
Latency Driven Spatially Sparse Optimization for Multi-Branch CNNs for
Semantic Segmentation

Georgios Zampokas1,2 Christos-Savvas Bouganis1 Dimitrios Tzovaras2

1 Imperial College London, London, UK
2Information Technologies Institute, Centre for Research and Technology Hellas, Greece

Abstract

Semantic segmentation has gained significant attention
in the field of computer vision, especially in the context
of autonomous driving. Achieving superior performance
and precise object localization is paramount for safe and
reliable autonomous vehicles. This introduces the need
to process high-resolution feature maps, resulting in in-
creased computational requirements. Recently proposed
multi-branch architectures address that by maintaining par-
allel computationally light high-resolution representations
throughout the whole network. Since individual branches
focus on different image regions by design, we believe that
there is significant number of redundant computations, es-
pecially in high-resolution branches. To harness that, we
propose a optimization scheme for multi-branch CNNs,
which introduces spatial sparsity to the network to produce
more efficient distribution of calculations. The proposed
approach departs from the literature by introducing the ac-
tual latency in the optimization process, resulting in device-
tailored and practically-efficient sparse architectures.

1. Introduction

The ability to generate a detailed understanding of the
contents of an image vital role in a wide range of appli-
cations, such as autonomous driving, robotics, and medi-
cal imaging. Therefore, semantic segmentation is a fun-
damental computer vision task, with a significant research
effort invested in it. Modern sensors have the ability to
capture images at high resolutions, resulting in higher pixel
count which increases the computational budget of convolu-
tions. Such semantic understanding algorithms are usually
targeted at low power devices such as embedded GPUs or
mobile phones, which often do not posses the available re-
sources to accommodate them.

High resolution is crucial for achieving accurate and de-
tailed semantic segmentation results, as it enables the al-
gorithm to capture fine-grained details and distinguish be-

Figure 1. Figure presenting the overall overview of our method.
The optimization framework can either optimize for FLOPs or
latency, by using benchmark results for every layer under target
hardware and sparse implementation.

tween objects with similar appearances, such as cells in
medical imaging or pedestrians in crowded scenes. The
main challenge lies in combining multi-scale and global
cues which capture the image context, with high resolu-
tion details that preserve local structure. Researchers have
tackled this problem by either by using an encoder-decoder
like structure which extracts representations and upsamples
them to high resolution or by introducing multiple paths of
computation at different scales, to achieve information flow
at different resolutions.

However, in a typical CNN execution, computations re-
main unaware of the information and complexity within the
image. To this end, a set of dynamic methods emerged,
which decide a more efficient distribution of computations
during inference, by enforcing channel and/or spatial spar-
sity. Most dynamic methods focus on the reduction in com-
putational complexity relying on theoretical proxies such
as floating-point-operations (FLOPs), which often fail to
capture the practical impact of optimization. Besides that,
several dynamic methods achieve practical speedup of ex-
ecution time [18], [19], [21], [24] but it mostly comes as a
byproduct rather than being included explicitly in the opti-

This WACV workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

939



mization process.
Therefore, we propose a framework which has the abil-

ity to consider either the theoretical complexity or the actual
latency of the execution, to optimize a CNN for efficiency,
introducing spatial sparsity to the network. Our main con-
tributions can be summarized as:

• An extension to an existing optimization framework
which employs spatial sparsity to improve efficiency
by introducing a projection of the latency when run-
ning on a device, to the optimization process.

• A latency projection methodology based on practical
execution of CNN workloads on target devices.

• We demonstrate our method on state-of-the-art multi-
branch CNNs for semantic segmentation, and show
that it can reduce both FLOPs and latency with small
reductions in mIOU%, outperforming relevant ap-
proaches.

2. Related Work
The current work is placed between the field of effi-

cient semantic segmentation and dynamic CNN optimiza-
tion. Relevant literature on recent CNNs for semantic seg-
mentation is presented followed by works which attempt ef-
ficiency optimization of CNNs by introducing spatial spar-
sity.

2.1. Semantic Segmentation

In this section, the related literature of semantic segmen-
tation CNNs is grouped into two main categories accord-
ing to the number of computation paths they include, i.e.,
single-branch or encoder-decoder and multi-branch archi-
tectures.

Single-Branch architectures appeared since the early
work of FCN [10] and proposed a method to transform ex-
isting classification networks into fully convolutional net-
works that can predict pixel-wise labels for an input im-
age, including the introduction of skip connection to al-
low the network to capture both high-level and low-level
features. Since then, a common practice for semantic seg-
mentation is to utilize architectures that are well established
in the classification task as encoders, such as VGG [16],
Resnet [6], MobileNetV2 [15], ShuffleNetV2 [11], Effi-
cientNet [17], and add an upsampling module to recover
fine details. SwiftNet [12] combines those backbones, pre-
trained on ImageNet [9], along with a spatial pyramid pool-
ing (SPP) module [5] and basic decoder, formulating a ver-
satile architecture.

Information lost by downsampling is impossible to re-
cover by upsampling, which introduces an upper bound on
the performance of encoder-decoder methods. To address
that, architectures with multiple paths (Multi-Branch) have

been proposed in the literature, aiming to maintain high res-
olution representations during execution. BiSeNetV1 [23]
and BiSeNetV2 [22] introduce a deep path with strided con-
volutions to increase receptive field, with a parallel shal-
lower path to obtain high-resolution information. The two
paths are separate and a fusion module combines the out-
puts of the two paths efficiently. The recent CABiNet [14]
follows a similar dual-branch approach and introduces a
low-cost, compact asymmetric position and local attention
block.

HRNet [20] architecture maintains high-resolution rep-
resentations throughout the entire process by connecting
parallel convolution streams operating at different resolu-
tions and repeatedly exchanging information across reso-
lutions. This approach enhances the quality of the repre-
sentation, resulting in a semantically rich and spatially pre-
cise output that improves the overall performance of the
network, while the complexity is curtailed by employing
thinner branches on high resolution. The recently proposed
DDRNets [7], further push the efficiency of multi-branch
approaches by introducing a family of efficient backbones,
carefully designed for semantic segmentation. They include
a high and a low resolution branch, which communicate in-
formation using bilateral connections, while a Deep Aggre-
gation Pyramid Pooling Module (DAPPM) is applied on the
output of the low-resolution branch in order to extract multi-
scale and global context information.

In general, multi-branch architectures boast increased ef-
ficiency against the single branch counterparts since they
can accommodate high and low resolution paths without a
significant increase in computations.

2.2. Leveraging Spatial Sparsity for Dynamic Opti-
mization

There is a growing body of work on optimizing the com-
putational efficiency of a CNN model, by exploiting spatial
redundancy of computations. To eliminate redundancy in
computation, [4] introduced various perforation configura-
tions as binary masks to guide the skipping of computations
on feature maps. Later, [3] proposed an approach to dynam-
ically adjust the computation time of residual neural net-
works based on the spatial complexity of the input image,
by halting the execution after a specific number of layers
have been executed.

A method to dynamically apply convolutions condi-
tioned on the input image was proposed by [18], introducing
a computational block where a small gating branch learns
which spatial positions should be evaluated. By dynami-
cally altering the processing resolution of image regions,
Segblocks [19] reduces the computational cost of existing
neural networks for semantic segmentation. The input im-
age is divided into high and low resolution blocks, guided
by a policy network, which takes into account the both the

940



performance of the network and the complexity ratio be-
tween the two block categories. A methodology to control
the computational complexity of a stereo-matching network
on-demand by ranking the upside of applying disparity re-
finement on various image regions was proposed by [24].
Focusing on the super-resolution task, [21] uses a sparse
masking module to simultaneously skip both unimportant
spatial regions and mask redundant channels in them, re-
sulting in more effient inference.

Previous research has primarily concentrated on optimiz-
ing in terms of FLOPs space, considering FLOPs as a proxy
for latency. However, this approach fails to capture the addi-
tional overheads and complexities that influence the actual
execution time of the CNN. In this work, practical latency is
used to guide the optimization process, focusing on the task
of semantic segmentation. Rather than focusing on over-
parameterized baselines, the target networks involve mod-
ern state-of-the-art multi-branch CNNs, showcasing the po-
tential gains and challenges of practical utilization of such
compression technique in real and challenging scenarios.

3. Motivation

As discussed in the previous section, multi-branch net-
works have emerged as the state of the art in semantic seg-
mentation, taking into account the trade-off between perfor-
mance and complexity. However, there is a pressing need
to generate models that can further push the performance-
accuracy trade-off, as this has significant implications for
various applications, such as real-time deployment and
resource-constrained scenarios. This makes it crucial to ex-
plore approaches that can optimize both performance and
accuracy efficiently. One promising avenue is data-driven
spatial sparsity optimization, which focuses on identify-
ing and exploiting spatial redundancies within the data to
achieve computational efficiency.

The ultimate objective of optimizing sparsity is to mini-
mize latency, which is a critical factor in real-time applica-
tions, but since directly measuring latency can be challeng-
ing, researchers often rely on the number of floating-point
operations (FLOPs) as a proxy. Previous work which per-
forms spatial sparsity optimization either demonstrates sub-
par results when applied to multi-branch networks [19] or
focuses on one specific layer type which does not translate
to recent state-of-the-art approaches [18]. In light of these
limitations, our work aims to address these challenges by
targeting state-of-the-art networks while being cognizant of
the desired latency constraints.

4. Method

Considering the conclusions from the previous section,
we formulate a methodology that aims to increase the ef-
ficiency of CNNs for semantic segmentation by introduc-

ing spatial sparsity to multiple parts of the network as a
way to reduce redundancy of computations. Additionally,
instead of focusing on optimizing for theoretical computa-
tions (FLOPs), we introduce the actual latency of the sparse
implementation into the optimization process. The opti-
mization framework is inspired by [18], after adapting it to
higher resolution data and introducing the latency optimiza-
tion target. In the following sections, the key components
of the optimization framework are described.

4.1. Mask Estimation

The mask estimation mechanism is responsible for pre-
dicting a sparsity mask which encodes whether calculations
on the corresponding image location will be executed by
the CNN layer or not. To estimate the mask we choose a
lightweight module, comprising of a 2D convolution with
input channels equal to the input feature map and output
channels equal to 1. We further add Batch Normalization
and Average Pooling modules to control the granularity
of the output mask, by grouping image regions in square
blocks. Departing from pixel level granularity [18], is not
only helpful to reduce the latency when executing the spa-
tially sparse variants, but also enforces a regularization dur-
ing training leading to improved accuracy.

Training the mask decisions is not a straightforward task,
since selecting top-k activations requires the minimization
of the non-differentiable argmax function. Similar to [18],
we use using the Gumbel-Softmax trick [8] to perform end-
to-end training. Soft decisions can be transformed into hard
decisions while maintaining the ability to perform back-
propagation, which is necessary for optimizing the weights
of the mask unit. Given Mi ∈ RN×M as the continuous
output of mask estimation module for dynamic layer i, dur-
ing training the argmax is replaced by

zi =
exp((log(Mi) + gi)/τ)∑k

j=1 exp((log(Mj) + gj)/τ)
(1)

with τ the temperature of Gumbel distribution where
noise samples gi are drawn from. During inference, loca-
tions where Mi > 0 are activated.

4.2. Sparse Implementation

Modern software libraries include highly optimized im-
plementations for the main CNN operations, therefore to
achieve reduced latency, a highly optimized sparse imple-
mentation is required for inference. We adopt the imple-
mentation of sbnet [13] to apply spatial sparsity to CNNs,
which comprises of 3 main operations,

• The mask reduction module assigns image pixels to a
grid and generates the grid indices which are activated,
using the estimated binary mask as input.

941



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Figure presenting the sparse profile for different layers (rows) of DDRNet23-slim [7] in two devices: NVIDIA RTX 3060ti (a-d)
and NVIDIA JetsonNX (e-h) under various blocksizes.

Figure 3. Sparse inference using sbnet [13] implementation.
Guided by the mask estimation, only active regions of the dense
feature map are extracted, and then processed. The result is used
as a sparse residual, added subsequently on the dense input feature
map.

• The sparse gather operation is responsible for trans-
forming the data from dense to sparse domain. It ex-
tracts the activated blocks and stacks them in the batch
dimension resulting in a tensor containing only the ar-
eas to be processed.

• The sparse scatter operation handles the transforma-
tion from sparse back to the dense domain. After the
processing the activated areas are placed back to the
original dense tensor, guided by the extracted grid in-
dices.

The effectiveness of sbnet relies upon the ability to seg-
regate the input data in blocks, resulting in multiple smaller
workloads which benefit from the optimization of GPU de-
vices for such workloads. Figure 3 depicts the flow during
inference using sbnet operations to move between dense and
sparse domains.

4.3. Sparse Benchmark Bank

When using FLOPs as an optimization objective, a linear
function to model the density of computations of a single
layer is used (blue line in Figure 4). When departing from
such proxy to actual latency optimization, using such func-
tion would only hold if the sparse execution time is equally
proportional to density, corresponding to an ideal sparse im-
plementation with no overheads. Instead, a function which
models the relation of mask density to actual latency for the
given software and hardware implementations needs to be
used. Such function t(C, d), d ∈ [0, 1] is selected, with
C = (layer, overheads, device, blocksize) representing a
set of configurations and d the densities of the sparse layer.

To construt this function, we conduct a series of bench-
marks for each individual layer of the CNN, using the sparse
implementation which was introduced above. By noting
the execution times for multiple density levels from 0% to
100% in steps of 10% and interpolating in between, a func-
tion is created. The execution time of the corresponding
layer under the same configuration, tdense(C) is also calcu-
lated. To account for the mask estimation overhead, we fur-
ther include the mask estimation computations in the bench-
marks, resulting in a realistic latency profile of the CNN
layers. Latency profiles for multiple layers of DDRNet23-
slim [7] network for two devices can be seen in Figure 2.
It is worth noting that optimized libraries perform multiple
under-the-hood optimizations when executing CNNs, such
as grouping computations, that individual layer benchmark-
ing might fail to capture.

4.4. Latency Aware Training

To introduce actual latency to the optimization process,
the timing function is used to map density of each layer to
actual latency, replacing the FLOPs tideal(d)function which

942



Figure 4. Example leaky latency function for the first residual
layer of DDRNet23-slim used for training.

maps density to the number of theoretical computations.
However, t(C, d) function represents the actual execution
time using the sparse implementation, which is specifically
suited for low density workloads. Therefore, when dealing
with higher densities, the execution times become consider-
ably slower compared to tdense. To exploit this, a mock
sparse implementation can be employed at these density
levels, executing the layer in a dense manner and subse-
quently applying the sparsity mask to negate the convolu-
tion effect for inactive regions. Although this implemen-
tation incurs a slight overhead for mask estimation, it re-
mains faster than the sparse implementation at higher den-
sity levels. This introduces a two-fold benefit: an upper
bound to the latency of each layer, and the ability to ex-
plore higher densities for critical layers, without significant
latency costs. In order to introduce this concept to training,
we formulate a two-part function to map density to latency
as,

tl(C, d) =


t(C, d) d < dthresh

tdense(C) + s ∗ tdense(C)
∗(d− dthresh) d >= dthresh

(2)
where dthresh is the density threshold where beyond that,
the sparse execution time becomes slower than the dense.
A slight slope is also added to the second part to allow con-
vergence during training, set to s = 0.01. The resulting
tl(C, d) which is used during training, is demonstrated in
(Figure 4). This allows the optimization process to push
only the layers which can benefit from latency gains by in-
troducing spatial sparsity to them and at the same time avoid
sparsifying layers which would not be pushed under the la-
tency threshold of tdense.

4.5. Sparse Optimization Framework

Given a set of activation masks, we denote the sum of
FLOPs of all dynamic block as Fsp and the corresponding

maximum total of FLOPs as Ftot. Similarly, when opti-
mizing for latency budget lb, the density of the activation
masks is projected to execution time using equation 2, re-
sulting in latency sums of dynamic and dense executions,
Tsp and Ttot. Similar to [18], providing a target budget lb
or fb ∈ [0, 1], the goal of training is to minimize network
sparsity loss (Lsp,network) or the ratio between Fsp and Ftot

using (
Fsp

Ftot
− fb)

2 or Tsp and Ttot using (
Tsp

Ttot
− lb)

2 corre-
spondingly. The total loss is given by:

L = Ltask + αLsp, network (3)

with Ltask being the Cross Entropy Loss for semantic seg-
mentation and α is a hyperparameter to control the differ-
ence in order of magnitude between task and sparsity loss.
We omit the boundary terms used by [18] to encourage the
freedom of activations to explore the whole space from the
start, since latency optimization usually performs best with
activation rates close to boundaries.

5. Experimental Results
5.1. Train Setting

The Cityscapes [1] dataset is a popular dataset for se-
mantic segmentation, which consists of 2975 finely anno-
tated images for training training, 500 validation and 1525
test images of 2048×1024 pixels. We use pretrained check-
points for DDRNet23-slim, DDRNet23 [7] and HRNetV2-
W48 [20] on Cityscapes, and further train for 150 epochs
under the sparse optimization framework. DDRNet mod-
els are trained with an input resolution of 1024×1024, a
batch size of 8, whereas 1024x512 and batch size of 4 is
used for HRNetV2 instead. The networks are trained using
the Adam optimizer. The initial learning rate for network
weights is 1e−5 and 2e−3 for mask estimation weights. At
epochs 60, 90, and 120, the learning rate decreases by a
factor of 10. The Gumbel temperature starts at 4 and gradu-
ally decreases to 1. The preprocessing pipeline follows [7]
including argumentation of random cropping images, ran-
dom scaling in the range of 0.5 to 2.0, and random horizon-
tal flipping. For the comparison with state-of-the-art com-
pression methods, we use the publicly available code for
Segblocks to train the multi-branch models. As for Dyn-
conv [18] we simply set blocksize = 1 and include the
boundary sparsity loss terms using the FLOPs optimization
objective.

5.2. Quantitative Results

Results of the FLOPs optimization are presented in Fig-
ure 5, where fb denotes the target budget for sparse lay-
ers and ”hb” denotes compression of high resolution branch
only. Introducing sparsity masks separately for each layer
while skipping processing in inactive regions shows im-
proved efficiency in exploiting spatial sparsity in multi-

943



Figure 5. FLOPs optimization of DDRNet23-slim [7], DDRNet23 [7] and HRNetV2-48 [20] multibranch architectures compared to SoA
compression methods using spatial sparsity. Multiple connected points are generated by evaluating the full resolution models at different
scales.

branch architectures. On the other hand, Segblocks [19]
efficiency in comperssing single-branch networks does not
directly transfer to the multi-branch domain (Figure 5). Ad-
ditionally, grouping image areas into blocks, as opposed to
individual pixels like dynconv [18], proves advantageous
in tasks involving high-resolution images, such as seman-
tic segmentation.

Optimizing based on FLOPs consistently reduces com-
putations but this does not always directly translates to la-
tency. Table 1 1 illustrates our network optimization re-
sults considering actual latency. We denote lb as the tar-
get latency budget of the sparse layers for our optimiza-
tion framework. Latency aware optimization achieves im-
proved execution times of DDRNets compared to latency
agnostic optimization and improved efficiency when com-
pared to other compression methods at similar compression
rates. While Segblocks [19] achieves higher reduction in
latency of HRNetV2-48 [20], accuracy deteriorates much
more than our approach. Moreover, applying the optimiza-
tion only on the high resolution branches rather than the
full network demonstrates increased efficiency, highlight-
ing the existence of more redundant computations in it. In
general, 20% to 40% of total FLOPs can be reduced with
minor impact on accuracy, depending on the sensitivity of
the network.

To explore our latency optimization framework’s porta-
bility, we assess it on an NVIDIA Jetson NX embedded
GPU. These devices are relevant in real-world scenarios
where low latency and high performance are paramount. To
achieve that, the individual benchmark functions for this de-
vice (Figure 2, e-h) are used and the final benchmarks are
performed on the device. The consistent results (Table 2)

validate the successful transfer and effectiveness of our op-
timization technique. Moreover, the latency optimization
framework can be extended to support other devices, need-
ing only an implementation achieving practical speedup un-
der sparsity.

6. Ablation Studies
6.1. Block Size

The choice of block size plays an important role in the
current optimization framework as stated in 4.1 for two rea-
sons. Firstly, it introduces a sort of structure to the data,
which is essential to mitigate the overheads for sparse ex-
ecution in GPU devices. Therefore it allows some space
for the realization of latency gains on GPU devices using
sbnet sparse operations. Secondly, grouping image pixels
in a region seems to have a beneficial regularization effect
in training as seen in Table 3. The 1 × 1 2D convolution
operations used by mask estimation layers might be too
isolated to reason about the potential upside of processing
each pixel, whereas combining them with a spatial oper-
ation such as pooling, results in more effective reasoning
about the region.

6.2. Target budget

We conduct an ablation study on the target budget of
the optimization process, to investigate the relationship be-
tween network sparsity, model complexity, and predictive
capability. The analysis is also helpful to get insights for the
most efficient trade-offs between computational efficiency
and performance. In the DDRNet-23 case (Figure 6), ex-
treme sparsities in the full network optimization lead to

944



∆ FLOPs % Method ∆ Latency % ∆ mIOU%
DDRNet23-slim [7]

-30%

dynconv [18] (τ = 0.4) 10.35 -2.67
segblocks [19] (τ = 0.6) -6.86 -1.34

Ours fb = 0.5 11.31 -0.59
Ours lb = 0.8 -7.85 -1.29

-20%

dynconv [18] (τ = 0.65) 10.35 -0.73
segblocks [19] (τ = 0.7) -4.13 -0.85

Ours hb fb = 0.3 -0.37 -0.24
Ours hb lb = 0.8 -11.1 -0.33

DDRNet23 [7]

-30%

dynconv [18] (τ = 0.4) 7.39 -0.92
segblocks [19] (τ = 0.6) 11.15 -1.37

Ours fb = 0.5 5.52 -0.21
Ours lb = 0.8 -7.31 -0.90

-20%

dynconv [18] (τ = 0.65) 7.39 -0.52
segblocks [19] (τ = 0.7) -7.92 -0.89

Ours hb fb = 0.3 -6.72 -0.21
Ours hb lb = 0.6 -12.73 -0.31

HRNetV2-W48 [20]

-40%

dynconv [18] (τ = 0.6) 18.49 -2.51
segblocks [19] (τ = 0.4) -30.71 -6.27

Ours fb = 0.5 -6.64 -0.80
Ours lb = 0.8 -11.48 -1.09

-30%

dynconv [18] (τ = 0.7) 18.49 -1.41
segblocks [19] (τ = 0.6) -16.00 -3.96

Ours hb fb = 0.5 -2.73 -0.27
Ours hb lb = 0.8 -12.54 -0.27

Table 1. Table presenting the result of optimization for Cityscapes
dataset for DDRNet23-slim, DDRNet23 and HRNetV2-48 multi-
branch architectures, evaluated on the validation set, under various
FLOPs reduction regimes.

Method ∆ Latency % ∆ mIOU%
NVIDIA RTX 3060ti

lb = 0.8 -7.31 -0.90
hb lb = 0.8 -10.20 -0.22
hb lb = 0.6 -12.73 -0.31

NVIDIA Jetson NX
lb = 0.8 -7.50 -0.47

hb lb = 0.8 -5.25 -0.34
hb lb = 0.6 -10.07 -0.26

Table 2. Latency optimization results for DDRNet23 [7] network
performed on two different GPU devices: a desktop NVIDIA RTX
3060ti and an embedded NVIDIA Jetson NX.

sub-optimal states, while the most efficient compression is
achieved when targeting budgets within the range of 0.5 to
0.7. On the other hand when optimizing the high-resolution
branch only, the effective target budgets fall within the in-
terval of 0.2 to 0.4.

6.3. Slope and loss boundary terms

This section explores the impact of design choices of
the training process when moving from FLOPs to la-
tency optimization (Table 4). Omitting the boundary loss
term allows the optimization to explore the full space

Block size mIOU% Latency (ms)
1 76.06 112.11
8 76.12 41.90

32 76.85 20.79
64 77.00 20.65

128 76.89 20.59

Table 3. DDRNet23-slim optimized with target budget fb = 0.50
with varying blocksizes in full image resolution. Latency mea-
sured on a NVIDIA RTX 3060ti.

no boundary
loss term

timing
slope mIOU%

✗ ✗ 79.78
✗ ✓ 79.99
✓ ✗ 80.51
✓ ✓ 80.63

Table 4. The impact of removing the initial boundary loss term and
addition of the slope in the timing function, for latency optimiza-
tion of the high resolution branch of HRNetV2-48 using lb = 0.8.

Figure 6. Performance of sparse DDRNet23 [7] under various tar-
get budgets fb ∈ [0.1, 0.2.., 1]

from the start, therefore reaching to more extreme sparsi-
ties/densities when necessary. The addition of slope in the
timing function favors the mask estimation to push higher
densities when the density threshold for practical gains is
surpassed, but shows a smaller impact in practice.

7. Discussion

7.1. Class Sparsity Analysis

As we delve into the relationship between sparsity and
multiple classes, it becomes evident that the impact of spar-
sity is far from uniform, as seen in Figure 7. Some classes
exhibit high sparsity ratios, indicating that only a small
portion of the available features contribute meaningfully to
their representation. This phenomenon can be attributed to
inherent characteristics of certain classes that render them

945



Figure 7. Percentages of active pixels for each class of sparse
DDRNet23 [7] network. Pixels of coarser classes (underlined)
are more frequently masked than those from finer classes.

Figure 8. Histogram with actiation rates for sparse layers of
HRNetV2-48 optimized for FLOPs (fb = 0.5) and for latency
(lb = 0.8).

naturally less cluttered or complex. On the other hand,
certain classes demonstrate lower sparsity ratios, where a
higher portion of their features are actively engaged in their
representation. This analysis proves the both the existence
of redundancy of computations within the networks, which
is exploited in order to reduce the computational budget,
and the necessity of a masking strategy to select the optimal
regions to skip.

7.2. Latency vs FLOPs Optimization

Both FLOPs and latency optimization attempt to min-
imize a target budget by skipping computations in spatial
locations. However, there is an important difference in the
way computations are distributed between layers. When op-
timising for FLOPs, the activation rates follow a distribution
closer to mean activation aligning with the target budget,
whereas when optimizing with a latency objective, activa-
tion rates tend to spread to more extreme values in both di-
rections (Figure 8). The reason is that latency gains for a
layer can be achieved below a certain density threshold and

are maximized closer to zero density. On the other hand,
if this threshold is exceeded, the dense implementation fol-
lowed by binary masking can be used instead, taking equal
time as 100% activation. Therefore, in latency optimization,
extreme activation rates are preferred as they offer options
to reduce latency or increase density, a behavior encouraged
during training using the leaky timing function.

7.3. Comparison to SegBlocks

Given the relevancy of the proposed work with Seg-
blocks [19], we discuss some interesting conclusions. Seg-
blocks takes advantage of the over-parameterized nature
of single branch architectures for semantic segmentation,
which try to accommodate both the deep features and fine
details in all feature maps, to essentially generate two
branches of computation. However, recent multi-branch
architecture have already accounted for that by defining
multiple paths of computation, and therefore, redundancy is
less apparent in those approaches constituting compression
a more challenging task. Moreover, multi-branch networks
don’t seem to benefit from having the two paths of computa-
tion of Segblocks in the application of sparsity, since it prac-
tically doubles the number of branches, creating potentially
inefficient overlaps of computation in some resolutions.

8. Conclusions
This work presents a methodology to increase the com-

putational efficiency of multi-branch CNNs for semantic
segmentation. For each layer, estimated sparsity masks en-
code if various image regions should be processed or not,
formulating a spatially sparse execution. They key con-
cept is the introduction of latency to the optimization pro-
cess rather than relying in proxies such as FLOPs. To
achieve that, actual latency profiles for each layer, calcu-
lated from benchmarking CNN operations on target hard-
ware, are provided to supervise the optimization process.
Results demonstrate increased performance-latency effi-
ciency when compared to previous hardware agnostic the-
oretical optimization. We believe that this work can facili-
tate an optimization framework, where the practical impact
of optimization can be controlled, leading to device-tailored
sparse designs. Finally, including faster and more optimized
sparse implementations closer to the ideal function, can fur-
ther boost the framework to achieve improved latency gains.
This work is also introduced in Large Language and Vi-
sion Models for Autonomous Driving (LLVM-AD) work-
shop summary [2].

Acknowledgement
For the purpose of open access, the author(s) has applied

a Creative Commons Attribution (CC BY) license to any
Accepted Manuscript version arising.

946



References
[1] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 5

[2] Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang Zhou,
Kaizhao Liang, Jintai Chen, Juanwu Lu, Zichong Yang,
Kuei-Da Liao, Tianren Gao, Erlong Li, Kun Tang, Zhipeng
Cao, Tong Zhou, Ao Liu, Xinrui Yan, Shuqi Mei, Jianguo
Cao, Ziran Wang, and Chao Zheng. A survey on multimodal
large language models for autonomous driving. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV) Workshops, 2024. 8

[3] Michael Figurnov, Maxwell D. Collins, Yukun Zhu, Li
Zhang, Jonathan Huang, Dmitry Vetrov, and Ruslan
Salakhutdinov. Spatially adaptive computation time for
residual networks, 2017. 2

[4] Michael Figurnov, Aijan Ibraimova, Dmitry Vetrov, and
Pushmeet Kohli. Perforatedcnns: Acceleration through elim-
ination of redundant convolutions, 2016. 2

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Spatial pyramid pooling in deep convolutional networks for
visual recognition. Lecture Notes in Computer Science, page
346–361, 2014. 2

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 2

[7] Yuanduo Hong, Huihui Pan, Weichao Sun, and Yisong
Jia. Deep dual-resolution networks for real-time and accu-
rate semantic segmentation of road scenes. arXiv preprint
arXiv:2101.06085, 2021. 2, 4, 5, 6, 7, 8

[8] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016. 3

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. Commun. ACM, 60(6):84–90, may 2017. 2

[10] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015. 2

[11] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European conference on
computer vision (ECCV), pages 116–131, 2018. 2

[12] Marin Orsic, Ivan Kreso, Petra Bevandic, and Sinisa Segvic.
In defense of pre-trained imagenet architectures for real-time
semantic segmentation of road-driving images. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12607–12616, 2019. 2

[13] Mengye Ren, Andrei Pokrovsky, Bin Yang, and Raquel Urta-
sun. Sbnet: Sparse blocks network for fast inference. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8711–8720, 2018. 3, 4

[14] Saumya Saksena. Cabinet : Efficient context aggrega-
tion network for low-latency semantic segmentation, August
2020. 2

[15] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 2

[16] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In In-
ternational Conference on Learning Representations, 2015.
2

[17] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks, 2020. 2

[18] Thomas Verelst and Tinne Tuytelaars. Dynamic convolu-
tions: Exploiting spatial sparsity for faster inference. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). IEEE, jun 2020. 1, 2, 3, 5, 6, 7

[19] Thomas Verelst and Tinne Tuytelaars. Segblocks: Block-
based dynamic resolution networks for real-time segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(2):2400–2411, 2023. 1, 2, 3, 6, 7, 8

[20] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep
high-resolution representation learning for visual recogni-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(10):3349–3364, 2021. 2, 5, 6, 7

[21] Longguang Wang, Xiaoyu Dong, Yingqian Wang, Xinyi
Ying, Zaiping Lin, Wei An, and Yulan Guo. Exploring spar-
sity in image super-resolution for efficient inference. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 4917–4926, 2021. 1, 3

[22] Changqian Yu, Changxin Gao, Jingbo Wang, Gang Yu,
Chunhua Shen, and Nong Sang. Bisenet v2: Bilateral net-
work with guided aggregation for real-time semantic seg-
mentation, 2020. 2

[23] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,
Gang Yu, and Nong Sang. Bisenet: Bilateral segmentation
network for real-time semantic segmentation, 2018. 2

[24] Georgios Zampokas, Christos-Savvas Bouganis, and Dim-
itrios Tzovaras. Pushing the efficiency of stereonet: Exploit-
ing spatial sparsity. In VISIGRAPP, 2022. 1, 3

947


