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Abstract

The image annotation stage is a critical and often the
most time-consuming part required for training and evalu-
ating object detection and semantic segmentation models.
Deployment of the existing models in novel environments
often requires detecting novel semantic classes not present
in the training data. Furthermore, indoor scenes contain
significant viewpoint variations, which need to be handled
properly by trained perception models. We propose to lever-
age the recent advancements in state-of-the-art models for
bottom-up segmentation (SAM), object detection (Detic),
and semantic segmentation (MaskFormer), all trained on
large-scale datasets. We aim to develop a cost-effective la-
beling approach to obtain pseudo-labels for semantic seg-
mentation and object instance detection in indoor environ-
ments, with the ultimate goal of facilitating the training of
lightweight models for various downstream tasks. We also
propose a multi-view labeling fusion stage, which consid-
ers the setting where multiple views of the scenes are avail-
able and can be used to identify and rectify single-view in-
consistencies. We demonstrate the effectiveness of the pro-
posed approach on the Active Vision dataset [1] and the
ADE20K dataset [27]. We evaluate the quality of our label-
ing process by comparing it with human annotations. Also,
we demonstrate the effectiveness of the obtained labels in
downstream tasks such as object goal navigation and part
discovery. In the context of object goal navigation, we de-
pict enhanced performance using this fusion approach com-
pared to a zero-shot baseline that utilizes large monolithic
vision-language pre-trained models.

1. Introduction

In recent years, there has been an increased interest in
the design and evaluation of embodied agents (e.g., mobile
robots) that operate in indoor environments such as restau-
rants, households, and hospitals. These embodied agents
often need to perform tasks such as object goal navigation

*Equal contribution

Figure 1. This diagram gives an overview of our contribu-
tions. Starting from an RGB-D dataset, we propose a labeling
approach for semantic segmentation annotations. On top of the se-
mantic segmentation results, we additionally proposed two down-
stream tasks for robot navigation. We build top-down-view seman-
tic maps and use them for zero-shot semantic-goal navigation. We
proposed an object part segmentation task for the ’cabinet handle’
related to the robot mobile manipulation task.

or fetch and delivery tasks, both of which require navigating
to objects specific by natural language. Towards this end,
various indoor scene datasets of real-world interiors have
been recently used [1,21,23]. The perception in these tasks
relies on the ability of the agent to detect objects of inter-
est. Obtaining dense semantic annotation of indoor scenes
is challenging and time-consuming; The tasks of instance
segmentation and semantic segmentation require pixel-level
accuracy. For example, it has been reported that labeling
HM3D dataset [23] took over 14,200 hours of human effort
for annotation and verification by 20+ annotators. Since
the indoor environments have a more diverse set of objects
compared to the autonomous driving datasets, choosing the
object category from over 1K object categories adds to the
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complexity of the task.
In this paper, we explore the effectiveness of fusing

the predictions from existing state-of-the-art models for
bottom-up class-agnostic image segmentation [11], object
detection [28] and semantic segmentation [3] to obtain in-
stance and semantic segmentation. While the class agnos-
tic image segmentation model SAM [11] produces accurate
boundaries, it requires either a good bounding box hypothe-
sis for the classes or a dense point initialization of the input
image to generate segmentations. Hence, we exploit the ac-
curate boundaries of SAM, jointly with the object detection
model [28] and the semantic segmentation model [3] to get
labels and masks for foreground and background classes re-
spectively. We demonstrate the effectiveness of this labeling
approach by evaluating the resulting labels using human-
annotated labels and through the performance of agents that
utilize our approach for various downstream tasks. Our con-
tributions are as follows:

• We design a labeling approach that fuses predictions
from the state-of-the-art semantic segmentation and
object detection models to obtain semantic labels for
the class-agnostic image segmentation.

• We further refine the single-view labeling by enforc-
ing multi-view semantic consistency on Active Vision
Dataset [1] (densely sampled multi-view dataset of in-
door scenes) and evaluate the effectiveness of our ap-
proach by directly comparing it to the labels obtained
with human annotations.1

• We demonstrate the effectiveness of our approach in
evaluating the performance of the object goal naviga-
tion task and part discovery on the AVD dataset, which
utilizes the fused segmentation results.

2. Related Work
Label Propagation. The idea of propagating labels be-
tween different views of the environment has been used ex-
tensively as a means of obtaining additional training exam-
ples for either contrastive learning or fine-tuning existing
models semantic segmentation models. Label propagation
has been used for scene completion in indoor scenes [19,26]
and in videos [2, 19]. labeling pixels covering a range of
categories from small objects to large furniture and back-
grounds. Authors in [26] model the 3D environment im-
plicitly as a neural radiance field. Label propagation has
also been used for gathering more training data either by
directly using the available motion information [6] or by
training models to predict motion [29]. However, the ap-
proaches that utilize label propagation in one form or an-
other either assume that at least a few human-annotated la-
beled frames are available, keep the number of labels fixed
1The resulting annotated dataset will be made publicly available.

and relatively small, and strive to train or fine-tune a single
model.

Domain Adaptation. Additional labels have been ob-
tained in the past by training a model in a source domain
of a particular environment (e.g., indoor) and then adapt-
ing the trained model to another domain of the same envi-
ronment [9]. While this does increase the performance of
the model for the known classes, the classes novel to the
model are missed entirely. Most, if not all, unsupervised or
self-supervised domain adaptation approaches to target the
autonomous driving domain, which has smaller view-point
variations and less challenging occlusions [22, 24, 25] and
does not utilize association between multiple views from
the environment.

Open-Vocabulary Object Detection. The powerful large
multi-modal vision and language models [18] have been
used effectively for semantic segmentation [13] or as open
vocabulary object detectors in zero-shot setting in multiple
recent works on object goal naviation [4, 7, 10, 17]. These
approaches mainly leverage (1) open-vocabulary (as op-
posed to the traditional fixed-category methods), (2) joint
embedding space (for vision and language representations),
and (3) large-scale pre-training on 400 million images of
models like CLIP. For instance, CLIP-Nav [4] has applied
this technique to a variation of Vision-and-Language Navi-
gation (VLN) task, while CLIP on Wheels (CoW) [7] ap-
proach introduces a model for zero-shot semantic goal nav-
igation. It combines classical frontier exploration with the
generation of CLIP heatmaps, achieved by calculating the
dot product between egocentric visual embeddings and tar-
get object text embeddings. Upon detecting the target ob-
ject during exploration, the approach projects its pixels onto
a map, facilitating straightforward robot navigation toward
the goal.

While zero-shot navigation-based approaches have been
aiming to eliminate the need for domain adaptation and
enable open-vocabulary navigation, there is still signifi-
cant room for improvement of observed poor zero-shot
performances. We think a fundamental issue is the re-
liance on dot-product scores when comparing the holis-
tic vision and language-embedded representations in joint
high-dimensional embedding space. Due to the nature of
the representations these models learn, it is difficult to scru-
tinize the details of concepts/categories covered during pre-
training and the frequency of those samples. We hypothe-
size that fusing the predictions from the state-of-the-art per-
ception models and building a richer semantic map, includ-
ing long-tail object instance predictions, could be more ef-
fective in downstream tasks as a trade-off between the fixed-
category and zero-shot open-vocabulary approaches.
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3. Preliminaries

We briefly review three main components of our labeling
approach.
Segment Anything Model (SAM) [11] SAM is a Vision
Transformer (ViT) based model trained extensively on a
very large dataset of 1 billion masks from their SA-1B
dataset. SAM accommodates diverse input prompts, in-
cluding points, bounding boxes, and dense point grids, and
returns boundaries corresponding to the prompts. Such
prompts provide a coarse estimation of what to segment in
an image, which enables SAM to undertake a wide range
of segmentation tasks without the need for additional train-
ing. A notable strength of SAM is its innate grasp of what
constitutes an object, which enables zero-shot generaliza-
tion to unfamiliar objects that are commonplace in indoor
environments.
Object Detector (Detic) [28] The Detic model is an object
detector that can efficiently identify 21,000 object classes,
including many previously considered challenging. Lever-
aging the idea of training object detectors in a Weakly-
Supervised manner, Detic is trained on the ImageNet-21K
dataset and sidesteps the traditional reliance on assigning
labels to bounding boxes. Using text embeddings from
CLIP [18] and a classifier based on concept recognition,
Detic recognizes objects beyond predefined categories, en-
hancing its adaptability. The model accommodates various
categories from various datasets such as COCO [15], Open-
Images [20], and LVIS [8]. Because of its use of CLIP text
embeddings for class specification, the model can also be
adapted to incorporate a custom vocabulary.
MaskFormer [3] The MaskFormer model presents a novel
approach to tackling semantic and instance segmentation
tasks using a unified mask classification framework. Mask-
Former employs a Transformer decoder to compute a set of
pairs comprising class predictions and mask embeddings,
with the mask embeddings used to compute binary mask
predictions. The model excels in handling datasets with
diverse categories. It achieves a new state-of-the-art per-
formance on the ADE20K dataset, outperforming per-pixel
models with similar backbones.

4. Labeling Approach

The proposed labeling approach is tailored for indoor
scene datasets featuring high-resolution images of cluttered
environments, including diverse object types. The single-
view labeling stage leverages the open-vocabulary object
detection Detic [28], the state-of-the-art semantic segmen-
tation model MaskFormer [3], and the foundational seg-
ment anything model SAM [11] to annotate all the images
with pixel-wise labels. When presented with depth im-
ages and corresponding camera poses, the integration of the
multi-view verification stage can further enhance the results

through the merging of single-view stage results. The stages
are explained in detail below.

4.1. Single-view Labeling Stage

The initial stage of our labeling pipeline involves la-
beling single views from the environment independent of
the other views. This stage encompasses three distinct
branches that can be processed separately: (i) Generate
masks for the entire image utilizing the semantic segmen-
tation model (MaskFormer) and SAM; (ii) Generate masks
for foreground classes utilizing object detection model (De-
tic) and SAM; (iii) If manual bounding boxes are available,
generate corresponding masks utilizing SAM.

Figure 3. An example of labeling using Semantic Segmentation
(MaskFormer) and SAM. MaskFormer produces good predictions
for background classes but not so well for foreground classes: the
coffee machine is misclassified as a ‘stove’ (black bounding box),
and the cooking pot (cyan bounding box) is missed entirely.

Semantic Segmentation with SAM We prompt SAM with
dense point grids in the input image. This operation yields a
collection of non-overlapping class agnostic segments. We
run MaskFormer (trained on ADE20K [3]) to get the se-
mantic segmentation of the image. We then assign labels
to each segment generated by SAM by voting. Specifically,
each segment gets votes per class based on the number of
pixels that lie inside the segment and belong to the class
based on MaskFormer results. The segment is assigned the
class label with the highest vote. This step is illustrated in
Fig. 2 (F). This step produces good results for background
classes but misses a lot of foreground classes, as shown in
Fig. 3. Hence, we opt to use an object detector for fore-
ground classes.
Object Instance Detection and Segmentation with SAM
Semantic segmentation models usually perform well on
background classes but may lack the same accuracy for
foreground classes. Furthermore, they may be trained with
a limited vocabulary. For example, MaskFormer is trained
on ADE20K, which lacks many common indoor objects
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Figure 2. This diagram gives an overview of our labeling approach at the single-view labeling stage. Given an input image, we generate
masks for foreground classes utilizing Detic and SAM at steps (A) and (B). If any classes with manual bounding boxes are available, we
generate masks utilizing SAM at steps (C) and (D). We generate masks for the entire image utilizing MaskFormer and SAM at steps (E)
and (F). We overlay the results of foreground class masks on top of the entire image’s mask and achieve the semantic segmentation and
instance segmentation annotations.

Figure 4. An example of labeling using Object Detector (Detic)
and SAM.

like ‘a cooking pot’ and ‘knife’. To address these short-
comings, we employ Detic with LVIS vocabulary, which
includes 1203 classes and covers many known indoor ob-
ject classes. However, the jointly predicted object bounding
boxes and masks from Detic often do not have the desired
level of accuracy, especially when compared with SAM re-
sults, as shown in Fig.4. This is due to the fact that Detic
is partially trained on ImageNet, a dataset without mask an-
notations. We utilize SAM to generate high-quality masks
by using the bounding boxes as input prompts. In practice,
we prompt SAM with bounding boxes and a point corre-
sponding to the centroid of the masks from Detic, leading
to high-quality object instance segmentation shown in Fig. 4
and Fig.2 (B).

We select the background classes floor, ceiling, door,
blind, and wall from the semantic segmentation model and
discard other classes. The final result is obtained by super-
imposing foreground class masks, obtained from the use of
object detection and SAM, on top of semantic segmentation

results, achieving a comprehensive and refined final repre-
sentation.

4.2. Multiview Verification Stage

The single-view annotation may produce incorrect pre-
dictions due to model prediction errors, especially in chal-
lenging scenarios such as partial occlusion of objects or ir-
regular viewing angles. With the assumption that models
perform well in most scenarios and that objects are less oc-
cluded, at least in some viewpoints, results from such views
can rectify these prediction errors. Hence, we fuse masks
from multiple views using a per-class voting approach.

Consider an image Ik and its corresponding single-frame
annotation Ak that requires label verification. We designate
two keyframes, namely Im and In, with their respective
single-view annotations Am and An, respectively, which
serve as reference frames for Ik. In practice, the selection
of Im and In is guided by their proximity to the viewpoint
of Ik, thereby ensuring contextual relevance. It’s worth not-
ing that all frames apart from Ik can be utilized as reference
images in this process, provided they overlap with frame Ik.

We begin by projecting the annotations Am and An into
a 3D spatial context, utilizing the respective image poses
[Rm|Tm] and [Rn|Tn] and their depth maps. The projec-
tions yield the corresponding 3D point clouds Pm and Pn,
respectively. Each point within Pm and Pn has an associ-
ated semantic label from Am and An. Using a 4-way con-
nected component in Ak, we get the set of regions Regk in
Ik. Subsequently, we traverse each region in Regk within
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Ak, treating each region as a superpixel, similar to the ap-
proach outlined in [19]. We then project Pm and Pn onto
the Ik frame using its known camera pose [Rk|Tk]. To en-
sure the correctness of the projected points, we filter out er-
roneous projections by cross-checking the projected point’s
depth value with the depth of the original pixel.

For each region in Regk, we calculate the votes for each
class cj using projected pixels from the two reference point
clouds Pm and Pn. First, we calculate the number of pixels
that were projected from Pm to this region that has the class
cj . We normalize this value using the total number of pixels
in the region to get the normalized score f

cj
m for class cj .

We perform similar steps to get score f
cj
n using the other

reference point cloud Pn. The score f
cj
k is set to 1 because

the region is obtained using the class labels in Ak itself. The
final vote for class cj in the region is obtained by taking
the average of the scores f

cj
m , f cj

n and f
cj
k . The region is

assigned the class which has the highest vote.
Fig. 5 illustrates the multiview verification process.

Figure 5. An example of Multiview Verification. The refrigerator
(cyan bounding box) in view Ak is originally labeled as wall and
missing mask for some of its parts. The error is resolved by fusing
labels from views Am and An with the correct annotation for the
class.

5. Downstream Tasks
We next evaluate the performance of the obtained in-

stance segmentation and semantic segmentation on two
downstream tasks: part discovery and object goal naviga-
tion.

5.1. Object Part Discovery

Part discovery is important for mobile manipulation
tasks such as opening doors, cabinets, bottles, or adjust-
ing thermostats. Since the shape of hinges and handles
can differ significantly across different houses, we describe

a simple approach for detecting these parts in a particu-
lar environment. We demonstrate this approach to the de-
tection of cabinet handles. We use SAM to generate an
over-segmentation of the image, followed by cabinet de-
tection. SAM’s segmentation typically separates the cabi-
net into three distinct regions: the handle, the drawer, and
the cabinet’s main body. Focusing on the segments within
the predicted ’cabinet’ bounding boxes from Detic, We first
extract the ResNet-50 feature map of the entire image and
extract the feature vector for each cabinet segment using
RoIAlign. This is followed by k-means clustering with
these features and manually identifying the cluster contain-
ing points corresponding to cabinet handles. We project
data points within this cluster back to the images, thereby
identifying segments of cabinet handles. In practice, we ap-
ply k-means clustering to each scene individually. We use
3 to 5 clusters considering the cabinet’s appearance in the
environment.

Fig. 6 illustrates the object part discovery approach.

5.2. Object Goal Navigation

Next, we evaluate the effectiveness of obtained semantic
labels for the semantic object goal navigation task. More
specifically, we focus on long-tail object instances and
compare them to the state-of-the-art navigation approaches
that use CLIP joint embedding space of large multimodal
vision-language models [18] to localize objects in images
and maps like VLMaps [4, 7, 10].

We first build a top-down semantic map for each scene of
AVD using the semantic segmentation labels. The semantic
map is a metric map of size m×m where each cell’s value
is in the range [0, N ]. Each value from 1 to N corresponds
to one of the N object categories, and 0 refers to the unde-
tected class. Each cell is a 5cm × 5cm region in the real
world. Given an RGB-D view, we build the semantic map
by projecting semantic segmentation images to a 3D point
cloud using the available depth maps, and the robot poses,
discretizing the point cloud into a voxel grid and taking the
top-down view of the voxel grid. The semantic map de-
pends on the majority category of the points located at the
top grid of each cell. We summarize the semantic categories
that exist in the scene by going through each semantic cate-
gory and localizing the corresponding cells on the map.

For each AVD scene, we collect a semantic goal to eval-
uate object navigation. Then, we randomly specify a start-
ing position of the robot in the scene and then pick a target
object to navigate to. We consider the navigation to the tar-
get successful when the agent reaches the nearest navigable
pose of the target object. (see Section 6.3 for experiment
details)
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Figure 6. This diagram gives an overview of the labeling cabinet handle. We choose SAM segments within the detected ’cabinet handle’
bounding box. Then, we extract ResNet50 features for these segments. We cluster these feature points through KMeans and manually label
the cluster containing ’cabinet handle’ points. We backproject the label to the original image to get the ’cabinet handle’ annotations.

6. Experiments

Datasets. We use the Active Vision Dataset (AVD) [1]
and the ADE20K [27] dataset for our experiments. We
demonstrate and evaluate our labeling approach on AVD
and ADE20K, while we only use AVD for downstream
tasks.

AVD is comprised of 20 distinct environments that cover
a variety of realistic indoor scenes, ranging from kitchens
and offices to living rooms and bedrooms. We use the AVD
dataset as a basis for our labeling effort because it captures
real-world indoor scenarios characterized by intricate clut-
ter and the presence of open-set objects, posing significant
challenges to existing perception models. AVD also con-
tains realistic depth images captured by Kinect V2, and
the poses associated with the observations are available,
making it an ideal dataset for downstream robotics appli-
cations. Furthermore, AVD has high-resolution RGB im-
ages, making annotation of fine-grained objects more fea-
sible. The semantic categories of AVD are consistent with
ADE20K [27] and LVIS [8] datasets. To evaluate the label-
ing approach, we manually labeled the first ten images of
each scene with the instance and semantic segmentation. In
total, we labeled 200 images for 20 scenes. We name this
annotated subset of the dataset AVD-GT.

ADE20K has room-type labels for each image. Since
the proposed approaches are tailored for indoor scenes, ow-
ing to the classes selected, we only select images labeled
as bathroom, bedroom, kitchen, living room, office, dining
room, hotel room, dorm room, home office or waiting room.
We used 440 indoor scene images from the ADE20K for the
evaluation. We name this subset of the dataset ADE20K-
indoor.
Implementation Details. For the single-view annotation
process described in Section 4.1, we set the parameters of
the SAM model, namely the mask IoU threshold and the
mask prediction stability, to 0.86 and 0.92, respectively.
Considering AVD’s high-resolution RGB images and the

abundance of small objects within each frame, we prompt
SAM with a densely spaced point grid comprising 64 × 64
in the input image. The complete labeling is carried out on
the entire AVD dataset and takes approximately 120 hours,
utilizing two A100 GPUs.

6.1. Labeling

We compare the labeling results with human-labeled
ground truths. Originally, the AVD dataset has ap-
proximately 20,000 RGB-D images and a total of ap-
proximately 50,000 bounding boxes. We provide se-
mantic segmentation annotations for all images covering
more than 300 categories. Distinguishing itself from the
HM3DSem dataset [23], where 3D mesh models undergo
time-consuming semantic labeling and where semantic seg-
mentation images are rendered at each viewpoint, our
pipeline delivers high-quality single-view annotations with
lesser computational requirements.
Metrics. We use mIoU as the metric for evaluating the seg-
mentation results, which is the average of the intersection-
over-union (IoU) of all the categories. We also compute
mIoU-small, which is the mIoU of only the small object
categories. For ADE20K-indoor, we choose bottle, plant,
lamp, glass, flower, and vase as the small object categories.
For AVD, we add knife, bowl, plate, and wall socket into
the small object category list. We compare the following
approaches:
MaskFormer: A semantic segmentation model trained
on ADE20K. We use the publicly available code and the
trained weights of this model [3].
MaskFormer+SAM: Prompt SAM [11] with a dense grid
to get an over-segmentation of the input image. The assign-
ment of labels to each segment is determined by voting as
described in Sec. 4.1.
MaskFormer+SAM+Detic (Ours): On the outcome of the
’Mask+SAM’ approach, we overlay the results of Detic de-
tections.
MaskFormer+SAM+Detic+MV (Ours): On the outcome
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Table 1. mIoU(%) of semantic segmentation methods (higher is better)

Dataset ADE20K-indoor AVD-GT
Method mIoU (%) mIoU-small (%) mIoU (%) mIoU-small (%)
MaskFormer [3] 55.7 62.3 58.6 60.2
MaskFormer+SAM [11] 56.8 63.0 64.9 70.7
MaskFormer+SAM+Detic (Ours) 58.3 63.6 64.2 92.8
MaskFormer+SAM+Detic+MV (Ours) – – 65.4 97.7

of the ’Mask+SAM+Detic’ approach, we further apply mul-
tiview verification if depth images and camera poses are
available.

Note that ADE20K-indoor does not provide depth im-
ages and camera poses. Hence, we did not evaluate the
MaskFormer+SAM+Detic+MV approach with it. Besides,
as the ADE20K semantic category set is a subset of LVIS
categories, we create new annotations for MaskFormer and
MaskFormer+SAM approaches when evaluating them with
AVD. The new annotations are created by finding the syn-
onyms of the LVIS class in the ADE20K category set. If
no synonyms are found, e.g. knife, we label it as class void.
We show these results in Table 1. The SAM-based approach
consistently improves the model’s performance by hav-
ing better boundary segmentation of the segments. Mask-
Former+SAM outperforms MaskFormer+SAM+Detic on
the AVD dataset. This is because the labels of AVD-GT
cover fewer classes with the ADE20K vocabulary.

6.2. Object Part Discovery

We create the ’cabinet handle’ dataset with 1000+ im-
ages and 3000+ bounding boxes and associated masks.
Fig. 7 shows the successful annotation examples. We sup-
pose the feature clustering approach applied for the ’cabinet
handle’ can be easily utilized for bottle part segmentation.

Figure 7. This figure gives examples of cabinet handles marked as
red circles discovered through our clustering process.

6.3. Object Goal Navigation

We compare the recently released VLMaps [10] ap-
proach on the zero-shot navigation task and compare the
performance with the semantic map-based approach gener-
ated with our labeling framework, named GT-Maps. The
robot observations are RGB, depth, and semantic segmen-
tation images. We also assume the robot can traverse the

entire scene. The action space contains moving to a neigh-
boring location on the navigation grid and STOP action.
We adapt VLMaps approach to object goal navigation as
follows:

• Traverse the entire scene, running LSeg [13] and get
the pixel embeddings of each frame It.

• Project each frame’s pixel embeddings onto the seman-
tic map of size m ×m using the frame’s camera pose
(Rt|Tt). Take the average of the embeddings projected
on the same cell.

• Localize the goal object on the semantic map by com-
puting the inner product between the object’s text em-
bedding and the semantic map. The cell with the max-
imum inner product is the location of the object.

• Run A* algorithm to find the path from the robot’s cur-
rent pose to the selected location.

Our (GT-Maps) approach is using the semantic map built
with auto-labeled semantic segmentations. For each scene,
we select the object goal randomly out of all the object cat-
egories detected in the scene. We localize the target object
in the map and plan the path the same way as the VLMaps
approach from several randomly sampled start poses. For
the VLMaps, the target location is obtained by feeding the
sampled object target name as input to the LSeg language
encoder, query the LSeg heatmap activations and pick the
maximum activation of the semantic heatmap as the lo-
cation of the semantic target. To evaluate the navigation
episodes, we manually inspect the STOP location of the
agent and its distance to the ground-truth target, both on the
top-down semantic map and egocentric RGB views. If the
agent stops close to the target, the success rate (SR) would
be 1; otherwise, 0. In order to have a more reliable exper-
iment, we repeat the above experiment with three different
random seeds (indicated as R1, R2, and R3 on Table 2),
which means each run covers 20 episodes, and the numbers
under each column are the average SR for all 20 episodes
for that run. Finally, the last column (Avg-SR) indicates
the average and standard deviation of 3 runs for each ap-
proach/map.

As depicted in Table 2, we demonstrated that our gen-
erated semantic map using our auto-annotation approach
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Figure 8. Qualitative results of two different episodes for navigating to small targets. The left example shows a case in which our GT-Maps
successfully navigated to coca coal glass bottle, while VLMaps failed. The right example demonstrates a case where both approaches
successfully navigate to remote control. For each example, the top row shows our semantic map on the left (GT-Map), in which blue points
are the navigable points in the scene, the white point is the starting pose, and the yellow star is the selected target. While the VLMaps
approach on the right demonstrates the queried LSeg-based map for the target object, the highest activation (argmax) is indicated as a red
star. The bottom row shows the last view where the agent stops.

Table 2. Object Goal Navigation Results

Baselines R1 R2 R3 Avg-SR (%)
VLMaps [10] 84.2 73.6 78.9 78.9±5.2
GT-Maps (Ours) 94.7 78.9 94.7 89.4±9.1

could outperform the VLMaps state-of-the-art baseline in
zero-shot semantic-goal navigation by ∼ 10.5% in terms of
the average success rate. The results of this experiment en-
dorse our hypothesis of the effectiveness of augmenting the
semantic maps with the fusion of dense predictions using
large-scale pre-trained models through labeling, compared
to using large vision-language models in a zero-shot setting.
Two qualitative results can be seen in Fig. 8.

7. Conclusion
This paper proposes a labeling approach for image se-

mantic segmentation using pre-trained vision models. We
design two downstream tasks based on the segmentation
results for object part segmentation and zero-shot robot
semantic-goal navigation. We use the labeling approach to
annotate an RGB-D dataset, AVD. Our experiments demon-
strate that: (i) SAM effectively discriminates object bound-
aries, especially for small objects and (ii) The built top-
down-view semantic map with our labeling approach for se-
mantic segmentation is competitive in zero-shot semantic-
goal navigation compared to VLMaps. In terms of fu-

ture works, our pseudo-labels can be utilized for curating
benchmarks for various vision-and-language tasks in indoor
scenes, such as grounding (particularly for fine-grained con-
cepts) [14], spatial relationships understanding [16], refer-
ring expression comprehension [5], descriptive image cap-
tioning, instruction following [12], and beyond.
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