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Abstract

The ever-increasing use of synthetically generated con-
tent in different sectors of our everyday life, one for all me-
dia information, poses a strong need for deepfake detection
tools in order to avoid the proliferation of altered messages.
The process to identify manipulated content, in particular
images and videos, is basically performed by looking for the
presence of some inconsistencies and/or anomalies specif-
ically due to the fake generation process. Different tech-
niques exist in the scientific literature that exploit diverse
ad-hoc features in order to highlight possible modifications.
In this paper, we propose to investigate how deepfake cre-
ation can impact on the characteristics that the whole scene
had at the time of the acquisition. In particular, when an
image (video) is captured the overall geometry of the scene
(e.g. surfaces) and the acquisition process (e.g. illumina-
tion) determine a univocal environment that is directly rep-
resented by the image pixel values; all these intrinsic rela-
tions are possibly changed by the deepfake generation pro-
cess. By resorting to the analysis of the characteristics of
the surfaces depicted in the image it is possible to obtain a
descriptor usable to train a CNN for deepfake detection: we
refer to such an approach as SurFake. Experimental results
carried out on the FF++ dataset for different kinds of deep-
fake forgeries and diverse deep learning models confirm
that such a feature can be adopted to discriminate between
pristine and altered images; furthermore, experiments wit-
ness that it can also be combined with visual data to provide
a certain improvement in terms of detection accuracy.

1. Introduction

With the increasing of false information spreading all
over the media, nowadays, trust in digital content is poten-
tially compromised by the easiness of creating fabricated
facts. Information can further undergo multiple modifica-
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Figure 1. An example of surface anomalies found in fake images.
From left to right: the RGB (Red-Green-Blue) face, our proposed
GSD (Global Surface Descriptor) feature and the logarithm of the
GSD, used here for sake of visualization to highlight the artifacts
introduced by the manipulation.

tions before reaching a potential user. The latest advance-
ments of AI, especially for image and video manipulation,
are fostering more and more the possibility to easily change
the meaning of the information to convey, due to the fact
that media content is likely to be exposed to variations of
different nature. Among the possible media manipulation
approaches, Deepfakes are a very recent class of methods
that can generate synthetic human images. Despite hav-
ing been used with astonishing results for movie produc-
tion in Hollywood, Deepfakes can also be easily used for
malicious purposes, such as crafting highly realistic fake
propaganda. Deepfake creation typically involves the use
of deep learning to recreate some person imagery. Specif-
ically deep networks learn how to transfer or reenact fa-
cial expression as well as how to generate a proper imi-
tation of a person’s voice and inflection. Nowadays, sev-
eral techniques can create real-looking content easily, by
using deep generative models, such as GAN-style architec-
tures [3, 9, 11] and diffusion probabilistic models (DPMs)
[15]. Deepfake can be applied to different types of media,
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from image to video, but also fake audio can be created,
e.g. through text-to-speech [17], by typing a new text, or
by voice swapping [28]. Deepfake for image and video is
mainly done by tampering with parts of the scene, for in-
stance, the faces of subjects present in the media. Various
techniques have been designed to alter faces, some of them
regard video applications, e.g. lip syncing [29, 35] where
the audio is employed to reconstruct the mouth movements
over the video frames. Other general-purpose face manipu-
lation techniques are about the visual alteration of the con-
tent, by changing the expressions or moving the face from
a source image to the target one.

In this paper, we focus on detecting face manipulations
in images. Face manipulations [44] can be basically sum-
marized in two different categories: reenactment and swap-
ping. Facial reenactment deals with manipulating certain
facial attributes or reenact faces with deep learning meth-
ods while maintaining the identity unchanged. Face swap-
ping [8], instead, aims at replacing the face of a person in
the reference image with the same facial shape and features
of another target subject by realistically changing the iden-
tity. According to this, it is straightforward to understand
that deepfake detection is an urgent task, which prevents
disinformation and avoids the diffusion of media showing
people saying or doing things they never said or did. The
fundamental idea behind deepfake detection consists in the
fact that a neural network during the process of generating
a fake content should leave a sort of trace that is embedded
as a fingerprint over the manipulated image (video). Most
of the existing approaches for deepfake detection try to re-
cover this hidden pattern to reveal false contents and to do
that they generally resort to the analysis of frames at pixel
level (RGB raw data). However, not only RGB-level incon-
sistencies can be detected as anomalies in the visual space,
in fact many fine details can be affected by the forgery with-
out compromising the visual perception of the image itself.
More precisely, the camera acquisition process is itself a
signature that is incorporated into the image. We argue that
such information about the acquisition moment could be al-
tered by deepfakes and this could be exploited for the de-
tection task. Such information relates to an ensemble of
specific characteristics of the scene, for instance, the ex-
ternal illumination source, including lighting, shadows and
reflections, which all impact on the surfaces present in the
environment and on the objects at the time of image ac-
quisition. Other relevant details regard the face pose, but
even the camera parameters may be somehow embedded
into the image and strictly related to the image capturing,
e.g. lens distortions and intrinsic noises. In the literature,
some works [23,34] tackled the deepfake detection problem
from different angles, by leveraging geometrical aspects of
facial landmarks, in which inconsistent or highly synthetic
patterns are found in generated fakes by different forgery

techniques.
The proposed approach leverages on the analysis of the

features of the framed scene that are determined by the over-
all geometry of the scene itself (e.g. surfaces) and by the
original image acquisition process (e.g. illumination, cam-
era orientation). Different from other research works focus-
ing on individuating fakes by detecting specific patterns in
terms of depth map or face motion, we specifically deal with
the surfaces present within the acquired scene by exploiting
the modifications induced to the surface normals and deter-
mined by the deepfake alteration. A general visual example
of this is provided in Figure 1 where it can be appreciated
how a modification, just on the mouth of the woman, can
also determine some slight global variations on the other
parts of the global surface descriptor (GSD) image. In sum-
mary, the main contributions are listed hereafter:

(i) we propose to utilize surface geometry features of the
acquired scene to highlight inconsistent patterns re-
vealing fake images;

(ii) we study and evaluate, in which extent, such features
can constitute by themselves an effective mean to dis-
criminate between pristine and fake contents;

(iii) we conduct experiments on different kinds of forg-
eries and network architectures to verify that the new
proposed surface-based feature can be advantageously
combined with RGB frames to get an improvement in
terms of accuracy performance.

The paper is organized as it follows: after this introductory
section, Section 2 describes main related works while Sec-
tion 3 presents the proposed method. Section 4 is dedicated
to the experimental results and Section 5 draws conclusions
providing possible future works.

2. Related Works
DeepFake Detection is a recent problem raised to recog-

nise real or tampered data, also in vision tasks, which is typ-
ically addressed as a binary classification problem. Nowa-
days visual content is an informative media that can be ma-
nipulated, thanks to the usage of recent generative mod-
els [3, 9, 11, 15]. In particular, the possibility of manipu-
lating human faces has found a lot of interest both for enter-
tainment and for malicious purposes. Several manipulation
techniques can be used, either replacing faces to match the
one of another subject or by simply altering facial expres-
sions. Such manipulations are obtained, e.g. via CNNs [19],
conditional GANs [27] or based on facial landmark align-
ment [8]. A plethora of implementations are also available
[25]. Existing methods [26] for deepfake detection are de-
signed to directly process entire videos or single frames, so
to discover whether faces have been manipulated. Several
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Figure 2. Pipeline of SurFake for deepfake detection. After extracting the face crop from the image, we generate its Global Surface
Descriptor (GSD) through UpRightNet [40] and we scale the generated vector values in [0, 255] to obtain an RGB image. Then, we
concatenate the face crop and the GSD feature at the last channel and we pass it in input to a classifier. Finally, we train the classifier to
distinguish whether the content is real or fake.

works exploit handcrafted features from artifacts and incon-
sistencies of the fake generation process. Xian et al. [41]
proposed to preprocess images to remove low level noise
cues of GAN images, and so a forensic model is forced
to learn more intrinsic features. This method allows better
generalization capability than previous deepfake methods
[5,42]. Amerini et al. [4] leveraged the optical flow in order
to look at motion discrepancies, which are found across syn-
thetically generated frames, and finally to classify them as
original or deceptive. Li et al. [21] utilized an advanced ar-
chitecture named HRNet to detect the blending boundary of
Deepfakes manipulated images. Guo et al. [13] introduced
a CNN model named SCnet to detect Glow-based facial
forgery by learning high-level features through a hierarchi-
cal convolutional block. Zhao et al. [45] proposed to look
at source feature inconsistency within the forged image with
the hypothesis that a pristine image should contain the same
source features across locations. Instead of learning GAN
fingerprints on fakes [43] or visual self-inconsistencies via
recorded photo metadata [16], Maiano et al. [24] exploited
depth inconsistencies located inside tampered face images
to detect manipulations. Other approaches, instead, utilize
recurrent networks, e.g. RNNs or LSTMs, to look at visual
artifacts within single video frames or temporal inconsis-
tency across frames. Sabir et al. [31] leveraged the use of
spatio-temporal features of video streams to detect deep-
fakes, as temporal coherence is not innate in deepfake gen-
eration. Güera et al. [12] extracted frame-level features with
a CNN and fed them into an LSTM to create temporal se-
quence descriptors, which are finally trained to be classified
as real or fake. Different methods have also been proposed
to exploit visual or behavioral inconsistencies, hardly re-
movable when generating fakes. Based on the fact that a
person in deepfakes has a lot less frequent blinking than
that in untampered videos, Li et al. [22] proposed to crop
eye areas of video frames on which features are extracted
and then fed into an LSTM, and so to predict the probability
of eye open or close. Caldelli et al. [7] proposed to leverage
the optical flow to account for facial motion since artificial

parts of the face contain some intrinsic dissimilarities with
respect to natural expressions. Becattini et al. [6] found dis-
crepancies in face alignment by looking at the head orienta-
tion, i.e. roll, pitch and yaw. Liang et al. [23] extract geom-
etry facial features as peculiarities around the landmark to
be discriminated between pristine and manipulated regions
(e.g. spatial relationship, appearance, shape). Such features
are fed into a CNN-LSTM network, and, finally, a decoder
learns to map low-level features to pixel-wise manipulation
localizations along with a softmax classifier to detect real
and fake. Sun et al. [34] exposed abnormal facial movement
patterns and time discontinuities by means of precise geo-
metric features of facial landmarks, by making a proper cal-
ibration step, which is performed through a Lucas-Kanade
operation to track landmark points and merge the detection
and the prediction using a Kalman filter. Differently, we do
not make use of segmentation face model [23], facial land-
marks, or calibration steps [34]. We consider the Global
Surface Descriptor (GSD) of the face, which is a feature
describing the geometry of the face. However, in contrast
to [6], which leverages head pose estimation with respect to
the camera, we use a description of surface orientations at
a pixel level by characterizing surface normals in a global
up-right reference system that is inherently obtained along
with the camera orientation.

3. The proposed method

In this section we will introduce the proposed method,
named SurFake, which exploits inconsistencies in the fea-
tures of surfaces belonging to the acquired scene to perform
deepfake detection. Our pipeline is organized into three
steps as depicted in Figure 2: first, we perform face de-
tection on each video frame using dlib [18] obtaining a face
crop with a fixed resolution of 224× 224. Secondly, we run
a pretrained UpRightNet [40] on face crops to extract fea-
tures (see Section 3.1 for details) in order to get the Global
Surface Descriptor (GSD). Finally, the concatenation of the
RGB face crop and the GSD feature which constitutes a 6-
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Figure 3. Sample frames (first row) and the corresponding Global Surface Descriptors (second row) and log(GSD) (third row) for each
of the 5 different forgeries in FF++, from left to right: Real, DF, F2F, FSH, FS, NT [30]. The third row highlights how GSD is sensitive to
forgeries.

channel tensor is used to train a deep convolutional neural
network to perform the binary classification task required to
detect deepfakes.

3.1. The Global Surface Descriptor (GSD)

In order to extract subtle scene details, we face deep-
fake detection from a new perspective. In contrast to look-
ing for inconsistencies in the visual perception domain, we
highlight anomalies by looking into the geometrical aspects
related to the camera acquisition process. Such aspects per-
manently mark low-level peculiarities of the image without
visually affecting the content. Therefore, tampered images
may contain fine-grained distortions which do not stand in
the visible space. Typically, deepfakes depict a person in
the foreground whose entire face (or some of its parts) has
been tampered with. The idea behind our approach is to ad-
dress forgery detection by focusing on the surface geometry
of the face. To do that, we employ a deep learning model
named UpRightNet [40] to estimate such geometrical char-
acteristics presented by the oval surface of the face but also
by other different surfaces such as the chin, the nose, the
eye sockets or any headgear. UpRightNet is a neural net-
work that learns to estimate the 2DoF camera orientation,
i.e. roll and pitch, from a single RGB image using interme-
diate representations, called surface frames, estimated from
both the local camera and the global up-right coordinate
systems. Let us suppose to predict the per-pixel surface nor-
mals of an indoor image in the camera perspective. Surface
normals on the ground and other horizontal surfaces point

in the same direction as the camera up vector, instead, walls
and other vertical surfaces are perpendicular to the up vec-
tor. Thus, camera orientation can be estimated as finding
the vector which is most parallel to the ground normals and
most perpendicular to the wall normals. UpRightNet solved
the camera orientation problem by computing the rotation
that best aligns the two estimated representations of the sur-
face frames. A surface geometry frame F(i) is estimated
from each pixel i, as a 3× 3 matrix of mutually orthogonal
unit vectors, that is normals, tangents and bitangents respec-
tively: F(i) = [n(i), t(i),b(i)] with n(i), t(i),b(i) ∈ R3.
UpRightNet estimates two surface frames, one in the lo-
cal camera coordinate system, Fc(i), and one in the global
up-right coordinate system, Fg(i). In order to predict roll
and pitch of the camera, UpRightNet aligns the up-vector in
the two representations, by using the z-component of Fg(i),
i.e. fgz (i) ∈ R3. Such alignment is computed by learning
weights to solve a constrained least squared problem using
ground-truth camera orientations. Due to the fact that the
feature fgz (i) substantially provides a 3-channel global de-
scription of the surfaces belonging to the acquisition scene,
we have considered that it could be a good candidate to pos-
sibly give evidence of a manipulation. Such a feature, de-
nominated Global Surface Descriptor (GSD), will be anal-
ysed more in depth within the next sub-section.

3.2. Analysis of Deep Geometric Representations

This section presents how UpRightNet features can be
useful in the context of deepfake detection; in Figure 3
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we depict an example of a pristine face crop along with
various face manipulations methods implemented in Face-
Forensics++ [30] (first row). We also show, in the second
row the corresponding GSD feature extracted by UpRight-
Net after passing the face image in input. Finally, in the
last row, we enhance the colorization of GSD in order to
visually highlight how the GSD feature could be useful to
detect anomalies by depicting the logarithm of the feature.
In fact, upon a visual inspection, the GSD features may ap-
pear similar to each other for different faces, even appearing
uniform regardless of the content. This is due to the fact that
the faces are typically framed frontally in the global upright
coordinate system. Similarly to global representations es-
timated for indoor images, the light green pixels stand for
surfaces whose normals are perpendicular to the up-ward
vector, e.g. the walls in a room, just like most of the face
pixels too. There are also other parts of the image which
are sometimes colored with shades of red and dark green,
that encode surfaces parallel to the ground of a room. In
our face domain, pixels with normals parallel to the ground
are located at the top and at the bottom of the image. There-
fore, the geometry estimated for face images is quite con-
sistent with indoor environments. However, we would like
to demonstrate how this geometry, i.e. our proposed GSD
feature, is useful in our task. To this aim, we here highlight
anomalies, by calculating the logarithm of each image pixel
on the first of the 3 channels and we plot the results in the
third row in Figure 3, for each face manipulations.
First of all, we generally observe that some artifacts are
added or exaggerated at the top of the image for all ma-
nipulations, which explains that any alteration produces un-
avoidable patterns (see the yellow color and the surrounding
parts located at the top of the images in the third row, i.e. the
forehead). In the face swapping approach the alterations
are mainly reported around the outer facial landmarks for
FS and FSH. Interestingly, the latter is also a more recent
learning-based face replacing method than the well-known
DF, where the face looks almost flat. As soon as facial ex-
pressions are tampered (i.e. by performing either F2F or
NT) and small parts are faked, e.g. mouth or eyes, other rel-
evant regions are also compromised, e.g. cheeks and hair.
Although the GSD feature may look scarsely informative at
once, we argue that such subtle details can come up more
visible for a neural network trained to detect these synthetic
patterns, in the sense of anomalies in the geometric estima-
tion of the face.

4. Experimental results

In this section, we will present the experimental results
carried out in order to verify the effectiveness of the pre-
sented approach and, in particular, of the GSD feature.

4.1. Implementation Details

Dataset We conduct experiments on FaceForensics++
(FF++) [30], one of the most widely used datasets for
deepfake detection. It has collected 1000 original real
videos from the internet and for each video 5 different
forged versions are generated. This dataset comprises
two types of face manipulation techniques: face swap-
ping, in which the face identity in the source image is re-
placed with the target one, and face reenactment, in which
the facial expression in the source image is altered from
the one in a target image, while maintaining the iden-
tity. FaceForensics++ includes three swapping methods,
DeepFakes (DF) [1], FaceShifter (FSH) [20] and FaceSwap
(FS) [2], and two reenactment methods, i.e. Face2Face
(F2F) [38] and NeuralTextures (NT) [37]. In particular,
two of these manipulations are computer graphics-based ap-
proaches (Face2Face and FaceSwap) while the other three
are learning-based approaches (DeepFakes, FaceShifter and
NeuralTextures). Specifically, NeuralTextures operates by
only altering the mouth region, i.e. eye parts are unchanged
while FaceShifter is a recent learning-based approach. It
generates high fidelity identity preserving face swap results
being able, differently from the other two face swapping
methods, to deal with facial occlusions using a double syn-
thesis stage.

Overall, there are 1000 forged videos for each face ma-
nipulation, for a total of 5000. The image resolutions vary
across videos, from 272 × 480 up to 1920 × 1080. Face-
Forensics++ provides raw videos, and two versions com-
pressed using the H.264 codec, i.e. light compression (c23),
which is nearly lossless, and heavy compression (c40). For
all our experiments we choose the c23 videos, which is in-
dicated from the dataset authors as HQ (high quality).

Data preparation To reduce the computational burden
and exclude redundancies, we sample one frame out of ten
in each video sequence. For all our experiments we fol-
low the 72:14:14 data split, respectively for train, validation
and test sets, as indicated in [30], i.e. 720, 140 and 140
videos. Following [30], 224 × 224 face crops are obtained
by first extracting a 1.3-factor enlarged crop centered at the
detected face in the input image and then scaling it to the
fixed resolution. We consider face crops of such a resolution
as it is a standard image dimension that can be processed
into most of the existing architectures. Since UpRightNet
gets input images of 288× 384 and generates outputs at the
same resolution, we adapt face crops to such dimension in
order to extract the Global Surface Descriptor (GSD) and
then we rescale to 224 × 224, as done in [40]. Among the
UpRightNet pretrained weights on InteriorNet and ScanNet
(i.e. two indoor image datasets), we chose the former one
since this model estimates a more coherent representation
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Figure 4. T-SNE [39] plots of the GSD feature activations for real and fake samples of the test set for each of the different forgeries
(MobilNetV2 architecture). Only a reduced number of samples is plotted for the sake of visibility.
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Figure 5. ROC Curve of GSD features for real and fake using
MobileNetV2 as classifier. We also reported the Area Under Curve
(AUC) for each forgery.

of GSD than the latter, in accordance with the true geome-
try in the face domain in terms of normals perpendicular or
parallel to the global upright coordinate system (see Section
3.1).

Architectures In order to classify images as real or fake
we train 4 different well-known and standard architectures:
ResNet50 [14], MobileNetV2 [32], EfficientNet-B0 [36]
and Xception [10] with pretrained weights on ImageNet.
Since we are using a neural network pretrained on classical
RGB images from ImageNet, we modify the first convolu-
tional layer, which gets the input, to handle a different type
of data, i.e. the 3-band GSD feature and also a different
number of input channels, as our approach is employing a
total of 6, i.e. the first 3 channels for the RGB concatenated
to the second 3 additional ones from GSD. Besides, to make
the training more stable and to allow the model to converge
faster, we make a proper weight initialization. By follow-
ing [24], we calculate the average of the three original input
channels from the pretrained model and we replace this ini-

FF++ forgeries
Architectures DF F2F FSH FS NT Avg

ResNet50 0.766 0.725 0.735 0.690 0.674 0.718
MobileNetV2 0.800 0.773 0.756 0.764 0.713 0.761

EfficientNet-B0 0.802 0.773 0.761 0.754 0.707 0.759
Xception 0.796 0.759 0.759 0.747 0.726 0.757

Table 1. Performance in terms of accuracy for the GSD feature on
the test set with respect to the different network architectures.

tialization for each and every channel of GSD. We chose
this initialization for all our experiments.

Because each architecture is pretrained on Ima-
geNet, we scale values in [0, 1] and then we normal-
ize with mean [0.485, 0.456, 0.406] and standard devia-
tion [0.229, 0.224, 0.225] for ResNet50, MobileNetV2 and
EfficientNet-B0 respectively. For Xception, we use the Py-
torch implementation and the pretrained ImageNet weights
from [33]. Since Xception accepts inputs at 299× 299, we
upscale our patches to fit that resolution, we scale values in
[0, 1] and we normalize with mean and standard deviation
both set to [0.5, 0.5, 0.5]. Note that we apply scaling and
normalization on the input values for RGB and GSD sepa-
rately.

Training setting We implement SurFake in Pytorch. We
model the deepfake detection as a binary classification
problem and we train each classification network on an
NVIDIA TITAN GTX. Specifically, we use a standard cross
entropy loss with two classes, real and fake, for 30 epochs
and batch size 32. We utilize SGD as optimizer with mo-
mentum 0.9, weight decay 0.0001 and learning rate 0.001.

4.2. Analysis of the proposed GSD feature perfor-
mance

In this section, experimental results to evaluate the ef-
fectiveness of the proposed GSD feature will be presented.
To better understand the capacity to provide distinctiveness
between real and deepfake images, we have considered the
activations obtained at the final layer of SurFake, just before
getting the output decision step. Therefore, we train Mo-
bileNetV2 to detect each face manipulation by using only
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FF++ forgeries

Architectures DF F2F FSH FS NT Average
RGB RGB+GSD RGB RGB+GSD RGB RGB+GSD RGB RGB+GSD RGB RGB+GSD RGB RGB+GSD

ResNet50 0.981 0.984 0.988 0.989 0.980 0.971 0.985 0.986 0.938 0.947 0.974 0.975
MobileNetV2 0.987 0.992 0.990 0.989 0.985 0.989 0.990 0.990 0.958 0.966 0.982 0.985

EfficientNet-B0 0.989 0.992 0.983 0.986 0.982 0.982 0.984 0.985 0.955 0.958 0.978 0.981
Xception 0.976 0.975 0.979 0.979 0.976 0.976 0.977 0.978 0.939 0.939 0.969 0.969

Table 2. Performance in terms of accuracy on the test set for the different architectures with respect to the FF++ forgeries for RGB and
RGB+GSD cases.

our GSD feature as input without RGB. MobileNetV2 con-
tains the initial fully convolution layer with 32 filters, fol-
lowed by 19 residual bottleneck layers and ends with a lin-
ear layer with 1280 dimensional feature. We then plot these
activations, by resorting to T-SNE [39]. As it can be seen in
Figure 4 for all the 5 manipulation techniques of the FF++
dataset, it is possible to appreciate a certain separation be-
tween real samples (black dots) and fake ones (colored dots)
which is coherent for all the different cases. Even though
our proposed GSD features between real and fake are of-
ten uniform (see Figure 3), subtle differences can be per-
ceived using a neural network, while, instead, being almost
invisible to the human eye. The depicted T-SNE in Fig-
ure 4 clearly demonstrates how relevant these GSD patterns
are (similar representations can be obtained with other net-
work architectures). Although we are processing patches
that describe surfaces of faces rather than canonical RGB
face images, a significant amount of test samples have been
correctly separated in the projection space. We also plot
the ROC curves in the test set for all the face manipulations
detected using MobileNetV2, in Figure 5. We deduce that
in all the forgery techniques the AUC (Area Under Curve)
is around 0.85, which is quite interesting considering the
scarce visible information carried on this feature.
Similarly, we have tried to make a quantitative evaluation
of such a phenomenon and we have computed the accuracy
values for all the five different distortions. To do that, we
evaluate our approach, still using GSD features as unique
input to the classification network, and we report our re-
sults for all the 4 architectures. As listed in Table 1, we
can notice that in each case and, above all, coherently for
different kinds of network architectures, an average accu-
racy around 0.75 can be globally achieved. We observe
that GSD exhibits well distinctiveness in most of the ma-
nipulations for all the architectures with high accuracy, e.g.
DeepFakes (DF), Face2Face (F2F) and FaceShifter (FSH)
are well-detected. Performance on NeuralTextures (NT) are
lower than the other manipulations and possibly this is due
to the fact that NT deals with facial reenactment performed
just around the mouth region [30]. Additionally, we report
the ROC curves for each forgery of all the architectures in
Figure 6, which highlights the efficacy of the GSD features
in most cases, as the average Area Under Curve is above
0.80, except for NT which gets an average of 0.77. We can

also observe that EfficientNet-B0 and MobileNetV2 report
higher AUC in most of the forgeries.

4.3. Composing GSD with RGB frames

Hereafter, we will present the results obtained by com-
posing the 3-channel GSD with the RGB frames that are
usually adopted as primary source of information in most
deepfake detection methods. This has been done in order to
understand if the proposed GSD feature is able to provide
an improvement in deepfake detection, thanks to the fact
that it takes into account geometrical components related to
the acquisition scene. In this case the diverse network archi-
tectures have been trained by receiving as input a 6-channel
tensor composed of 3 RGB bands concatenated with the 3
GSD channels. The achieved performances in terms of de-
tection accuracy are listed in Table 2. As it can be seen,
by looking at the last column of the table, a general incre-
ment is registered on average. Due to the fact that accuracy
values are already quite high such improvement is rather
limited but, what is interesting is that it is consistent for all
the five forgeries and coherent for all the different network
architectures that we considered. In particular, if we look
at the NT case that usually appears to be more difficult to
treat, it is possible to appreciate that an overall trend of in-
crement is achieved for all the four networks. It is worth to
point out that for the Xception model a substantial similar
behavior is registered and the GSD feature does not seem
to bring a relevant advancement. Since Xception gets in-
put images of 299 × 299 but our original patches are of
224 × 224, both RGB and GSD have to be upscaled and
fit them to the bigger resolution. That potentially adds in-
terpolation artifacts. Indeed, ResNet50, that can directly
get as inputs the original patches (as well as the other se-
lected architectures), even though it has a different archi-
tecture from Xception but with comparable number of train-
able parameters and performance reported in ImageNet, ob-
tains an overall improvement when RGB is concatenated
along with GSD. EfficientNet-B0, still with a different ar-
chitecture but with similar performance and with one fifth
of the trainable parameters than ResNet50 and Xception,
got more improvement, with an average accuracy across all
forgery manipulations of 0.981 (i.e. +0.3% using the per-
centage notation). Overall, we notice that our approach em-
ploying either EfficientNet-B0 or MobileNetV2 gets more
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Figure 6. Performance in terms of ROC curves on test set of the GSD features for each forgery in all the 4 architectures. We also report the
Area Under Curve (AUC) in the legends.

performance improvement. This is also confirmed, by look-
ing at the ROC curves in Figure 6, where our approach is
only trained with the GSD features. These two architectures
show a superior trend of the ROC curves with respect to oth-
ers, and with the corresponding Area Under Curve values
highest among the manipulations. Such behavior demon-
strates that our proposed GSD feature introduced in a clas-
sification network can benefit the detection of deepfakes.

5. Conclusions

In this paper we proposed a novel deepfake approach
named SurFake able to detect face manipulations at frame
level. To do that, we introduced the use of Global Surface
Descriptor (GSD) as feature that accounts for the camera
acquisition process which marks permanently the image. In
particular, we exploited the characteristics of the surfaces in
which pixels belonging to horizontal or vertical areas of the
image have a proper direction and intensity with respect to
a global coordinate system. We tested SurFake with 4 dif-
ferent architectures on FaceForensics++, which contains 5

different face manipulations. We demonstrated that our pro-
posed GSD features alone allow a classifier to reach around
75% of accuracy on average; furthermore, we tested our
proposed pipeline by using RGB frames and GSD together
as input and we got an overall improvement, though limited,
for all the diverse face manipulations.

As future works, we consider to deal with larger cropped
patches in order to possibly improve the effectiveness of
GSD and also to make some data augmentations, e.g. ran-
dom crop. We will investigate other geometric information
estimated by UpRightNet methodology, e.g. the local sur-
face geometry which is directly tied to the local coordinate
system. Finally, we will carry out further experiments on
other deepfake datasets.
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