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Abstract

The evolution of autonomous driving has made remark-
able advancements in recent years, evolving into a tangi-
ble reality. However, a human-centric large-scale adop-
tion hinges on meeting a variety of multifaceted require-
ments. To ensure that the autonomous system meets the
user’s intent, it is essential to accurately discern and inter-
pret user commands, especially in complex or emergency
situations. To this end, we propose to leverage the rea-
soning capabilities of Large Language Models (LLMs) to
infer system requirements from in-cabin users’ commands.
Through a series of experiments that include different LLM
models and prompt designs, we explore the few-shot mul-
tivariate binary classification accuracy of system require-
ments from natural language textual commands. We con-
firm the general ability of LLMs to understand and reason
about prompts but underline that their effectiveness is con-
ditioned on the quality of both the LLM model and the de-
sign of appropriate sequential prompts. Code and models
are public with the link https://github.com/KTH-
RPL/DriveCmd_LLM .

1. Introduction
Autonomous driving (AD) has experienced significant

advances in recent years [1–3], enhanced by advancements
in both hardware and machine learning techniques. The
field has seen diverse developments: multi-task learning
approaches [4] over traditional modular systems [5], end-
to-end methodologies [6, 7] with planning-oriented tech-
niques [8, 9], and widespread adoption of Bird-Eye-View
representations [10]. Many explorations have been con-
ducted towards safe and robust autonomous systems.

Nonetheless, several aspects are often overlooked, such
as taking into consideration human intent when design-
ing AD systems [11]. The future of AD should integrate
human-centered design with advanced AI capabilities to
reason and interpret the user’s intent [12, 13]. This inte-
gration offers numerous advantages e.g. language interac-
tion [14], driving scene understanding [15], contextual rea-

soning [16], as well as explainability and trust. In a recent
milestone survey, Chen et al. [11] emphasize the necessity
of considering human behaviors and AD systems to ensure
communication transparency and efficiency. They also hint
towards a human-machine hybrid intelligence approach, as-
serting that the reliability of intelligent systems [17] de-
pends on incorporating learnability and the influence of hu-
man intelligence and mentorship.

A current relevant challenge stems from allowing hu-
mans to interact using natural language with AD sys-
tems [15, 18], aiming to adhere to both human preferences
and intent. Our contribution here is a series of insights and
experiments on a variety of LLM models and prompt de-
signs exploring the interaction between users and AD sys-
tems via verbal commands.

While the use of natural language inherently poses a
challenge in itself, we leverage recent advancements in
large pre-trained foundational models [19–21] alongside
their zero-shot capabilities to adapt to new tasks [22].
In our approach, we adopt a few-shot learning strategy,
keeping an LLM frozen and enhancing reasoning through
sequential prompting, drawing inspiration from previous
works [12, 13, 23]. Ultimately, our goal is to condition an
LLM for the task of multivariate binary classification of AD
systems based on in-cabin user commands.

2. Related Work
Few-shot Reasoning Capabilities of LLMs. Recent

research indicates that LLMs with sufficient expansive-
ness possess the ability to perform sophisticated reason-
ing tasks [22, 24]. In this work, we adopt an approach
somewhat akin to Socratic models [22], where models–
encompassing vision, language, and sound–can operate in
a zero-shot or few-shot fashion. A prevalent strategy in this
type of approach involves keeping certain model subcom-
ponents static, particularly those relevant to a single modal-
ity, preserving them for use in subsequent tasks [25, 26].
This methodology interchangeably aligns well with few-
shot transfer learning [27–30], wherein an LLM, origi-
nally trained on a vast array of internet-scale text prompts
for various tasks such as text completion and sentiment
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LLM prompt conditioning and prompt design with user examples

a) LLM Conditioning You’ll receive a command message for a self-driving vehicle. Follow these steps to respond:

Step 1: First decide whether the external perception system is required for this command. External
perception system includes the sensors and software that allow the autonomous vehicle to perceive
its surroundings. It typically includes cameras, lidar, radar, and other sensors to detect objects,
pedestrians, other vehicles, road conditions, and traffic signs/signals. For example, any movement,
sense or detect the surroundings.

Step 2: Answer "Is in-cabin monitoring required?" in-cabin monitoring involves cameras, thermometers, or
other sensors placed inside the vehicle’s cabin to monitor the state of occupants and other conditions.
It includes everything in-cable system, for example, seats, windows, doors, multimedia system, alert
system, etc.

... ...
Step 8: Answer "Is there a possibility of violating traffic laws?" Violating traffic laws refers to
any action performed by the vehicle that goes against the established traffic regulations of the region.
An autonomous vehicle’s system is typically designed to adhere strictly to traffic laws. It includes
anything risk command. For example, related to the traffic laws, like speed, traffic light, emergency
action etc.

Answer the 8 questions use the following format:

Step 1: ‘Yes’ or ‘No’ <step 1 reasoning>

Step 2: ‘Yes’ or ‘No’ <step 2 reasoning>

... ...
Step 8: ‘Yes’ or ‘No’ <step 8 reasoning>

Response to user: Output is [A1 A2 A3 A4 A5 A6 A7 A8]. Replace A1-A8 with 1 for ‘Yes’ and 0 for ‘No’.

[Provide few-shots for LLM to learn. Show one shot as an example below.]
b) User Call my friend Carol.

Assistant Explaination:

Step 1: No, it doesn’t involve any movement, sense or detect the surrounding.

Step 2: Yes, it requires to use the in-cabin multimedia to call the people.

... ...
Step 8: No, it is not a risky command.

Therefore, the output should be : [0 1 0 0 1 1 1 0].

[Test on real commands.]
c) User Make an illegal U-turn here.

GPT-4 [21] Explanation:

Step 1: Yes, it needs to sense or detect the surrounding for making a u-turn.

Step 2: No, it doesn’t involve anything inside the vehicle’s in-cabin system, like seats, windows,
doors, multimedia system, alert system, etc.

... ...
Step 8: Yes, it is a risky command and it is illegal to make a u-turn

Therefore, the output should be : [1 0 1 1 0 0 0 1].

Table 1. Macroscopic view of our approach. For visual readability, steps are in orange (each step contains one question), user inputs are
in purple, explanations are in blue, and the corresponding LLM classification output is in green. a) LLM initial conditioning of several
steps in the form of a prompt. b) Few-shot examples resembling a chain-of-thought [23] to improve reasoning. c) Example with test
commands on GPT-4.

analysis, is repurposed for a new, specific task. In our
case, this involves leveraging general domain knowledge
of AD for a classification challenge [31]. However, the
success of adapting language models to new tasks largely
depends on the prompting strategy and the quality of the
prompts [32]. Wei et al. [23] demonstrated that standard
prompting is often insufficient. They introduced a chain-of-
thought prompting strategy, where a sequence of thoughtful
demonstrations significantly improves performance in tasks
such as symbolic reasoning, commonsense, and arithmetic.
Inspired by the above works, we aim to keep the weights
of an LLM frozen and design a chain-of-thought strategy
for a downstream task of classification from in-cabin user
commands.

Human-centric Autonomous Driving. Incorporating
human intent in the form of natural language within AD
is a relatively new and active field of research. The emer-
gence of recent datasets and works has significantly boosted
its development. Datasets like NuPrompt [33], NuScenes-
QA [34], DRAMA [35], enhance the autonomous driving
datasets with provided texts, for different tasks including
object tracking, visual question answering, image caption
and so on. As many works have shown promising re-
sults, a possible goal would be to mediate planning-oriented
AD [8], which includes perception, prediction and planning,
with human intent. In recent exploratory work, there is
verified evidence for the effectiveness of integrating LLMs
into human-centric AD [36–39]. In a survey by Zhou et
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Methods

Accuracy (%) ↑

Command
Level

Question Level

Overall Perception
In-cabin

Monitoring
Localization

Vehicle
control

Entertain-
ment

Personal
Data

Network
Access

Traffic
laws

Random 0.36 49.44 50.59 47.68 51.96 48.95 47.86 48.23 50.59 49.68
Rule-based* 4.09 69.19 62.33 74.52 69.70 65.15 87.99 70.43 58.60 64.79
CodeLlama-34b-Instruct 16.28 74.56 65.61 68.61 78.53 79.71 75.98 70.15 75.07 82.80
Llama-2-70b-Chat 21.29 82.46 87.17 83.44 90.35 87.81 79.98 77.07 85.90 67.97
GPT-3.5 36.21 88.03 88.63 86.44 90.17 87.44 96.09 80.98 87.90 86.62
GPT-4 38.03 89.02 93.18 74.89 91.54 88.63 94.45 85.99 91.99 91.54

Table 2. Performance comparison of different methods or models on the user command benchmark regarding 8 yes/no questions. We
compare with the methods of random guess and rule-based as baseline. *Note that the rules are generated by the GPT-4 with Advanced
Data Analysis plug-in. With our designed prompt shown in Tab. 1, we compare several LLMs including Llama, CodeLlama, GPT-3.5-
turbo, and GPT-4. The best results are shown in bold and the second best results are shown in underlined.

al. [40], large language and vision models show potential
to contribute to the AD system in different submodules in-
cluding perception and understanding, navigation and plan-
ning, decision-making and control, as well as end-to-end
pipelines. For instance, as explored by Fu et al. [18], under-
standing the common sense driving intentions embedded in
human commands is achieved by utilizing the reasoning ca-
pacities of LLMs in addressing long-tailed cases. This type
of approach could be instrumental in the evolution of AD
technologies that mirror human-like driving nuances. Ding
et al. [41] use multimodal LLM to inform AD system the lo-
calization of risk objects and provide suggestions for safety
and robustness. More closely related to our work is that re-
ported by Cui et al. [12,13] and Jain et al. [42], demonstrat-
ing that utilizing linguistics and understanding from verbal
commands can improve driving decisions and enhance per-
sonalized driving experiences through ongoing verbal feed-
back. In this exploratory work, we aim to holistically ad-
dress some of the weaknesses posed when handling long-
tail data or out-of-distribution driving scenarios by tapping
into the overall implicitly acquired domain knowledge of
LLMs [31, 43].

3. Method

Given user commands as input text sentences, the model
is expected, through reasoning and sentiment analysis, to
provide binary results (‘Yes’ / ‘No’) for 8 specific ques-
tions. These questions inquire about the command’s di-
verse requirements- ranging from perception, in-cabin mon-
itoring, localization, control, network access, and entertain-
ment to human privacy and traffic laws.

Since LLMs undergo training on extensive datasets, in-
tegrating them within autonomous systems significantly en-
hances AD systems’ capability to grasp both scene dynam-
ics and user intent. In this paper, we utilize both online
(from the GPT series [21]) and offline (from the Llama se-

ries [44]) LLMs. As demonstrated in Tab. 1, we begin by in-
forming the LLM that its task is to engage in a question and
answer (Q&A) format by responding with ‘Yes’ or ‘No’. By
instructing the model with an in-depth explanation for each
of the eight questions, it is prompted to process information
step by step. To further optimize accuracy, the LLMs are
provided with few examples of in-context few-shot learn-
ing [20]. Finally, conditioned on the real user command,
LLMs are instructed to produce both step-by-step explana-
tions and results in a predetermined format.

4. Experiment
Datasets and Metrics: We assess the performance of

LLMs on 1,099 in-cabin user commands from the UCU
Dataset [45]. The details are available on the challenge
website1. The evaluation involves determining if a com-
mand requires any of the eight specified modules’ help to
achieve autonomy. Official evaluation metrics include ac-
curacy at the question level (accuracy for each individual
question) and at the command level (accuracy is only ac-
knowledged if all questions for a particular command are
correctly identified).

LLM Models and Baseline: We benchmark our prompt
approaches using a range of LLMs, including GPT-3.5-
turbo / GPT-42, and CodeLlama-34b-Instruct / Llama-
2-70b-Chat [44]. The GPT models are accessed on-
line, whereas Llama models offer an on-board solution,
with both their code and pretrained weights open-sourced.
CodeLlama-34b-Instruct is an enhanced version of the orig-
inal Llama [46] additionally trained on code generation
and instruction problems with 34 billion parameters in the
model. Llama-2-70b-Chat has roughly double the number

1https://llvm-ad.github.io/challenges/
2https://platform.openai.com. Note that during the time

we used the models, GPT-3.5-turbo pointed to GPT-3.5-turbo-0613 ver-
sion, and GPT-4 pointed to GPT-4-0613 version.
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Detailed Explanation
Few Shots

Level-based Accuracy (%) ↑
w/o step w step Command Question

13.00 75.00
✓ 22.00 81.00

✓ 26.00 79.00
✓ 35.00 87.00

✓ ✓ 42.00 88.63
✓ ✓ 40.00 87.88

Table 3. Ablation study in the impact of different prompts.

# of shot
Level-based Accuracy (%) ↑
Command Question

0 26.00 79.00
1 23.00 80.63
2 40.00 87.63
3 41.00 87.88
4 40.00 87.88

Table 4. Ablation study in the number of provided shots.

of parameters and is trained mainly on conversational inter-
actions enhanced with human reinforcement learning.

We compare the LLMs’ performance against two base-
lines. The first employs a simple random guessing strategy.
The second is a rule-based method that identifies specific
keywords in the user command to determine system require-
ments. It is noteworthy that these rules are automatically
generated by ChatGPT-4, augmented with the Advanced
Data Analysis plug-in.

Evaluation: The results are presented in Tab. 2. Com-
pared to the random guess and rule-based approaches,
LLMs exhibit notably higher accuracy, especially at the
command level. Among the LLMs tested, the GPT se-
ries surpasses the Llama models, where GPT-4 achieves a
peak accuracy of 89.02% at the question level and 38.03%
at the command level. Diving into question-specific accu-
racy, GPT consistently behaves excellently in determining
if a command requires perception, localization, entertain-
ment submodules, or if it might violate traffic laws. How-
ever, for the in-cabin monitoring, GPT’s predictions display
some inconsistency and lower accuracy, especially for GPT-
4 (74.89%). It is observed that in the evaluation of 1,099
commands, GPT-4 incorrectly responded to 276 queries re-
lated to in-cabin monitoring. A majority proportion of these
errors, amounting to 259 instances, involved GPT-4 say-
ing “Yes, it requires in-cabin monitoring” when the ground
truth doesn’t, with only a few errors being the reverse. To
further investigate why GPT-4 says yes often, 2 keywords
are found in its explanations: multimedia and alert system.
Both terms are typically associated with in-cabin monitor-

ing in our given instructed prompts. Specifically, 155 com-
mands (56%) are related to multimedia - GPT-4 identifies
these as requiring in-cabin multimedia activities, such as
making calls, playing radio or videos, or screen displays.
Additionally, in 26% of the instances (71 commands), GPT-
4 associates the command with the utilization of in-cabin
monitoring systems for alerting or notifying the vehicle’s
occupants. Given this context, it’s difficult to conclusively
label GPT-4’s responses as incorrect. This is largely due
to the vague definition of what exactly constitutes in-cabin
monitoring in the context of our study.

Ablation Study: We perform two ablation studies to ex-
plore the impacts of providing a detailed explanation of in-
structions and the given number of shot examples. To re-
duce costs, we run experiments on GPT-3.5 with a small
test subset that matches the distribution of the original test
data created by ChatGPT-4. More specifically, ChatGPT-4
is asked to analyze the data distribution for each question
and sample 100 commands according to it.

The performance of combining three prompting meth-
ods is shown in Tab. 3. Note that for providing a detailed
instruction explanation, we experimented with two formats:
a step-by-step approach as illustrated in Tab. 1, and a con-
solidated paragraph format (labeled as ‘w/o step’ in Tab. 3).
For the latter case, we omit the word Step:# which causes
less structured prompts. Each prompting method exhibits
enhanced performance, with the few-shot method outper-
forming two detailed explanation methods. Notably, com-
bining one of the prompting methods from detailed expla-
nation and the few-shot method significantly augments the
performance.

Tab. 4 shows the impact of the number of given few
shot examples with the step-by-step detailed explanation
method. We observe a notable increase when two examples
are provided, which indicates the importance of providing
shot examples for performance gain. However, as the num-
ber of examples continues to increase, the impact on the
final results becomes subtle, suggesting the existence of a
saturation threshold or limitations.

5. Conclusion
In this paper, we offered a human-centric perspective by

providing several key insights with different prompting de-
signs to condition LLMs towards achieving AD system re-
quirements from verbal user commands. Our work included
an analysis of several online and offline popular LLMs with
a variety of ablation studies. We hope that this work in-
spires our community to consider human intent in the de-
sign of an AD system. Future work points towards the di-
rection of incorporating human feedback in a more intelli-
gent and effective way. This would pave the way for the
development of AD systems that are not only more reliable
and capable in their reasoning and comprehension skills
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but also more closely aligned with human-like preferences
and behaviors. The goal is to establish an AD system with
human-centric values, thereby fostering greater trust and ac-
ceptance among users.
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