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Abstract

Learning embeddings of any data largely depends on
the ability of the target space to capture semantic rela-
tions. The widely used Euclidean space, where embed-
dings are represented as point vectors, is known to be lack-
ing in its potential to exploit complex structures and re-
lations. Contrary to standard Euclidean embeddings, in
this work, we embed point clouds as discrete probability
distributions in Wasserstein space. We build a contrastive
learning setup to learn Wasserstein embeddings that can be
used as a pre-training method with or without supervision
towards any downstream task. We show that the features
captured by Wasserstein embeddings are better in preserv-
ing the point cloud geometry, including both global and
local information, thus resulting in improved quality em-
beddings. We perform exhaustive experiments and demon-
strate the effectiveness of our method for point cloud classi-
fication, transfer learning, segmentation, and interpolation
tasks over multiple datasets including synthetic and real-
world objects. We also compare against recent methods
that use Wasserstein space and show that our method out-
performs them in all downstream tasks. Additionally, our
study reveals a promising interpretation of capturing criti-
cal points of point clouds that makes our proposed method
self-explainable.

1. Introduction
Recent years have seen major advancements in 3D point

cloud representation learning. It has gained prominence in
a wide spectrum of areas such as robotics [9], computer vi-
sion [19], and animation [13] with a broad range of appli-
cations including shape synthesis and modeling [25], au-
tonomous driving [8], and indoor navigation [28].

Metric learning for good quality point cloud embeddings
is a crucial problem given the unique set of challenges as-
sociated with 3D data, from processing point clouds in var-
ious forms to learning in different spaces. Processing and
developing learning methods for point clouds is one of the
major challenges due to their irregular, unstructured and un-

Figure 1. Critical Points contribute to the point cloud embedding
by capturing global geometry. (a), (b) and (c) represent original
point cloud (first column), critical point set for Wasserstein space
(second column) and Euclidean space (third column) for three ex-
amples (Chair, Monitor & Bed).

ordered nature.
Earlier methods process point clouds by converting them

into regular structures, like volumetric representations [9,
23] or 2D image projections [16, 19] to employ well ex-
plored powerful convolutional techniques. However, these
transformations either incur loss of information or require
high memory and computational complexity. Later, meth-
ods have been developed to learn representations by directly
using raw point clouds [15, 17, 22]. These methods either
process each point individually or try to infer features from
local regions in a point cloud.

The common choice of recent 3D point cloud represen-
tation learning methods is to operate and represent point
clouds as point vectors in Euclidean spaces, where relation
between data points is depicted by either angle or distance.
We all know that the embedding space largely determines
the quality of embeddings, as it depends on how well the
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target space can capture the structure of data. Euclidean
space is confined in its potential to capture complex struc-
ture and possible semantic relations. Realizing these draw-
backs, many works use hyperbolic space [11,12] to capture
this uncertainty and asymmetric relationship for word and
graph embeddings.

As Euclidean space is constrained in its ability to repre-
sent data structures, we need to go beyond Euclidean space
to get more expressive embeddings for point clouds. Re-
cent studies show that many spaces can be embedded into
Wasserstein space with low distortion [4], this reflects how
flexible Wasserstein spaces are. Recently, [3] tries to mimic
Wasserstein distance in Euclidean space for image embed-
dings to build efficient methods along with availing the flex-
ibility of Wasserstein space. Also, there are some latest
methods for getting point cloud embeddings using Optimal
Transport (OT) based distances. [6], motivated by [3], pro-
poses a method to approximate Wasserstein distance by Eu-
clidean norm between two point cloud embeddings. Since
Euclidean space is known for its limited ability, finding iso-
metric low-distortion point cloud embeddings is tough. An-
other work by [10] presents how Optimal Transport based
distances for point cloud reconstruction affect the quality of
learnt embeddings. However, this method utilizes OT based
distances only as a reconstruction loss, which is not enough
to learn complex shapes and fails to capture fine details of
point clouds.

Motivated by aforementioned limitations and inspired
by [4], in this paper, we advocate for mapping point cloud
as a discrete distribution in Wasserstein space. We build a
contrastive learning setup to learn point cloud embeddings.
Leveraging the idea of contrasting point clouds against each
other, we intend to learn common and distinctive features
between same and different distributions, respectively. It
can be applied to both supervised and self-supervised set-
tings. We use Sliced Wasserstein (SW) distance which is a
low-cost approximation of Wasserstein distance due to its
high computational complexity. Along with comparisons
with commonly used distance measures such as L2 norm
and Cosine similarity, we also compare our method against
recent works on point clouds that use OT. The main motive
of this study is to examine the advantages of Wasserstein
space over widely used Euclidean space for point cloud
data. We restrict ourselves from comparing against other
pre-training methods based on powerful transformer archi-
tectures [5, 18, 26, 27] and instead compare with works that
explore ways of extracting point cloud embeddings using
Wasserstein metric. We also show that our learnt features
capture the point cloud structure better than Euclidean em-
beddings and consistently outperform all baselines in mul-
tiple 3D analysis and synthesis tasks. We argue that our ap-
proach of incorporating OT metric in a contrastive learning
setup captures the underlying geometry and global shape

pertaining to critical points (as shown in Figure 1) and fine
details of a point cloud.
Our Contributions:

1. To the best of our knowledge, we are the first to pro-
pose the use of OT metric as a distance measure in
contrastive learning for point cloud data. Unlike, Eu-
clidean embeddings, we represent a point cloud as a
discrete distribution in the embedding space.

2. Using this representation, we design a framework for
learning Wasserstein embeddings for 3D point clouds
endowed by contrastive learning with Sliced Wasser-
stein distances.

3. We perform exhaustive experiments on a wide variety
of downstream tasks over four popular datasets to val-
idate the effectiveness of these embeddings over Eu-
clidean ones and other baselines. We also illustrate the
efficacy of Wasserstein embeddings by visualizing the
3D features captured by the model.

2. Preliminaries

In this section, we briefly present the optimal transport
metric, variants of Wasserstein distance, and contrastive
learning setup which are used in our proposed method.

2.1. Optimal Transport and Wasserstein Distance

Optimal transport aims to solve for the most efficient
way to transport mass between two probability distribu-
tions. Formally, given two probability distributions µ and
ν on a metric space X , for p ≥ 1, the p-Wasserstein dis-
tance is given by

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

c(x, y)pdπ(x, y)

)1/p

(1)

where, π is a transport plan that defines a flow between mass
from µ to locations in ν, Π(µ, ν) is the joint probability
distribution with the marginals µ and ν and c(x, y) is the
ground metric which assigns a cost of moving a unit of mass
x ∈ X from µ to some location y ∈ X in ν. The cost
of moving the mass in µ to match in ν according to the
optimal transport plan π∗, is called the Wasserstein distance
between the two distributions [21].

The above equation can also be written for discrete dis-
tributions, say µ̂ =

∑m
i=1 aiδ(xi) and ν̂ =

∑n
j=1 bjδ(yj)

are two discrete distributions, where, {ai}; i = 1 . . .m and
{bj}; j = 1 . . . n are the probability masses that should sum
to 1, δ is the Dirac delta function and {xi}; i = 1 . . .m and
{yj}; j = 1 . . . n are the support points in Rd with m and
n being the number of points in each measure. Then, the
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Figure 2. Overview of our proposed method. The two main parts are, point cloud encoding as discrete distribution (left) and computation of
Sliced Wasserstein distance (right). The ground metric space is R2. T1(P ) and T2(P ) are two instances of P after random transformations.

discrete version of Equation 1 is

Wp(µ̂, ν̂) =

(
min

P∈U(a,b)
⟨Cp, P ⟩

)1/p

(2)

where, ⟨·, ·⟩ denotes the Frobenius dot-product, C ∈ Rm×n
+

is the pairwise ground metric distance, P is the coupling
matrix and U is the set of all possible valid coupling matri-
ces, i.e. U(a, b) = {P ∈ Rm×n : P1n = a, P⊤1m = b}.

Interestingly, there exists a closed-form solution for
Wasserstein distance only when the distributions are one-
dimensional measures with Lp norm as the cost function.
The closed-form for Wasserstein distance in 1-D is [14]

Wp(µ, ν) =

(∫ 1

0

|F−1
µ (t)− F−1

ν (t)|pdt
)1/p

(3)

where, F−1
µ and F−1

ν are the inverse cumulative distribution
functions of µ and ν.

Generally, we are more interested in dimensions greater
than one. Thus, we cannot use this closed-form solution
directly to solve the OT problem efficiently. Instead, the
Wasserstein distance between two measures on Rd can be
approximated by aggregating the 1-D Wasserstein distance
between their projections over multiple directions on a unit
sphere, which is called the Sliced Wasserstein distance [14]:

SWp(µ, ν) =

(∫
Sd−1

Wp(Pθ,#µ, Pθ,#ν)
pdθ

)1/p

(4)

where, Sd−1 = {θ ∈ Rd : ∥θ∥ = 1} is the d-dimensional
unit sphere and Pθ : Rd → R is the projection. Since the

projections are now 1-D measures, we can use the closed-
form solution given by Equation 3. When m = n, the
Sliced Wasserstein distance can be easily computed by sim-
ply sorting points in 1-D measures and can be given by:

SWp(µ̂, ν̂) =

(
1

D

D∑
k=1

m∑
i=1

|xαθk
(i) − yβθk

(i)|p
)1/p

(5)

where, αθk and βθk are the permutation ordering in the in-
creasing order of the support points projected to the direc-
tion θk with D being the total number of directions.

2.2. Contrastive Learning

Contrastive learning aims to learn an embedding space
that encourages augmentations of the same input sample to
have similar representations and of different samples to be
dissimilar. [2] is an early example of using contrastive learn-
ing in a supervised learning setup which takes pair of sam-
ples as input to the network.

On the other hand, the contrastive loss introduced by [1]
is named as SimCLR. It follows batch-wise training and is
operated in self-supervised setting. For this setup, the dis-
tance is reduced between the sample and its augmentations.
Later, [7] proposed the extension of SimCLR for supervised
setup. It additionally aims at reducing the distance between
a sample and other samples from same class in a supervised
setting.

3. Our Method
In this section, we discuss our method of computing

Wasserstein embeddings for point clouds in a contrastive
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learning setup as shown in Figure 2. We build an in-batch
contrastive learning setup which can either be fully super-
vised or self-supervised and can be used as a pre-training
methodology for any downstream task. The goal is to repre-
sent samples from same class closer than the samples from
different classes in the embedding space (larger inter-cluster
and smaller intra-cluster distance). Here, the choice of em-
bedding space plays a key role for desirable performance,
as individual metric spaces can embed data differently and
represent different types of semantic structure.

3.1. Contrastive Learning with Optimal Transport

Let O = {(Pm, lm)}; m = 1 . . .M be a collection of
point clouds Pm = {pi}; i = 1 . . . Nm , where, pi ∈ R3

with their corresponding class labels lm ∈ L, where L =
{1, . . . C} is a set of class labels. Each point cloud Pm con-
tains Nm number of points defined by 3D space points in x,
y and z direction. For defining the batch-wise contrastive
loss, we first randomly draw K samples from the collec-
tion O, that form a batch B = {(Pm, lm)k}; k = 1 . . .K.
For every point cloud Pm ∈ B, we apply fixed set of
random transformations T1 and T2 to get two instances of
Pm (as shown in Figure 2), giving an augmented batch
B′ = {(P ′

m, lm)k′}; k′ = 1 . . . 2K. The augmented batch
is twice the size of the original batch. The point clouds P ′

m

indexed at k′ and k′ + 1 are augmented version of the point
cloud Pm indexed at k. As these are augmented versions of
Pm[k], their class labels are lm[k′] = lm[k′+1] = lm[k].

The input to the encoder is an augmented batch B′, from
which all P ′

m needs to be mapped to the embedding space
depending on its geometric features and appearance, with
samples having same class label being closer. The encoder
represents function f : RNm×3 → W(X ), that maps a point
cloud P ′

m to the Wasserstein space W(X ), with Wp being
the distance metric on W(X ) and X being the ground met-
ric space. We choose R2, R4 and R8 to be our ground metric
spaces, in which the corresponding embedding z′m of P ′

m is
represented as discrete distribution { 1

S ·xi}; i = 1 . . . S sup-
ported by xi ∈ X with a total of S support points, all with
uniform probability mass 1

S for simplicity. In our imple-
mentation, we obtain z′m by reshaping the encoder’s output,
to obtain the discrete distribution for different ground met-
ric spaces.

Generally, the computation for exact solution of Wp is
costly. To make the computation of optimal transport more
tractable, we replace the distance metric Wp on Wasser-
stein space W(X ) by the Sliced Wasserstein distance met-
ric SW p. SW p is a low-cost approximation of Wasserstein
distance with computational complexity being O(S logS).
For all our experiments, we set the value of p = 2 and num-
ber of slices D = 300.
Supervised Contrastive Loss. In the supervised setting,
for any P ′

m ∈ B′ indexed at k′ with corresponding label

lm[k′], the positive set is defined as A = {P ′
m ∈ B′ : P ′

m =
lm[k′]}. We define our supervised contrastive loss for learn-
ing point cloud Wasserstein embeddings as:

Lsup = −
2K∑
i=1

log

∑
j∈A
j ̸=i

exp(−SW 2
2 (zi, zj))∑

t ̸=i exp(−SW 2
2 (zi, zt))


(6)

The loss tries to minimize the Sliced Wasserstein distance
between the embeddings represented as discrete distribution
of an anchor and all the samples having the same class in
the augmented batch. This can also be easily converted to a
self-supervised version by making necessary modifications.
Self-Supervised Contrastive Loss. Contrary to the super-
vised setting, in self-supervised setting, the class label of
point clouds cannot be used in any way to train the encoder.
Here, the positive set of any P ′

m ∈ B′ contains only the
other augmentation of P ′

m. If i ∈ {1 . . . 2K} be the index
of any P ′

m ∈ B′, then, let j(i) be the index of its other
augmented sample. We define our self-supervised loss for
learning point cloud Wasserstein embeddings as:

Lself = −
2K∑
i=1

log

(
exp(−SW 2

2 (zi, zj(i)))∑
t ̸=i exp(−SW 2

2 (zi, zt))

)
(7)

Here, only the Sliced Wasserstein distance between embed-
dings of an anchor and its augmented sample is minimized.
Other than the augmented sample, the samples having the
same class in the augmented batch are treated as negatives,
which might hinder the overall optimization process de-
pending on the batchsize.

4. Experiments
Representation that is able to capture good geometric in-

formation in a smooth latent space is generally better in var-
ious shape understanding and synthesis tasks. To demon-
strate the representation power of the learned Wasserstein
embeddings compared to Euclidean embeddings and other
baselines, in this section, we present qualitative and quan-
titative evaluations on multiple tasks: point cloud classi-
fication, transfer learning, point cloud segmentation, and
point cloud interpolation with both supervised and self-
supervised pre-training settings.
Datasets. We use ModelNet10 (MN10) and ModelNet40
(MN40) [23] to perform experiments on classification.
MN40 consists of 12311 CAD models with a total of 40
categories, where 9843 objects are used for training and
2468 for testing. We use the data provided by [17], from
which we randomly sample 2048 points for each point
cloud. MN10 is a subset of MN40 dataset having 10 cate-
gories. To evaluate how the learned embeddings perform on
real-world data, we also conduct experiments on ScanOb-
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Table 1. Results of 3D object classification with supervised and self-supervised pre-training on ModelNet10, ModelNet40 and ScanOb-
jectNN (referred as ScanObject) datasets. WPCE and SSW-AE are unsupervised methods and cannot be evaluated for supervised pre-
training (represented by “-”). Bold represents the best result.

Method Supervised Pre-training Self-Supervised Pre-training
ModelNet10 ModelNet40 ScanObject ModelNet10 ModelNet40 ScanObject

CL+L2 90.85 84.64 62.82 90.63 84.72 63.51
CL+Cosine 85.90 70.42 56.11 85.90 72.64 56.45
WPCE - - - 89.97 78.84 52.83
SSW-AE - - - 88.88 76.86 51.29
CL+SW2 (Ours) 91.85 85.90 63.16 91.96 85.73 63.85

jectNN (SO) [20]. It contains object scans with partial oc-
clusions and background, making it a challenging dataset.
It has 2304 objects for training and 567 for testing from
15 categories. For part segmentation, we use ShapeNetPart
(SN) [25] that consists of 16681 point clouds from 16 cate-
gories and 50 part categories in total.

Pre-training. We use a 3-layer MLP followed by a max-
pooling layer as our encoder for classification and segmen-
tation tasks. For interpolation, we consider the encoder
and decoder proposed by FoldingNet [24]. In order to per-
form any downstream task on a particular dataset, the en-
coder is first pre-trained on the dataset using the contrastive
loss explained in Section 3.1 with different distance met-
rics, followed by testing and evaluation of the desired task.
Throughout the experiments, we refer the encoder trained
using our method as CL+SW2. We train CL+SW2 with
ground metric dimensions 2, 4, and 8 and report the results
of the best-performing network. For the transformations re-
quired in contrastive loss, intended towards forming aug-
mented instances, we sequentially compose random scal-
ing, rotation and point jittering. In the case of Euclidean
distance metrics, the encoder function f : RNm×3 → Rd

maps a point cloud to d-dimensional space. We then ap-
ply l2-distance or cosine similarity as distance measures on
these d-dimensional embeddings. For the cosine similarity
metric, we remove the negative sign in the numerator for
Eqs. 6 and 7. Also, note that when training the encoder
with cosine similarity, the embeddings are normalized. We
provided full details in the supplementary material.

Baselines. For computing Euclidean embeddings, we con-
sider L2-distance and Cosine similarity as distance mea-
sures. For these Euclidean metric baselines, we train the
encoder using our loss (Eqs. 6, 7) by replacing SW 2

2 (·, ·)
with the respective metrics. We also consider WPCE [6]
and SSW-AE [10] as our baselines as they are recent tech-
niques that use Wasserstein metric for learning point cloud
embeddings and are the closest comparable works to our
approach. WPCE embeds Wasserstein space into Euclidean
space using a Siamese network. The network is trained in

such a way that the Euclidean distance mimics the Wasser-
stein distance between two point clouds. SSW-AE proposed
to use SW distance and its variants (max SW and adaptive
SW) for reconstruction to learn point cloud embeddings. It
examines the effect of using different reconstruction metrics
and losses for training an auto-encoder architecture on the
learnt embeddings. For a fair comparison, all reported re-
sults (apart from interpolation) of our method and baselines
are using the same encoder architecture.
Hyperparameters. We perform all our experiments on
NVIDIA RTX-2080Ti GPUs using the PyTorch framework
for implementing our models. We set the batch size to
16, and the learning rate as 0.001 with a step learning rate
scheduler, where the learning rate is scaled by 0.7 after ev-
ery 20 epoch. We use the Adam optimizer and set weight
decay to 0.0001 and momentum to 0.9.

Table 2. Results of 3D object classification with supervised and
self-supervised pre-training for transfer learning setup. WPCE
and SSW-AE are unsupervised methods and cannot be evaluated
for supervised pre-training (represented by “-”). Bold represents
the best result.

Method Supervised Pre-training Self-Supervised Pre-training
MN10 to MN40 SN to MN40 MN10 to MN40 SN to MN40

CL+L2 85.37 85.81 84.27 83.83
CL+Cosine 74.51 69.12 75.32 71.47
WPCE - - 77.51 78.03
SSW-AE - - 76.05 76.66
CL+SW2 (Ours) 86.18 86.18 85.61 85.77

4.1. 3D Object Classification

We extract point cloud embeddings from a pre-trained
encoder and use a linear SVM as our classifier for simplic-
ity. Particularly, we fit a linear SVM classifier on the em-
beddings acquired by an encoder on the train split and re-
port the overall classification accuracy on the test split. In
Figure 1, we can see that features captured by Wasserstein
embeddings effectively summarize the overall object geom-
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etry compared to embeddings learned in Euclidean space.
This property also reflects in the classification performance
shown in Table 1. We can observe that for both super-
vised and self-supervised settings, the classification accu-
racy with embeddings extracted by the encoder trained with
CL+SW2 is higher than that of CL+L2 and CL+Cosine.
Thus, compared to Euclidean space, the performance of
SW2 is consistently better on all the datasets, which implies
that embeddings learnt in Wasserstein space can increase
classification accuracy.

We also show that our method is more effective com-
pared to WPCE and SSW-AE. This improvement can be
explained by the difference in the approach of extracting
Wasserstein embeddings, where in, our methodology intro-
duces usage of OT metric to directly operate in embedding
space endowed by contrastive learning. It helps in learning
better representations by exploiting the similarities between
distributions along with utilizing the flexibility of the target
Wasserstein space.

4.2. Transfer Learning

We examine the generalizing ability of the embeddings
acquired by encoders trained with different distance metrics
to unseen classes by performing transfer learning for point
cloud classification. We follow the same process as ex-
plained in Section 4.1 for reporting the overall classification
accuracy. The quantitative comparisons of transfer learning
are shown in Table 2. We perform evaluation in two transfer
learning settings, MN10 to MN40 and SN to MN40. Here,
the encoder is pre-trained on MN10 and SN, followed by
evaluation on MN40. In both settings, the model general-
izes to new unseen classes by wielding the knowledge of ge-
ometry learned during training. We can see that CL+SW2

consistently performs better than other distance measures
and methods in both the transfer learning settings with and
without supervision. Results imply that Wasserstein embed-
dings are better in transferring the knowledge of capturing
geometry for yielding good classification performance.

4.3. 3D Object Part Segmentation

We train a 3-layer MLP network to predict a class label
for all points in a point cloud, where the input to this net-
work is the embedding provided by a pre-trained encoder.
In particular, part segmentation requires a fine-grain under-
standing of the local geometry of the objects. Along with
the global embedding of the point cloud, per-point embed-
dings acquired before max-pooling are stacked together and
passed to the segmentation network. Note that only the seg-
mentation network weights are optimized using the standard
cross-entropy loss, and the encoder’s weights are frozen.
We evaluate the performance using mIoU metric. For mIoU
of each class, the IoUs of all parts from that class are aver-
aged. Instance average mIoU is calculated by taking the

mean of IoUs for all the instances. The comparison of av-
erage instance mIoU and per class average mIoU for both
supervised and self-supervised learning settings are shown
in Table 3. We can see that our results outperform other
distance measures and methods, implying that Wasserstein
embeddings are able to capture better fine-grain local infor-
mation required for the task.
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Figure 3. Ablation Study: Classification for noise model with
Gaussian Noise (top) and points removal using random sampling
(bottom) for our method CL+SW2 and baseline CL+L2.

4.4. Ablation Study: Classification Task

We perform point perturbation and point density varia-
tion to test their effects on the encoders pre-trained with
different distance metrics and report the classification accu-
racy on Modelnet40 as shown in Figure 3. For the point per-
turbation test, we add Gaussian noise to input point clouds,
with standard deviation of noise varying from 0.01 to 0.1.
We can observe that for all noise levels, even with severe
distortion, CL+SW2 performs well than that of CL+L2.
This implies that discrete representation learnt in Wasser-
stein space is less prone to performance degradation due to
noise in inputs. Further, for varying density test, we ran-
domly sample 8192, 4096, 2048, 1024, 512, 256, and 128
points from input point clouds and perform evaluation on
them. We can observe that CL+SW2 consistently does bet-
ter than CL+L2. This shows Wasserstein embeddings are
robust towards missing points in the input point cloud.
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Table 3. Results of part segmentation on ShapeNetPart dataset with supervised (Sup) and self-supervised (S-Sup) pre-training. Bold
represents the best results, and underline represents the second best.

Method Pre-Train mIoU aero bag cup car chair
ear

phone guitar knife lamp laptop motor mug pistol rocket
skate
board table

CL+L2 Sup 77.61 73.54 62.76 72.41 64.75 82.42 65.41 88.95 83.01 75.83 93.52 43.03 83.25 74.87 46.01 62.39 77.54
S-Sup 78.94 75.40 62.74 72.67 67.73 84.73 68.02 89.19 83.35 76.98 94.48 43.15 84.19 75.11 49.60 67.81 77.91

CL+Cosine Sup 74.75 67.80 62.13 78.66 66.26 80.00 61.14 86.47 79.34 74.25 92.24 48.70 84.91 70.82 45.63 63.97 73.12
S-Sup 78.49 72.51 68.09 71.44 68.35 84.47 63.38 88.69 80.30 75.94 94.45 48.81 88.56 74.08 47.37 69.12 77.90

WPCE S-Sup 79.92 77.47 69.06 74.22 66.59 86.79 66.23 89.30 81.77 75.97 94.60 42.29 88.71 74.33 41.05 67.39 79.28
SSW-AE S-Sup 75.20 68.83 59.61 69.65 64.23 81.98 62.00 86.92 80.27 73.70 92.82 38.46 85.12 68.26 43.97 60.65 73.69

CL+SW2 (Ours) Sup 81.40 80.50 64.69 74.41 70.97 87.34 69.71 89.34 82.96 77.59 95.31 57.28 88.03 77.14 53.18 69.60 79.84
S-Sup 81.17 78.98 66.90 77.98 70.35 86.91 70.57 89.39 82.85 77.99 94.77 56.20 87.18 76.10 53.98 69.60 80.10

4.5. 3D Shape Interpolation

We further examine the quality of our learnt space by
performing shape interpolation between inter and intra class
point cloud instances. The main aim of conducting this task
is to examine which learnt space is capable of capturing ge-
ometric and structural information needed to generate con-
sistent interpolations of 3D point clouds. One can inspect
the quality of latent space by examining the smoothness of
an interpolation path or the quality of the in-between gener-
ated samples in terms of noise. As interpolation is a synthe-
sis task, we need a decoder network to reconstruct the object
given its embedding. For this, we train an encoder-decoder
network with our contrastive loss (Eq. 6) on the embeddings
for the encoder, along with a reconstruction loss for the de-
coder. We use the encoder and decoder proposed by Fold-
ingNet [24], which learns to deform a unit sphere and take
the shape of a 3D object’s surface. We found that optimiz-
ing the network for learning discriminative features as well
as detailed reconstruction is difficult. As our contrastive
loss aims to pull point clouds closer with similar global rep-
resentations, it becomes difficult to accurately reconstruct
the input point cloud without fine-grain characteristic infor-
mation. A simple way to deal with this issue is to assign
weightage to the individual loss terms, with the weights
summing to 1. In order to train an encoder-decoder net-
work, the total effective loss is defined by taking a weighted
sum of our contrastive loss and a reconstruction loss, with
weights being 0.2 and 0.8, respectively. We use Chamfer
distance as the reconstruction loss. Interpolation results are
shown in Figure 4. We can see that the interpolations done
using Wasserstein embeddings follow a smooth path with
relatively less noisy points. For example, in Figure 4 (a),
we can see that for Euclidean (in step 2 to 3), the interpo-
lated sample suddenly takes the shape of a lamp. Whereas
the interpolation path is smoother for Wasserstein. Similar
trend can also be observed in Figure 4 (b), where for Eu-
clidean, the source chair suddenly transforms (in step 2 to 3)
to take the shape of the target chair, whereas in Wasserstein,
legs of the chair smoothly morph to become the base of tar-
get chair. We evaluate the quality of interpolated samples

based on the noise present in them. For each interpolated
sample, we compute the following noise measure

Lnoise =

√√√√ 1

Nm

Nm∑
i=1

∥∥∥∥pi − 1

ne

∑
N (pi)

∥∥∥∥2 (8)

where, N (pi) gives a set of neighboring points for pi
that has a cardinality of ne = 20. For a given point cloud,
the noise measure computes neighborhood variation vectors
around every point and aggregates their squared norm to
give an overall score of smoothness. A lower noise measure
implies that the point cloud has a smooth surface and has
less noise. In Table 4, we report the noise measure of the
interpolated samples shown in Figure 4. Most of the inter-
polated samples from Wasserstein space have lower values
of noise measure. We provide more results for interpolation
in our supplementary material.

Table 4. Noise measure for interpolation results shown in Figure
4. Bold values represent smoother surfaces having less noise. The
values are scaled by a factor of 103.

Figure Method Step 1 Step 2 Step 3 Step 4

4 (a)
Euclidean 30.2 35.6 36.7 35.4

Wasserstein 29.6 32.1 32.6 31.4

4 (b)
Euclidean 29.3 29.9 30.2 28.0

Wasserstein 29.7 29.1 29.4 27.7

4.6. Explainability

We investigate what makes Wasserstein embeddings per-
form better, as shown in the downstream tasks. We visual-
ize and compare the features captured by Wasserstein em-
beddings and Euclidean embeddings in Figure 1. These
features are called critical points, as shown by [15]. The
embedding of a point cloud is completely determined by
these subset of points. The embedding for a point cloud
would be the same, as long as the set of critical points is
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Figure 4. Linear Interpolation between source and target for two examples (a) Car to Lamp, (b) Chair to Chair from ShapeNet. The left
and the right most represent original point clouds. The top row of each example shows results of reconstruction after interpolating two
point cloud embeddings in Euclidean space. The bottom row of each example provides interpolation results in Wasserstein space. All rows
follow the ratio of 0.8, 0.6, 0.4, and 0.2 (from left to right) with respect to the source.

unchanged. For a given point cloud, the critical points are
those 3D points that contribute to the global embeddings af-
ter the max pooling layer. This implies that the number of
critical points cannot be greater than that of the embedding
size. The selection of critical points is extremely impor-
tant, as they solely decide the embedding of a point cloud.
This makes it clear that for good quality embeddings, crit-
ical points should best describe the given point cloud. In
Figure 1, we can see that the network intelligently tries to
summarize the point cloud by choosing boundary points as
the critical points. Our Wasserstein embeddings are able to
capture the full skeleton structure of the given point cloud,
whereas critical points captured by Euclidean embeddings
are comparatively poor with uneven distribution and miss-
ing parts. Thus, we can say that Wasserstein spaces are in-
deed better at preserving and capturing geometric structures
amenable to the optimization task. We provide more exam-
ples in our supplementary material.

5. Conclusion
In this paper, we proposed to represent point clouds as

discrete probability distributions in the Wasserstein space.

We built a contrastive learning method to learn Wasserstein
embeddings for 3D point clouds. Our proposed method
can be used as a pre-trained model in supervised and self-
supervised settings for any downstream task. Empirically,
we found that representations learnt using our pre-training
of contrastive learning with Sliced Wasserstein distance
captured the structure and underlying geometry better than
standard Euclidean embeddings. With improved embed-
dings, our method outperformed all the existing methods,
including our baseline with L2 norm and Cosine similarity
for all the downstream tasks (classification, segmentation,
transfer learning, interpolation). We also show an interest-
ing study of our self-explainable method by capturing crit-
ical points of point clouds better than embeddings in Eu-
clidean space. For future work, a possible direction is to ex-
plore other related problems, such as domain adaptation for
point clouds using optimal transport. Another interesting
aspect is to consider complex datasets including multiple
objects and scenes of point clouds.
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