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Abstract

Global visual localization in LiDAR-maps, crucial for
autonomous driving applications, remains largely unex-
plored due to the challenging issue of bridging the cross-
modal heterogeneity gap. Popular multi-modal learn-
ing approach Contrastive Language-Image Pre-Training
(CLIP) [32] has popularized contrastive symmetric loss us-
ing batch construction technique by applying it to multi-
modal domains of text and image. We apply this approach to
the domains of 2D image and 3D LiDAR points on the task
of cross-modal localization. Our method is explained as fol-
lows: A batch of N (image, LiDAR) pairs is constructed so
as to predict what is the right match between N X N possi-
ble pairings across the batch by jointly training an image
encoder and LiDAR encoder to learn a multi-modal embed-
ding space. In this way, the cosine similarity between N
positive pairings is maximized, whereas that between the
remaining negative pairings is minimized. Finally, over the
obtained similarity scores, a symmetric cross-entropy loss
is optimized. To the best of our knowledge, this is the first
work to apply batched loss approach to a cross-modal set-
ting of image & LiDAR data and also to show Zero-shot
transfer in a visual localization setting. We conduct ex-
tensive analyses on standard autonomous driving datasets
such as KITTI and KITTI-360 datasets. Our method out-
performs state-of-the-art recall@1 accuracy on the KITTI-
360 dataset by 22.4%, using only perspective images, in
contrast to the state-of-the-art approach, which utilizes the
more informative fisheye images. Additionally, this superior
performance is achieved without resorting to complex ar-
chitectures. Moreover, we demonstrate the zero-shot capa-
bilities of our model and we beat SOTA by 8% without even
training on it. Furthermore, we establish the first bench-
mark for cross-modal localization on the KITTI dataset.
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1. Introduction

Visual localization serves as a crucial aspect in the do-
main of mobile robotics, playing a pivotal role in applica-
tions such as autonomous vehicles and Simultaneous Lo-
calization and Mapping (SLAM). Our focus in this work is
to address the complex issue of determining the pose of an
image within an expansive 3D map. This task of localiza-
tion gets quite challenging due to large, occluded, dynamic
scenes and repetitive places.

Outdoor and indoor visual localization approaches may
differ in their pipelines because of the different nature of
their challenges; our work addresses outdoor visual local-
ization. However, they can both broadly be categorized
into 2 steps: global localization, which gives a rough es-
timate of the pose, and then, local localization, which gives
a more accurate version that further involves the use of
PnP [16, 18, 21] in a RANSAC [22] setting. In our pa-
per, we deal with the problem of global localization. Global
localization can be achieved using Global Navigation Satel-
lite Systems (GNSSs), however, it does not always give re-
liable estimates. This is particularly prevalent in urban en-
vironments where high-rise buildings can interfere with the
signal quality, leading to inaccuracies. Other contributing
factors can include multipath effects, where signals bounce
off multiple surfaces before reaching the receiver, and atmo-
spheric conditions, which can alter the signal speed. There-
fore, Light Detection And Ranging (LiDAR)-based [24,43]
and vision-based approaches [1, 5, 11] are seen as estab-
lished sensor modalities in the vision community to esti-
mate the pose of a robot accurately. While LiDAR modal-
ity is robust to variation in illumination and can detect ob-
jects at long distances with high accuracy, they are gener-
ally expensive and are especially prone to failure modules
such as degenerate places like tunnels and suffers from is-
sues such as surface reflections and interference. Vision
modality-based methods use 2D images and extract features
from them using methods such as NetVLAD [1] to eventu-
ally match them with a query image for localization. While
vision-based approaches have seen large success, there are
still important limitations, such as dynamic environments,
illumination, or weather changes.

Given the complementary nature of these sensor modal-
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ities, their advantages can be combined in a multi-modal
fashion through the fusion of 2D and 3D data [19, 28, 35],
which enhances localization accuracy significantly. How-
ever, this fusion is not straightforward because of the het-
erogeneity gap between these two modalities, and there-
fore, it remains an unexplored and largely unsolved prob-
lem. Further, the multi-modal approach does not solve the
problem of localizing a sensor of one modality in a map
of another, something that we refer to as ’cross-modal lo-
calization’. Our task revolves around the novel application
of a contrastive loss based on batch construction approach
to the distinct domains of 2D images and 3D LiDAR point
clouds, specifically in the context of cross-modal localiza-
tion. This involves creating a shared embedding space for
both 2D and 3D data, enabling the localization process to
occur even when only one modality is available at a given
time.

The practical motivation of our work lies in its utility in
autonomous navigation scenarios. Imagine a setting where
a detailed and expensive LiDAR map has been constructed
using a resource-intensive setup initially. In subsequent
navigation instances, however, our approach enables local-
ization solely via 2D images, thereby eliminating the need
for resource-heavy operations. This feature is particularly
advantageous as it mitigates resource constraints and pro-
vides an economical and efficient solution for repeat local-
izations. Furthermore, our method showcases its versatility
by being applicable even when the initial map is constructed
in a different modality, such as 3D. Thus, our work facili-
tates cost-effective and efficient navigation by capitalizing
on the power of cross-modal localization.

The main contributions of our paper are as follows:

• Batched Loss Approach: This work is the first of
its kind to apply the batched contrastive approach in a
cross-modal setting involving image and LiDAR data,
establishing a novel direction in metric learning for au-
tonomous driving applications.

• Superior Performance with Simpler Methods: We
demonstrate that our method outperforms state-of-the-
art (AECMLoc) [50] recall@1 accuracy on the KITTI-
360 [23] dataset by 22.4% using only perspective im-
ages and standard Vision Transformer [8] architecture
for the encoders, contrasting with the state-of-the-art
approaches that rely on more informative fisheye im-
ages and complex architectures.

• Zero-shot Analyses and Benchmark Establish-
ment: We conduct exhaustive analyses on standard
autonomous driving datasets such as KITTI [10] and
KITTI-360 [23] and establish the first benchmark for
cross-modal localization on the KITTI dataset.

The remainder of this paper is organized in the follow-
ing manner: Section II provides an overview of previous
research in the domain of visual localization. Our proposed
methodology, encompassing batch construction, contrastive
loss, and architecture design, is detailed in Section III. Ex-
periments conducted on public datasets and their results are
exhibited in Section IV. In Section V, we demonstrate the
zero-shot capability of our model. The paper concludes
with Section VI.

2. Related Work
Localization of a robot involves understanding where it

is in the world using a pre-existing map. Generally, this
has been done using the same type of sensor that was used
to create the map, such as images with images or 3D scans
with 3D scans, i.e., between the same corresponding modal-
ities. Our work expands upon this by showing that you can
localize using different types of sensors than those used to
create the map, like using simple cameras to localize in a
map built from expensive 3D scans, which is more flexible
and cost-effective. We review the literature on both of these
approaches in this section.

2.1. Same modal localization

The standard pipeline for localization approaches begins
with the acquisition of reference data, which is typically a
large 3D map. The first step in the pipeline is to retrieve
prior information for which traditional methods include the
bag of words approach [27], but more recent work has lever-
aged deep learning techniques. For instance, Arandjelovic
et al. [1] extended the Vector of Locally Aggregated De-
scriptors (VLAD) [15] approach, introducing a differen-
tiable generalized VLAD layer that can be integrated into
any CNN architecture, i.e., NetVLAD [1], a CNN-based
image retrieval algorithm, retrieves the most similar images,
or reference images, from an image database. This stage is
called global localization, where we can directly take the
pose based on the most similar reference images for a given
query image. But this pose can be refined further as fol-
lows. Once the reference images are retrieved, local feature
extraction and matching are performed. Feature extraction
has traditionally relied on methods such as Scale-Invariant
Feature Transform (SIFT) [49], Speeded Up Robust Fea-
tures (SURF) [2], and Oriented FAST and Rotated BRIEF
(ORB) [37], which are designed to extract local features
from the image. However, with the advent of deep learning,
recent years have seen a shift towards the use of convolu-
tional neural networks (CNNs) such as ResNet [12], Con-
vNets [17] and more recently, Vision Transformers ViT [8]
as a means to extract features. These neural networks have
shown remarkable performance in feature extraction, re-
placing handcrafted features with learned representations.
Following local feature matching, the Pose from N Points
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(PnP) [16, 18] algorithm along with RANSAC is leveraged
to estimate the 6-DoF pose. This whole process to obtain
finer estimate of pose is termed local localization. In our
current work, we apply our batched loss approach to the
global localization problem. No single localization method
currently exists that can universally adapt to a wide range
of environments, such as urban landscapes, rural settings,
nighttime conditions, warehouses, varying weather, foggy
conditions, and busy marketplaces [6, 26, 30, 38, 41, 45].
Most state-of-the-art methods specialize in one or a few of
these scenarios and lack the generalizability to perform well
across all. Our paper aims to take a step in this direction to-
wards creating a more general localization method.

So far, we have discussed about image-to-image based
retrieval methods. Now let us discuss the same modal
retrieval for point clouds. Point clouds provide a robust
way to represent scenes under varying lighting conditions
and seasonal changes and have the ability to maintain the
structural integrity of scenes. The initial developments in
this field were PointNet [31], and EdgeConv [47], which
process unordered points to extract permutation-invariant
features. Building upon this, PointNetVLAD [43] intro-
duced an end-to-end trainable model, which merges the
strengths of PointNet and NetVLAD for point cloud-based
place recognition. When a query point cloud is provided,
the task involves retrieving the most similar sub-maps from
this database, i.e., this is 3D-3D based retrieval. However,
the cost and weight of LiDAR technology can be prohibitive
for large-scale applications. Here is where our work has sig-
nificant motivation. Consider a scenario where an exhaus-
tive and expensive map has been previously constructed us-
ing a combination of sensor setups. With our approach,
you can localize within this map multiple times using only
simple and cost-effective sensors, such as RGB cameras.
This eliminates resource constraints and allows for flexibil-
ity even if the map has not been pre-built in that specific
sensor modality.

2.2. Cross modal localization

Cross modal localization has gained traction in recent
years [3, 25, 29, 40]. Early works which localize between
the domains of LiDAR and 2D images include [3, 25, 40].
These approaches use CNN based approaches to do pose re-
gression with standard translation or rotation-based losses.
These methods typically need some initial estimate to
work and only works as a local localization task. 2D3D-
MatchNet [9] proposes a deep network to jointly learn the
2D image and 3D point cloud keypoint descriptors.

More recently, Cattaneo et al. [4] proposed a teacher-
student training approach on Oxford Robotcar using triplet
loss and jointly trains a 2D network for the images and 3D
network for the point clouds. Similarly, AdaFusion [19]
presents a visual-LiDAR descriptor fusion in a weighted

Figure 1. Batched Contrastive Learning Architecture

way using a pairwise margin-based loss. A similar approach
i3dLoc [48] uses Generative Adversarial Networks (GANs)
on the domains of 360-images and 2D range projections to
deal with inconsistent environmental conditions on a cus-
tom dataset. Recently, LiDARCLIP [14] uses principles
from CLIP to produce joint text, LiDAR and camera em-
beddings, although not for the task of global localization.
The work closest to ours is AECMLoc [50] which is the
first work to address the task of cross-modal localization on
KITTI-360 dataset. It uses a spherical convolution based
2D network and another PointNet based 3D network with
attention enhancement with a triplet loss and achieves rea-
sonable cross-modal localization accuracy. In contrast to
traditional methods which employ a triplet loss with select
negative samples through hard negative mining, we intro-
duce the use of a contrastive loss incorporating numerous
negative samples within a batch construction method.

3. Methodology
In this section, we discuss in detail our methodology

where we first discuss how the data is constructed in a
batched manner and how contrastive loss is imposed upon
it. Then we discuss the details about encoder architecture
and training.

3.1. Batch Construction and Contrastive Loss

Here, we discuss the batch construction procedure and
the contrastive symmetric loss in detail. This approach
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was first introduced as multi-class N-pair loss [39] and then
popularized by InfoNCE [44] and CLIP [32] under various
names. In the context of our paper, we call it batched con-
trastive loss.

Firstly, our batch construction method is explained as
follows: A batch of N (image, LiDAR) pairs is constructed
so as to predict what is the right match between NXN pos-
sible pairings across the batch by jointly training an image
encoder and LiDAR encoder to learn a multi-modal embed-
ding space. In this way, we would have N positive pairings
and (N2 −N) negative pairings as shown in Fig 1.

To put it formally, let us say xi represents a 2D image,
x+
i represents a LiDAR sample, and f(x) represents an em-

bedding vector for x, simply written as f . In a batch size
of N , we have N such pairs

{(
x1, x

+
1

)
, · · · ,

(
xN , x+

N

)}
.

First, let us consider for one 2D image (the same explana-
tion works vice-versa for LiDAR given the symmetric na-
ture of loss). Consider an (N + 1)-tuplet of one 2D image
and N LiDAR samples i.e. Si =

{
xi, x

+
1 , x

+
2 , · · · , x

+
N

}
:

The anchor here is xi while x+
i is a positive example to the

anchor and x+
j , j ̸= i are the negative examples. In other

words, every 2D image would have 1 positive and N − 1
negative LiDAR examples (and vice-versa). Therefore, our
loss can be finally expressed as:

Lbatched

({(
xi, x

+
i

)}N
i=1

; f
)
=

1

N

N∑
i=1

log

(
1

+
∑
j ̸=i

exp
(
f⊤
i f+

j − f⊤
i f+

i

))
(1)

Each i in the outer summation would correspond to ev-
ery row in the Fig. 1. The above loss can equivalently be
expressed as standard softmax loss as follows (for full the-
oretical details, refer to [39]):

Lbatched

({(
xi, x

+
i

)}N
i=1

; f
)
=

− 1

N

N∑
i=1

log

(
exp

(
f⊤
i f+

i

)
exp

(
f⊤
i f+

i

)
+
∑

j ̸=i exp
(
f⊤
i f+

j

)) (2)

This loss is used to train our dual encoders as explained
in the next section.

3.2. Contrastive encoder training

Our methodology uses contrastive learning to jointly
train two encoders: one for 2D images from the camera
and the other for 3D points from the LiDAR. We gener-
ate range images from the LiDAR points. In our experi-
mentations, we found that using range images when passed

Figure 2. Inference pipeline showing that query camera image
is calculating similarity with all the lidar range images in the
database

Figure 3. Qualitative visualization: 2D query, 3D prediction, 3D
ground truth.

through standard ResNet or ViT architectures gave us bet-
ter performance in comparison with specialized or sophisti-
cated architectures, which use 3D point clouds as input. The
training process ensures corresponding camera and LiDAR
images are closely aligned by learning a shared multi-modal
embedding space and, thus, enables efficient cross-modal
localization.

Both encoders follow the same two-step process: fea-
ture extraction and projection. For feature extraction, we
employ the established ViT [8] model. We have also ex-
perimented with other models such as ResNet [12] which
too gives superior performance to baseline (ResNet back-
bone beats baseline by more than 10%), however amongst
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these two, ViT is much better. We deliberately opted for a
standard architecture, aiming to highlight the effectiveness
of our batched loss method without resorting to more ad-
vanced architectures. The feature extraction step uses the
pre-trained vit small patch16 224 model to transform the
input images into intermediate feature vectors, and then, the
feature projection step transforms these high-dimensional
vectors into a shared and lower-dimensional embedding
space. The projection step is aimed at bolstering the task-
specific features and preserving the compact nature of em-
beddings to ensure computational efficiency. We found
vit small patch16 224 to be our best model amongst other
variants, henceforth, whenever not explicitly mentioned, it
can be assumed that we are referring to this model by ’LIP-
Loc’.

The joint training of the encoders ensures both the cam-
era and LiDAR encoders update their parameters during
each training step simultaneously to maximize the cosine
similarity between the embeddings of the corresponding
camera and LiDAR pairs and to minimize the similarity be-
tween those of non-corresponding pairs. This is achieved
by optimizing a symmetric cross-entropy loss based on a
batch construction procedure, as explained previously.

4. Experiments and Results
We have shown the effectiveness of our contrastive learn-

ing via Batch Construction in two different datasets, KITTI
and KITTI 360. Our ablation results show the improvement
of batched contrastive loss over triplet loss in terms of net-
work recall and GPU memory footprint. With the incorpo-
ration of cropping in the image field of view and distance
thresholding in LiDAR space, we are able to achieve better
generalization, as shown quantitatively in the table.

4.1. Dataset and Preprocessing

For both KITTI and KITTI 360, our training pairs consist
of synchronized LiDAR scans and camera images taken in
the same snapshot of the world.

KITTI dataset
Evaluation is performed on the KITTI odometry dataset

which consists of Velodyne HDL-64E LiDAR scans and a
color stereo camera rig. Our experiment id and correspond-
ing training sequences are shown in Table 1. The evaluation
sequences are 08 and 09.

KITTI 360 dataset
It comes with Velodyne HDL-64E and raw images from

the perspective camera. This has about 80k frames of li-
dar and image pairs over a distance of 73.7 Km, along
with precise vehicle pose information require for evalua-
tion. We have used sequences 3,4,5,6,7,9,10 for training and
sequence 0 for evaluation. Of course, in the Zero-shot set-
ting, we did not use any of this. To not confuse the standard
train-test evaluation with Zero-shot, we separately dedicate

Experiment id Training sequences

exp large KITTI(5): 03, 04, 05, 06, 07
exp larger KITTI(8): 00, 01, 02, 03, 04, 05, 06, 07
exp largest KITTI(18): 00, 01, 02, 03, 04, 05, 06, 07, 11,

12, 13, 15, 16, 17, 18, 19, 20, 21
exp 360 KITTI 360(7): 03, 04, 05, 06,

07, 09, 10

Table 1. Training sequences for different experiments.

Section 5 for Zero-shot results. We have applied distance
threshold in lidar scans and field of view threshold on lidar
range image.

4.2. Objective and Evaluation metrics

We further clearly elaborate the objective here. During
training time, we take a batch of N (image, LiDAR) pairs,
where N is typically 32 as illustrated in Fig 1 which we train
for 50 number of epochs. It is hereby reiterated that hyper-
parameter tuning is not necessary and our method works
out of the box as mentioned in next section in even a zero
shot setting. The inference procedure is explained in Fig
2, where given an RGB query, we pass it through its cor-
responding encoder to extract the embedding and similarly
for reference LiDAR range images to extract corresponding
LiDAR embeddings. Then, the reference with highest sim-
ilarity score with query is picked as final prediction whose
pose is finally extracted for the global localization problem.
The same process is done vice-versa for 3D to 2D localiza-
tion task.

We used the Recall@1 evaluation metric with a distance
threshold of 20 meters. For a given query camera image em-
bedding we find the closest LiDAR range image embedding
in joint space, if the distance between the retrieved camera
and LiDAR is less than 20 meters, then we consider it as a
True Positive. Thus,

Recall@1 =
Number of True LiDAR and camera matches

Total number of query camera images

4.3. Comparative Analysis: Triplet Versus Batched
Contrastive

Our experimental findings align with the premise that an
increase in negative samples in metric learning contributes
to better generalization, a claim also made by foundational
works such as CLIP [32]. We observe the same in the results
we obtained, as illustrated in Table 2.

The traditional triplet approach tends to require more
GPU memory as the number of negative samples increases
[39]. This can create limitations when working with larger
datasets or when more robust learning is required.
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In contrast, the batched contrastive approach presents a
more efficient and scalable solution. It has demonstrated
improved performance with the addition of more data [39],
making it particularly suitable for metric learning. The scal-
ability of this approach allows for the management of larger
datasets, making it a key consideration for improving the
efficiency of intermediate modules in the learning process.
Table 2 shows comparison of the batched contrastive loss
against standard triplet loss for lidar-camera alignment on
the KITTI dataset. Please note that we use ResNet50 for this
analysis and not ViT. We see that with batched construction,
we can get more negative samples with lesser GPU footprint
leading to better evaluation results.

Exp ID/Metric triplet loss batched loss
Seq 8 r@1 0.215 0.295
Seq 9 r@1 0.232 0.309
GPU Utilization ∼8214MB×2 ∼8214MB
No of -ve Samples 1 31
Batch Size 32 32

Table 2. Recall@1 comparison between Triplet and Batched Con-
trastive Training for exp larger setting i.e. no of sequences is 8.

4.4. Data Preprocessing for Better Generalization

A lower quantity of data can potentially reduce the
model’s ability to generalize effectively. To mitigate this,
we advocate the incorporation of intelligent pre-processing
techniques designed to boost generalization. In our study,
we experiment with distance threshold cropping for LiDAR
data and field of view (FoV) cropping for LiDAR range im-
ages. The horizontal field of view of a LiDAR range im-
age is greater than the camera field of view, so we crop the
LiDAR range image such that both sensors have common
overlapping information present.

The rationale for utilizing distance cropping stems from
the observation that objects at a greater distance while be-
ing accurately captured by LiDAR, may not be equally dis-
cernible through camera imaging. In contrast, if we con-
strain the LiDAR data too much to a more confined area,
we risk losing sight of more distant meaningful, and rele-
vant information for our model.

Our empirical analysis in Table 3 strongly indicates that
a distance threshold of 50 meters for LiDAR cropping pro-
vides the most beneficial outcome for our model’s perfor-
mance. Adjusting this threshold to either higher or lower
distances tends to degrade the overall results, underscoring
the critical role of this specific parameter in optimizing the
data preprocessing stage for better generalization.

4.5. Scaling Data for Better Generalization

The robustness of metric learning is directly proportional
to the volume of data available for processing [32]. This

Sequence/ExpID Seq 8 Seq 9
exp larger ∥NoThreshold 0.295 0.309
exp larger ∥(50mthreshold) 0.325 0.370
exp larger ∥(30mthreshold) 0.317 0.308
exp largest ∥NoThreshold 0.484 0.457
exp largest ∥(50mthreshold) 0.540 0.495

Table 3. Ablation of thresholding on lidar scans with increase in
training sequences

concept is clearly exemplified in our empirical results, as
presented in Table 4. As we progressively increase the num-
ber of sequences, there is a noticeable upswing in accuracy
across both sequences.

To conclude, our results emphasize the importance of
leveraging scalable techniques and large, varied datasets
in metric learning, as this approach can notably enhance
model accuracy and its generalization capabilities.

Sequence/ExpID Seq 8 Seq 9 Sequences
exp large 0.278 0.260 5
exp larger 0.547 0.525 8
exp largest 0.805 0.780 18

Table 4. Increasing in number of sequences and mixture of
datasets leads to better generalization

4.6. Setting New Benchmark on KITTI-360 Cross-
Modal Place Recognition Task

In this section, we demonstrate our approach’s superior-
ity to the prior state-of-the-art AECMLoc [50] on the KITTI-
360 dataset (Tables 5 and 6). Unlike the former, which re-
lied on fisheye images requiring complex preprocessing due
to distortion and uses a specialized architecture, we em-
ploy perspective images. Figure 4 demonstrates LIPLoc’s
superiority over AECMLoc in both Zero-shot and stan-
dard same-dataset training by plotting recall values from
k’s value of 1 to 20. LIP-Loc overwhelmingly beats the
baseline by about 20% in both 2D-3D as well as 3D-2D
settings; and at Recall@20, we almost reach 97% accuracy,
meaning that our method would be a robust retrieval method
for further fine grained localization. In their paper, AECM-
Loc show that these kind of 95+% recall@20 values are ob-
served only in same modal localization, i.e. 2D to 2D or 3D
to 3D. It is interesting to note that our method reaches sim-
ilar values while being a cross modal method. Furthermote,
notice that baseline’s 3D to 2D reduces by 15% compared to
2D to 3D, whereas ours is almost the same, demonstrating
the versatility of our method. Note that we beat the baseline
method without even training on KITTI-360 by 8%. The
next section addresses this in detail.
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2D to 3D recall@1 recall@5 recall@20
AECMLoc 0.462 0.660 0.782

LIP-Loc 0.686 0.868 0.966
Zero-shot LIP-Loc 0.540 0.770 0.919

Table 5. Baseline comparison of Recall values for 2D query to 3D
database localization

3D to 2D recall@1 recall@5 recall@20
AECMLoc 0.311 0.472 0.710

LIP-Loc 0.6982 0.8745 0.9665
Zero-shot LIP-Loc 0.574 0.809 0.946

Table 6. Baseline comparison of Recall values for 3D query to 2D
database localization

Figure 4. Recall@k plot for various values of k for baseline com-
parison with our LIP-Loc and Zero-shot LIP-Loc.

5. Zero-shot Transfer
5.1. Standard Definition of Zero-shot

Zero-shot learning in the context of computer vision
refers to the ability of a model to generalize to classes not
seen during training [20]. CLIP redefines this term and ex-
tends it to refer to generalisation to unseen datasets.

CLIP attempts to emphasize the task-learning capa-
bilities of models through zero-shot transfer; however,
since popular computer vision datasets are inclined towards
generic image classification rather than task-specific eval-
uations, their analysis on these datasets primarily serve as
assessment to domain generalization and robustness to dis-
tribution shift. We also focus on the latter in our paper i.e.
domain generalization.

5.2. Zero-shot Transfer for Localisation

In the context of visual localization, we define zero-shot
transfer as the model’s capability to estimate the pose of an
object in unseen datasets. Note that as an early work in this
area, we are referring to coarse estimate of pose i.e. global
localization problem. To the best of our knowledge, zero-
shot transfer has never been applied to visual localization

Figure 5. Zero-shot Scaling: Here, x-axis corresponds to the num-
ber of sequences of KITTI. y-axis refers to recall@1 on different
sequences of KITTI-360. Note that our batched loss scales with in-
crease in dataset size, while triplet loss which most standard meth-
ods use shows very marginal increase.

previously.
It is worth mentioning that while our work is inspired

by CLIP’s application on computer vision tasks, CLIP it-
self was inspired by GPT-1 [33] and GPT-2 [34] which
have studied zero-shot transfer over the course of pre-
training and “unexpected” task-learning capabilties of lan-
guage models.

In our paper, we train the model on KITTI dataset and
evaluate it on KITTI-360, the baseline for which is AECM-
Loc which is exclusively trained on KITTI-360. Both
these datasets are captured from different camera modali-
ties: KITTI-360 employs 180-degree FOV fisheye cameras,
while KITTI uses 90-degree FOV cameras. In fact, when
KITTI-360 input data is converted to perspective images,
there is heavy perspective distortion because of which train-
ing directly on perspective results in under-performance as
AECMLoc has reported. More importantly, KITTI 360 has
no trajectory overlap with KITTI. All these factors make
KITTI-360 an interesting candidate for out-of-distribution
dataset. We do acknowledge that KITTI-360 might not be
analogous to how ImageNet Rendition [13] or ImageNet
Sketch [46] was for ImageNet, but all these factors could
make it equivalent to ImageNetV2 [36].

5.3. Results and Analysis: Scaling & Robustness

To be truly Zero-shot, we report our accuracy values
without doing any customization of hyperparameters for
KITTI-360 nor do we form any validation sets on KITTI-
360. The trained model truly works out of the box and out-
performs AECMLoc which is trained on KITTI-360. We
further compare the Zero-shot capabilities of our approach
with the ’vanilla-triplet’ baseline which uses the standard
triplet loss formulation which most standard methods use.
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Our best model which we refer to as “Zero-shot LIPLoc”
is trained on full KITTI dataset and beats AECMLoc by 8%.
It reaches comparable accuracy to AECMLoc when trained
on about 80% of the KITTI sequences.

It is common in computer vision that models scale with
dataset size. However, such phenonemon is non-trivial in
localization and hence we have shown in the previous sec-
tion that increase in number of sequence increases accu-
racy. In fact, it is specific sometimes to such an extent that
there could be a separate model fitted every sequence of
dataset [7] and these models don’t even work on other se-
quences of the same dataset, let alone on another dataset.

Therefore, we go one more step ahead and show in Fig-
ure 5 that as we scale up training on original KITTI data, the
accuracy on KITTI-360 progressively improves although
Zero-shot LIP-Loc has never seen KITTI-360; demonstrat-
ing domain generalization. The average increase in Zero-
shot LIP-Loc is 23% whereas the that in baseline is 6%,
clearly showing the scalability of constrastive formulation.
The more common triplet formulation which is used in most
standard methods only increases by few percentage points.
We have tried bigger ViT models as encoders, but the accu-
racy saturates. This is because we are dealing with much
smaller datasets, the model may become overparameter-
ized.

In CLIP, as they train on internet scale data, they ad-
mit that it is ambiguous what exactly results in accuracy
increase: data, model or loss function? But in our case,
we exploit the benefit of working with smaller dataset and
clearly explained how each factor contributed to our train-
ing.

How well does a Zero-shot model work on out of dis-
tribution datasets? Typically in deep learning when models
are trained and evaluated on same dataset like ImageNet,
they exploit spurious correlations because of which robust-
ness gap arises. CLIP does this robustness analysis by test-
ing on 7 natural distribution shift datasets [42]. Such a
benchmark does not exist for visual localization, therefore
our work motivates the building of such a benchmark.

Within the scope of this paper, we do the robustness anal-
ysis between sequences of KITTI and KITTI-360 in Fig 6.
We firstly consider models which are trained on subset of
KITTI data as per Table 1. Then we evaluate on the rest
of KITTI data as test dataset whose recall we plot on x-axis
and then evaluate on full KITTI-360 sequences whose recall
we plot on y-axis. An ideal robust model would perform
equally well on both these test sets, i.e. y=x line. When our
curve is closest to the robust model plot, we notice in Fig 6
that when there is only about 10-20% accuracy gap between
seen validation dataset and unseen data, proving the robust-
ness of LIP-Loc. This holds true even when the model is
trained on a smaller dataset.

Note that this is only the first step towards establishing

Figure 6. Zero-shot Robustness: When recall on KITI subset is
around 50%, our zero-shot model reaches upto 40% on KITTI-
360; when it is around 80%, our model reaches upto 50% recall,
strongly demonstrating robustness.

robustness of Zero-shot localization models. There needs to
be a dedicated benchmark along with standardised metrics
to truly evaluate these models. Since there is no equivalent
of internet scale (text, image) data for localization, how we
train our localization models and evaluate them is an open
question, as we discuss in the next section.

6. Future Work
Our approach showcases the potential of batched con-

trastive learning in bridging the cross-modal heterogeneity
gap. By achieving superior performance without relying on
complex architectures or fisheye images, our method offers
a simpler yet highly effective solution for cross-modal lo-
calization. Additionally, we establish the first benchmark
for cross-modal localization on the KITTI dataset, provid-
ing a foundation for future research.

Our reflections on Zero-shot transfer open a set of
thought provoking questions: What is the internet scale
equivalent for localization? Can a larger version of dataset
like KITTI act as like one? Or would it involve synthetic
dataset? What is the equivalent of natural distribution scale
datasets for localization? Would recall@K be the right met-
ric for evaluating such systems or do we need better met-
rics? One of the weaknesses of CLIP is its task learning ca-
pabilities, for instance CLIP struggles to find out the closest
objects in an image. Could combining depth encoder with
text encoder solve this problem and other task generaliza-
tion problems?

All of these are predominantly open questions which we
hope our work will motivate the readers to address in their
own work.
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