual QA no no no no
Free-form QA no no no - no no
Ego-intention no no
Reasoning no no no no no no

Table 1. Comparison of datasets with natural language captions on driving scene videos

data. As illustrated in Fig. 3, the main element is the vision-
language branch, which is composed of several modules.
First, a frozen pre-trained image encoder is utilized to ex-
tract features from video frames. Next, a position embed-
ding layer is applied to infuse temporal information into the
video frames. Following that, a video Q-former is utilized
to consolidate frame-level representations. Lastly, a linear
layer is utilized to project the resulting video representa-
tions into the same dimension as the text embeddings used
by LLMs.

Similar to Video-LLaMA, we also harnessed the power
of the pre-trained BLIP-2 model [14] as our visual encoder.
This model incorporates both the vision transformer and Q-

Former modules, aligning with our vision-language branch
requirements. For our language model, we employed a pre-
trained and frozen version of LLaMA-2 to ensure robust and
consistent performance throughout our experiments. We
made use of the pre-trained model from Video-LLaMA.
This model underwent training using Webvid-2M [2], a vast
dataset comprising short videos accompanied by textual de-
scriptions sourced from stock footage websites. Addition-
ally, it leveraged the image caption dataset CC595k, derived
from CC3M [29], and filtered by [21]. The pre-training pro-
cess for the vision-language branch involved a video-to-text
generation task. In this stage, the model was tasked with
generating corresponding text descriptions based on video
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Figure 2. Examples of three types of datasets—detailed description, conversation, and complex reasoning.

representations, effectively prompting the frozen LLM to
perform this text generation task.

For fine-tuning to our dataset, we only keep the vi-
sual encoder and LLM weights frozen, and continue to up-
date the pre-trained weights of the video-Qformer. In this
way, we cost-efficiently inject information needed to under-
stand driving situation. To train the model to follow in-
structions and carry out tasks in a conversational manner,
we fine-tuned our model using the driving video-language
instruction-following dataset that we collected in Section 3.
As illustrated in Fig. 4, our model, fine-tuned at this stage,

exhibited the capability not only to serve as a visual assis-
tant for interacting with drivers but also to exhibit inferential
skills in hypothetical scenarios.

5. Conclusions

In this study, we have presented a methodology for
generating instruction-following data in the context of au-
tonomous driving, along with the release of its benchmark
dataset. Our results, obtained through fine-tuning an exist-
ing multi-modal model designed for video understanding,
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Figure 3. Architecture of trained model

Figure 4. Example conversations on driving scene videos through VLAAD
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have demonstrated its ability to comprehend driving scenar-
ios within videos by effectively capturing spatio-temporal
relationships.

Currently, our ongoing efforts involve refining the model
to selectively extract key frames that are pertinent to in-
structions. Additionally, we have plans to replace the vi-
sual encoder with a pre-trained encoder specifically trained
on extensive driving scene-caption data. Furthermore, we
are actively engaged in the generation of data for both pre-
training and fine-tuning to support the model’s application
in various contexts and domains.
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