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Abstract

For intelligent quadcopter UAVs, a robust and reliable
autonomous planning system is crucial. Most current tra-
jectory planning methods for UAVs are suitable for static
environments but struggle to handle dynamic obstacles,
which can pose challenges and even dangers to flight. To
address this issue, this paper proposes a vision-based plan-
ning system that combines tracking and trajectory predic-
tion of dynamic obstacles to achieve efficient and reliable
autonomous flight. We use a lightweight object detection al-
gorithm to identify dynamic obstacles and then use Kalman
Filtering to track and estimate their motion states. During
the planning phase, we not only consider static obstacles
but also account for the potential movements of dynamic
obstacles. For trajectory generation, we use a B-spline-
based trajectory search algorithm, which is further opti-
mized with various constraints to enhance safety and align-
ment with the UAV’s motion characteristics. We conduct ex-
periments in both simulation and real-world environments,
and the results indicate that our approach can successfully
detect and avoid obstacles in dynamic environments in real-
time, offering greater reliability compared to existing ap-
proaches. Furthermore, with the advancements in Natural
Language Processing (NLP) technology demonstrating ex-
ceptional zero-shot generalization capabilities, more user-
friendly human-machine interactions have become feasible,
and this study also explores the integration of autonomous
planning systems with Large Language Models (LLMs).

1. Introduction

In recent years, small-scale quadrotor Unmanned Aerial
Vehicles (UAVs) have experienced rapid development due
to their compact size, high agility, and strong flexibility.
They have been widely employed in various civilian ap-
plications [19, 23, 50], such as industrial inspection, cine-
matography, and mining operations. These application sce-
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narios typically feature limited space, unknown, variable
structures, and the presence of dynamic obstacles, which
pose challenges and risks to UAV flight. Therefore, a re-
liable real-time onboard planning algorithm is a key pre-
requisite for enabling UAVs to navigate safely, avoid obsta-
cles, and ultimately achieve autonomous flight capabilities
in such environments.

The autonomous navigation of UAVs using onboard sen-
sors has been extensively researched and successfully val-
idated in static environments [6, 14, 15, 39, 50]. However,
in dynamic environments, the presence of dynamic obsta-
cles can pose significant difficulties for UAV flight. Since
the motion states of these objects are typically unknown,
if the UAV treats them as static, it may not have sufficient
time to replan its trajectory as it approaches them, poten-
tially resulting in collisions. Thus, unlike obstacle avoid-
ance in static environments, it is imperative to take into ac-
count the motion states of dynamic obstacles in environ-
ments. However, dealing with dynamic obstacles proves
to be a challenging task, especially the accurate perception
of such objects during flight, requiring robust and efficient
algorithms. Furthermore, considering the limited computa-
tional capabilities of onboard computers, which are respon-
sible for environmental perception, navigation, positioning,
and interaction functionalities. So, evidently, it is hard to
satisfy the efficiency and accuracy requirements at the same
time. Existing obstacle avoidance systems [4, 5, 19, 45, 51]
in the dynamic environments of quadrotors typically rely on
the detection and tracking of moving objects (DATMO) [44]
to acquire the motion states of dynamic objects and process
them in various ways for subsequent planning. However,
these methods still have some shortcomings in terms of dy-
namic obstacle detection or obstacle avoidance capabilities.

In this paper, we propose a vision-based autonomous
planning system for quadrotor UAVs that can predict the
future trajectories of dynamic obstacles and generate safer
trajectories. First, a very efficient object detection network,
NanoDet [34], is first applied to detect dynamic obstacles,
followed by Kalman Filtering (KF) to track and estimate
their motion states. Then, the static and the dynamic obsta-
cles are both considered in our planning process. We utilize
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a B-spline-based search algorithm, optimized with several
constraints to enhance safety and smoothness. The effec-
tiveness of our system is verified through various experi-
ments in simulation and real-world environments. Unlike
planners that rely on traditional methods for detecting dy-
namic obstacles [5, 19, 45], the detector used in our method
is based on deep learning. Consequently, it not only pro-
vides information about the sizes and locations of the ob-
jects but also offers rich semantic data, enabling broader
potential applications in the future.

To make drones more user-friendly, further support from
human-machine interaction technology is also essential.
Natural Language Processing (NLP) has long been recog-
nized as an important way of human-robot interaction, and
the recent rapid advancement has given rise to the devel-
opment of Large Language Models (LLMs), which have
demonstrated remarkable performance in different applica-
tions [41]. Several LLMs have already achieved signifi-
cant accomplishments, such as BERT [11], GPT-3 [3], GPT-
4 [28] and Codex [9]. The most influential among them is
ChatGPT [27], which is a pre-trained generative text model
that underwent fine-tuning through human feedback. Re-
cent studies also demonstrate LLMs can be applied to gen-
eralize robotics domains [20, 29, 41]. With the support of
LLMs, autonomous UAVs undoubtedly gain enhanced ver-
satility. In this paper, we explore how our proposed au-
tonomous planning system integrates with LLMs to assist
users in controlling UAVs better, with the hope of providing
valuable insights for subsequent research in this domain.

2. Related work
In environments with dynamic obstacles, a robust and

reliable autonomous flight system typically requires two es-
sential components: one is the dynamic obstacle perception,
and the other is the trajectory planner designed for obstacle
avoidance in dynamic environments.

For obstacle detection and tracking, the most commonly
used sensors are RGB cameras [7, 47] or depth cameras
[19, 26, 48]. Depth cameras, in particular, are favored for
small-sized UAV navigation since they provide both images
and point cloud data. Some methods [19, 26, 48]utilize U-
depth maps extracted from depth maps for obstacle detec-
tion. Among them, [19] has achieved impressive results in
obstacle avoidance in dynamic environments. While these
methods exhibit high computational efficiency, their perfor-
mance stability is contingent on parameter settings, and they
do not possess the capability to recognize objects. [25] ap-
plies a 2D feature-based method to achieve obstacle avoid-
ance. On the other hand, [13, 36] utilizes machine learn-
ing techniques to enhance performance and acquire seman-
tic information about objects, albeit at a higher computa-
tional cost. Additionally, there are methods based on point
cloud data [4, 5, 24, 45], which handle dynamic obstacles

by building a dynamic map for both static and dynamic ob-
stacles. [45] integrates dynamic obstacle detection results
into the static map generated from the depth point cloud,
while [4] utilizes the voxel map to identify dynamic vox-
els and estimate their velocities. [5] builds a dual-structure
particle-based dynamic occupancy map to concurrently de-
pict the static obstacles and dynamic obstacles. To achieve
efficient and robust dynamic obstacle perception, we apply
a very efficient object detection neural network, and the se-
mantic information obtained is also very useful.

For obstacle avoidance, various strategies have been ex-
plored in static environments. The most common pipeline
is to detect obstacles and represent them in the occupancy
map [40], and then generate a safe flight trajectory us-
ing optimization-based methods [8, 22, 49, 50] or sampling-
based methods [6, 12]. Among these, EGO-Planner [50]
stands as one of the most representative methods, distin-
guished by its robustness and efficiency. However, in dy-
namic environments, obstacle avoidance becomes more de-
manding, as it entails the prediction of future states for dy-
namic obstacles [5]. Currently, obstacle avoidance systems
for quadrotor UAVs in dynamic environments typically ap-
ply DATMO [44] for dynamic obstacle perception, followed
by the application of modified planning algorithms to gen-
erate suitable flight trajectories. The ASAA system [4]
uses YOLOv3 [35] for dynamic obstacle detection, sub-
sequently utilizing SORT [1] and active vision for object
tracking. It then performs trajectory planning based on
real-time sampling and uncertainty-aware collision check-
ing, ultimately enabling the UAV to avoid collisions with
slow-moving objects. Similarly, [45] also applies a detec-
tion and tracking method, and further optimizes trajectories
by considering the predicted position of the dynamic obsta-
cles, thereby ensuring flight safety. In order to address the
uncertainty in trajectory prediction, [19] develops a chance-
constrained model predictive controller to ensure that the
collision probability between the UAV and each moving ob-
ject remains acceptably low, thus achieving robust obstacle
avoidance. [5] achieves efficient trajectory planning through
sampling motion primitives in the state space and forming
risk with the cardinality expectation in a risk-checking cor-
ridor. Based on robust mobile object detection, our method
features trajectory prediction and reliable trajectory opti-
mization under several constraints, possessing good gener-
ality and user-friendliness.

3. Method

3.1. System framework

The whole vision-based autonomous planning system
can be divided into two components, as shown in Figure
1. The first component, the perception module, is primarily
dedicated to the construction of local maps and the identi-
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Figure 1. The framework of our autonomous planning system.

fication, tracking, and prediction of dynamic obstacles. On
the other hand, the second component, the trajectory gen-
eration module, serves the purpose of conducting an ini-
tial trajectory search and subsequent trajectory optimiza-
tion. The input of the system consists of RGB images, depth
maps, and the UAV pose. RGB images and depth maps
can be directly acquired through an RGB-D camera such as
the Realsense D435i, while precise UAV pose information
can be obtained using Simultaneous Localization and Map-
ping (SLAM) techniques, such as VINS-Fusion [31]. These
data sources are synchronized using timestamps and then
fed into the perceptual module. The output is a collision-
free and dynamically feasible trajectory leading to the target
point.

In the first stage, the UAV is tasked with the compre-
hensive perception of its surroundings, encompassing both
the static environment and dynamic obstacles. RGB images
are input into a lightweight object detection neural network,
NanoDet [34], for the purpose of dynamic obstacle detec-
tion, yielding 2D regions corresponding to the detected dy-
namic obstacles. Subsequently, these 2D regions are com-
bined with depth data and UAV poses to derive their re-
spective 3D regions. Further, the Hungarian algorithm is
employed for multi-object tracking, enabling the determi-
nation of trajectories for the dynamic obstacles over a time
interval. Furthermore, the real-time trajectory prediction of
dynamic obstacles is achieved using KF algorithm. Addi-
tionally, the depth data is employed for the construction of
local occupancy maps representing the static components
of the scene. In the second phase, inspired by the work of
Tang and et al. [37], we design a trajectory generation mod-
ule. The trajectory planning process can be considered as
the task of identifying a set of B-spline control points. This
problem is analogous to a graph optimization problem and
can be effectively resolved. Based on occupancy maps, the
process initiates with the generation of an initial trajectory
employing the A* algorithm. Subsequently, an optimization
function is formulated, accounting for constraints related to
obstacles, UAV velocity, and acceleration. This function
undergoes optimization through a solver, ultimately yield-
ing a final trajectory characterized by improved safety and

Figure 2. (a) The 2D region of the dynamic obstacle. (b) The cor-
responding position of the object in the depth map. (c) Residuals
of the dynamic obstacle in the local map.

smoothness.

3.2. Dynamic obstacle detection and tracking

To avoid collisions with dynamic obstacles, the first step
is to determine the state of these dynamic obstacles, which
requires detection and tracking. As depicted in Figure 1,
the initial phase involves utilizing captured RGB images to
obtain 2D regions of potential moving objects (as shown
in Figure 2 (a)). Given the limited computing resources of
UAV, a lightweight neural network, NanoDet, is employed
for this purpose. In comparison to point cloud-based clus-
tering algorithms [17, 26], this detection method exhibits
greater robustness, with reduced sensitivity to algorithm
parameters and environmental variations, while simultane-
ously delivering efficiency and high accuracy. Additionally,
the extracted semantic information can also contribute to
further human-machine interaction. After acquiring the 2D
regions of objects, it becomes feasible to determine their
positions in the depth map, as shown in Figure 2 (b). Fi-
nally, the depth information of obstacles can be extracted
with the elimination of background depth values. This pro-
cedure enables the extraction of 3D information about the
objects, including 3D regions and fine structural details.

Based on the results of object detection, object tracking
can be performed. By calculating the pairwise distances be-
tween the sets of detected objects in two different time-step
images, the Hungarian algorithm is applied to obtain the
optimal assignment. This allows the association of infor-
mation across multiple frames, facilitating object tracking.
Furthermore, with the poses of cameras, it becomes feasible
to estimate the object’s velocity, trajectory, and other state
information over a certain time period. The motion status
of an object is determined based on its velocity. If its esti-
mated velocity consistently exceeds the predefined velocity
threshold vd, it is classified as a moving object; otherwise,
it can be considered a component of the static map.

Typical autonomous planning systems utilize a local map
for planning, however, without special handling, these sys-
tems often incorporate the depth point cloud of detected
dynamic obstacles into the map, rather than removing it.
However, if the depth point cloud of dynamic obstacles is
added to the local map, the UAV may perceive an obstruc-
tion in its path, as depicted in Figure 2 (c). Therefore, it is
essential to exclude dynamic obstacles from the static map
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and clear their motion histories. In practice, based on the
previously detected 3D regions, we can directly remove oc-
cupancy voxels at the current positions of dynamic obsta-
cles, effectively eliminating their interference and obtaining
a static map for subsequent planning.

Our planning system for avoiding dynamic obstacles is
based on predicting their future paths. Predicting the future
trajectories of objects has consistently been an interesting
subject, with diverse methods [30, 43, 46]. However, given
the need to control UAV flight efficiently, the prediction al-
gorithm must be highly efficient. Following the work of
Eppenberger [13], we adopt a conservative motion model to
estimate the velocities and short-term future trajectories of
detected dynamic obstacles. Assuming dynamic obstacles
move on a horizontal plane, their velocity can be estimated
using Kalman Filter (KF). For a dynamic obstacle, its state
vector x⃗ = [x, y, vx, vy] represents its position and veloc-
ity on the horizontal plane. The measurement input z⃗t at
time t for KF is the centroid of the object measured in the
horizontal plane. The system dynamics and measurement
model are defined as:

x⃗t+1 = A · x⃗t +Q, (1)

z⃗t = H · x⃗t +R, (2)

where A is the state-transition model, H is the observation
model, and Q and R model the system noise and measure-
ment noise, respectively. This allows for real-time short-
term prediction of dynamic obstacle trajectories. It should
be noted that if a significant deviation between the measured
target position and the position estimated by KF is detected
during tracking, it is considered as a tracking error. In such
cases, previous results are cleared, and tracking is reiniti-
ated.

3.3. Trajectory generation and optimization

In this section, we present a trajectory planning algo-
rithm suitable for dynamic environments. Many existing al-
gorithms either solely consider static environments [49, 50]
or focus exclusively on avoiding dynamic objects [19, 38],
making it challenging to meet the condition of collision-free
trajectories entirely. Inspired by [37, 38], we introduce a
trajectory generation method based on B-spline curves and
convex hull collision detection, as B-splines can be used
to ensure the required smoothness of the trajectory. This
approach can be divided into two phases: initial trajectory
search and trajectory optimization. It not only ensures col-
lision avoidance in static environments but also takes into
account dynamic obstacles and their future motion states.
Specifically, we employ collision detection between con-
vex hulls to rapidly assess the safety of trajectories. As
illustrated in Figure 3, for instance, the initial trajectory
comprises three B-spline control points, p0,p1,p2. During

Figure 3. Trajectory generation. This stage takes into account not
only the static environment but also dynamic obstacles and their
future possible trajectories.

the search process, control points are extended in multiple
directions, and the trajectory is enclosed within the con-
vex hull formed by these control points. Additionally, the
convex hulls of dynamic obstacles are modeled, requiring
collision checking with dynamic and static obstacles for
each generated trajectory while preserving dynamic con-
straints. This process ultimately yields a trajectory to the
target point.

In the planning process, the initial trajectory search is
essential, as obtaining a reasonable initial trajectory can
reduce the optimization time. Inspired by the A* algo-
rithm [16] and B-spline-based Non-uniform Kinodynamic
(BNUK) search [37], we apply the A* algorithm to directly
search for control points within the free space. The cost
function of the algorithm is defined as follows:

F = g + λh, (3)

where g represents the smoothness of the curve above, h is
the heuristic function, and λ is the bias, employed to stan-
dardize units and to fine-tune the quality of the curve. Here,
the heuristic function is defined as the distance to the tar-
get point. A smoother curve can lead to less trajectory op-
timization time and enhance the feasibility of UAV flight
control, and the heuristic function aids in guiding the trajec-
tory closer to the target point. To ensure that the B-spline
curve passes through the start and target points, we position
the initial three control points at the starting location. Like-
wise, we apply the same treatment to the control points at
the target point. Moreover, to guarantee that the obtained
trajectories are both smooth and continuous, the latter three
control points of the current curve segment are used as the
initial control points. This ensures that each trajectory seg-
ment is uniformly smooth and seamlessly connected.

Although the initial trajectory ensures collision avoid-
ance, it may still exhibit issues such as proximity to obsta-
cles or excessive changes in direction, as shown in Figure 4.
Therefore, further optimization is required to achieve a tra-
jectory that is not only safer but also better suited for UAV
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Figure 4. Trajectory Optimization. The blue line represents the
trajectory before optimization, the red line represents the trajec-
tory after our optimization, the blue rectangular wireframe repre-
sents the bounding box of the dynamic obstacle, and the green line
denotes its predicted future trajectory. After optimization, the tra-
jectory becomes smoother.

flight. Following Usenko et al. [40], we represent this prob-
lem as an optimization of the following cost function:

Etotal = Ecollision + Esmoothness, (4)

where Ecollision is a collision cost function and
Esmoothness is the cost of the integral over the squared
derivatives (acceleration, jerk, snap). The former ensures
that the UAV will not collide with the static environment or
moving targets, while the latter contributes to a smoother
trajectory, aiding in flight control. Furthermore, assuming
the plane that separates the convex hull of control points
and the obstacles is defined as nTx+ d = 0, where n and d
are the parameters of this plane, the optimization must also
satisfy the following conditions:

nTO + d ≥ 0

nTQ+ d ≤ 0

abs(v) ≤ vmax

abs(a) ≤ amax

, (5)

where O represents the vertices of the obstacle’s convex
hull, and Q represents the control points of the trajectory,
abs(·) represents the element-wise absolute value, and v
and a represent velocity and acceleration of the UAV, re-
spectively. In this study, this problem is solved using the
augmented Lagrangian method [2, 10], and with the low-
storage BFGS algorithm [21] for local optimization. The
interface used for these algorithms is NLopt [18].

4. Experiments
We test our method in both simulation and real-world en-

vironments. All the methods are implemented in C++ and
executed using the robot operating system (ROS) [32] in
Linux. Sections 4.1 and 4.2 present experiments in the sim-
ulation environments. The Gazebo simulation environment
with the PX4 firmware is utilized. Section 4.1 covers ex-
periments about dynamic obstacle detection and tracking,
and Section 4.2 focuses on assessing the dynamic obstacle

Figure 5. The simulation experiments and object detection exam-
ples. (a) and (b) display the overhead views and reconstructed
maps of two experiments in this simulation environment. (c)
shows the detection results on the RGB image, (d) presents the
detection results on the depth map, and (e) is the U-depth map
corresponding to the depth map in (d).

Table 1. The RMSE of the estimated positions and velocities of
the pedestrian.

Method Position error (m) Velocity error (m/s)

Method I [45] 0.11 0.19
Method II [19] 0.14 0.36
Method III [48] 0.11 0.08
Our method 0.14 0.16

avoidance capability. In Section 4.3, we conduct relevant
experiments by implementing our method on a real UAV.

4.1. Dynamic obstacle detection and tracking

For quantitative evaluation, we design a simulation envi-
ronment, as depicted in Figure 5 (a). This setting represents
a corridor measuring 15 meters in length and 4 meters in
width, where a pedestrian moves back and forth. Initially,
the UAV and the pedestrian approach each other. In this ex-
periment, our method is compared with three current detec-
tors, denoted as Method I [45], Method II [19] and Method
III [48]. During the flight, the UAV estimates the positions
and velocities of the pedestrian, and these measurements
are compared with the ground truth values provided by the
simulation environment. The comparison is performed by
calculating the Root Mean Square Error (RMSE) for both
position and velocity. The results are shown in Table 1.
In terms of position estimation, there is little difference in
accuracy among the four methods. However, concerning
velocity estimation, our method exhibits higher accuracy,
surpassing Method I and Method II, albeit slightly inferior
to Method III.

Method II and Method III are based on U-depth map,
and the U-depth map is derived from the depth map. It’s
worth noting that although Method III achieves higher ac-
curacy, it may fail in certain scenarios. For example, in the
scenario depicted in Figure 5 (b), we position the pedestrian
not in the center of the corridor but rather 0.5 meters away
from the wall. Since our method is based on RGB images,
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Figure 6. The success rate of moving target detection.

it can accurately detect the pedestrian (Figure 5 (c)). In this
scenario, the depth values for the person and the adjacent
wall are very close (as indicated by the green box in Figure
5 (d)). As shown in Figure 5 (e), the green box in the U-
depth map corresponds to the wall and the pedestrian, and
it is hard to distinguish them, potentially leading to a failure
in detection. For further evaluation, we place the pedestrian
in various positions, and for each frame, we perform detec-
tion using the U-depth map and our method. Subsequently,
we calculate the detection success rate, and the results are
illustrated in Figure 6.

4.2. Autonomous obstacle avoidance

This section evaluates the effectiveness of our planning
algorithm in dynamic obstacle avoidance in the corridor
simulation environment described in Section 4.1. Similarly,
we position a pedestrian in the center of the corridor, who
moves back and forth at a constant velocity. The depth sens-
ing range of the UAV is 6 m. In the initial state, the UAV
has no depth values for the pedestrian, and consequently, the
local occupancy map used for trajectory planning does not
contain this information. When the UAV detects the pedes-
trian, it rapidly replans the trajectory to avoid a head-on col-
lision with the pedestrian. At the start of the experiments,
the pedestrian’s velocity is set to 0 and increased by 0.1 m/s
until a collision occurs. The maximum speed of the UAV
is set to 1.5 m/s, and the maximum acceleration is set to 3
m/s2. EGO-Planner [50] is also employed for comparison,
and the results are presented in Table 2. When the pedes-
trian’s velocity exceeds 0.8 m/s, the trajectory planned by
EGO-Planner results in a collision with the person. This is
primarily because it does not consider that the pedestrian
is moving towards it. In contrast, our method considers
the short-term future movements of the UAV, resulting in
a trajectory that causes the UAV to turn in advance to avoid
the pedestrian. Typically, a pedestrian’s walking velocity is
around 1 m/s, indicating that our method is applicable to
everyday environments.

Following [5], we conduct tests in additional scenes. We
set up two different scenes, where Scene I includes 1 pedes-
trian, and Scene II includes 4 pedestrians, and then let the
UAV fly multiple times in different scenes. Each method is
tested 15 times in each scene, and the number of times dif-

Table 2. The maximum velocity of pedestrians without collisions.

Method Maximum velocity of the pedestrian

EGO-Planner [50] 0.8 m/s
Our method 1.7 m/s

Table 3. The maximum velocity of pedestrians without collisions.

World Event EGO-Planner Ours

Scene I
(1 pedestrian)

Collision 13 0
Freezing 0 0
Success 2 15

Scene II
(4 pedestrians)

Collision 15 3
Freezing 0 0
Success 0 12

Figure 7. The planning process in the simulation environment.
(a) is an overview of the scene, with the red line representing the
approximate flight path of the UAV, and yellow arrows indicating
the pedestrians’ movement direction as the UAV approaches. (b)-
(d) represent different stages of flight, with the blue line indicating
the initial trajectory and the red line showing the final trajectory.

ferent events occur is counted, as shown in Table 3. ”Col-
lision” represents a collision occurrence, ”Freezing” indi-
cates situations where the UAV cannot plan a correct tra-
jectory and remains stationary, and ”Success” denotes nor-
mal and safe flight. It is evident that our method exhibits a
significantly higher success rate. In the scene with only 1
pedestrian, no collisions occur, and in cases with multiple
pedestrians, the probability of collision is low. This is due
to the consideration of the future motion state of dynamic
obstacles in the planning process.

A UAV planning process in a simulated environment
with multiple moving objects is present in Figure 7. As
shown in Figure 7 (a), the goal is located behind a wall in
front of the UAV, and there are two pedestrians with differ-
ent movement directions performing back-and-forth motion
along the path. When encountering the first pedestrian (Fig-
ure 7 (b)), the UAV can proactively adjust its course from a
distance to facilitate avoidance. When facing the second
pedestrian (Figure 7 (c)), the UAV chooses to maneuver
around from behind. Overall, the UAV can effectively plan
safe and flight-friendly trajectories in the presence of both
dynamic and static obstacles. The velocity profile of the
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Figure 8. The velocity profile of the UAV in flight.

Figure 9. The hardware structure of our quadrotor.

UAV during this process is illustrated in Figure 8, which
aligns with the experimental requirements.

4.3. Real-world experiments

In real-world experiments, we employ a compact
quadrotor with the hardware configuration shown in Fig-
ure 9. The sensor employed for depth map capture is
the Realsense D435i, and the flight control system used
is the CUAV V5+. The onboard computer used is a NUC
equipped with an i5-1145G7 processor. This UAV utilizes
the stereo infrared images captured by D435i for running
VINS-Fusion [31], thereby achieving visual localization,
pose estimation, and 3D reconstruction.

We perform tests in an indoor environment, as shown in
Figure 10. In this scenario, the pedestrian is considered as a
dynamic obstacle. Initially, the drone approaches the pedes-
trian, and ultimately, it needs to fly to a location near the
pedestrian’s starting point. When planning with the EGO-
Planner, there is a higher risk of colliding with the oncom-
ing pedestrian, and mapping errors could lead to incorrect
judgments. In contrast, when using our system, the UAV
will go around in advance, remove the pedestrian from the
local map, and finally reach the target point successfully.
We also evaluated the efficiency of the system, finding that
it takes approximately 200 milliseconds for the system to
complete one trajectory planning cycle, which is sufficient
to handle common indoor dynamic obstacles.

Figure 10. The testing scenario in the real world.

Figure 11. (a) A system combining autonomous UAVs and LLMs.
(b) An example of a task executed by this system. ”GPT” stands
for Generative Pre-trained Transformer, representing models such
as ChatGPT.

5. Autonomous UAVs with LLMs

In this section, we examine the integration of LLMs
with autonomous UAVs, primarily aimed at enhancing user-
drone interaction. This integration allows users to assign
tasks to UAVs directly using natural language, without
requiring in-depth knowledge of programming languages,
while enabling UAVs to provide feedback to users in nat-
ural language or other modalities. Previous research [41]
has demonstrated that ChatGPT [27] can take high-level
textual feedback about generated code or its performance
and map it to the required low-level code changes, mak-
ing it accessible to users who may not possess technical
expertise. For instance, ChatGPT is capable of generating
complex code structures for drone navigation by utilizing
only the fundamental Application Programming Interfaces
(APIs) provided in the prompt, and there are many explo-
rations about the formulation of initial prompts for vari-
ous problem-solving tasks. Furthermore, GPT-4 supports
multi-modal capabilities [28], which enhance the diversity
of human-machine interactions. Therefore, in this study,
we use ChatGPT as an example to explore the integration
of autonomous UAVs with LLMs.

Building upon ChatGPT and existing relevant research,
we exemplify a system integrating autonomous UAVs with
LLMs, as demonstrated in Figure 11 (a). This system is
based on UAVs with autonomous flight capability, and uti-
lizes LLMs for facilitating communication between users
and UAVs. Specifically, the user provides a task descrip-
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Figure 12. An example experiment of the integration of au-
tonomous UAV with LLM in a simulation environment. The UAV,
guided by an GPT-enhanced Ego-Planner, can successfully nav-
igate a user-specified rectangular trajectory while adeptly avoid-
ing obstacles. This experiment underscores the advanced spatial
awareness and command understanding capabilities obtained by
the integrating LLMs with UAV control algorithms.

tion to the UAV through natural language. Initially, the
UAV uses voice recognition technology (such as Whis-
per [33]) to convert the task description into textual infor-
mation. Subsequently, it utilizes a Generative Pre-trained
Transformer (GPT) (such as ChatGPT) to comprehend and
analyze the task, generating the necessary code for task ex-
ecution, which is then transmitted to the UAV. The UAV
finally executes the programs to complete the task, all the
while returning acquired data to provide feedback to the
user. An exemplary task executed using this system is
shown in Figure 11 (b). A user inquires if there are per-
sons behind a wall. Subsequently, the UAV comprehends
the task, generates the requisite code, and proceeds to fly
to the wall. It then scans the surroundings, detects persons,
and finally expresses the collected information to the user
using GPT. During this process, it can also provide real-time
updates to the user, such as reporting the number of people
observed during flight or its need to navigate from the right
side due to obstruction by a box on the left. The simulation
experiment in Figure 13 showcases an autonomous UAV in-
tegrated with LLM.

The two central components of this system are GPT and
autonomous UAVs. A primary role of GPT is to generate
task-specific code. The basic drone control operations (in-
cluding takeoff, landing, steering, detection, and recogni-
tion) use universal code that does not need to be regener-
ated. Therefore, for finer drone control, it is advantageous
to establish a library of APIs for robot control and percep-
tion, which can be readily adapted for use with GPT. Based
on previously defined APIs, GPT can build a new function
for more complex tasks [41]. And given the functions, GPT
can generate controls for long-step tasks [42]. As for au-
tonomous UAVs, they must possess the capability for safe
execution of diverse operations and fundamental decision-
making abilities. For the instance in Figure 11(b), when
the UAV is required to fly to the other side of a wall, it
should at least be able to perform trajectory planning in a

static environment. Given the potential presence of mov-
ing objects, such as people, it should also be capable of
avoiding dynamic obstacles. And given the task specified
by the user that involves more multi-steps, it should be able
to break down the task and generate a schedule, then ex-
ecute sequentially. In our proposed approach, significant
interaction occurs between the UAV and real-time data, en-
abling dynamic obstacle avoidance—an important aspect of
drone control. It is worth noting that while LLMs inher-
ently face challenges in directly leveraging real-time sen-
sor data for immediate responses, their integration with our
system plays a different but critical role. In this case, the
LLM acts as a bridge, providing a more user-friendly in-
terface that effectively exploits the capabilities of real-time
drone methods. By combining the advanced technical ca-
pabilities of drones in dynamic obstacle navigation with
the intuitive, user-centered interface provided by LLM, our
approach makes a step towards realizing intelligent UAVs.
This synergy not only improves operational efficiency, but
also significantly improves ease of use, making advanced
UAV technology more accessible to a wider user base.

6. Conclusion and future work

This paper presents an autonomous planning system for
quadcopter UAVs suitable for dynamic environments. We
employ a lightweight neural network to detect dynamic ob-
stacles, then use KF for object tracking and prediction, and
take into account both static environments and dynamic ob-
stacles in trajectory planning. For trajectory generation, we
utilize a B-spline-based trajectory search algorithm and op-
timize the trajectory with multiple constraints, resulting in
trajectories that are not only safer but also better compli-
ant with the UAV’s kinematics. Experimental results in
both simulation and real-world environments demonstrate
that our method can successfully detect and avoid collisions
with obstacles in dynamic environments in real-time. Build-
ing upon this, we explore the integration of UAVs equipped
with autonomous flight systems with LLMs to serve upper-
level applications. This represents an important avenue for
future development and an area of focus for our forthcom-
ing research efforts.
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