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Abstract

The referring video object segmentation (R-VOS) task

requires a model to understand both referring expression

and video input. Most recent works are mainly based on

an encoder-decoder type of architecture. Although their

text and visual encoders can benefit from separately pre-

trained backbones, their decoder is trained from scratch

on a combination of image/video segmentation datasets.

However, pixel-wise annotation with referring expressions

is extremely expensive which makes it challenging to fur-

ther improve the performance. Due to the same reason,

current vision-language pre-training works mainly focus on

learning general feature representations for image-level or

object-level tasks, which may be not optimal for the down-

stream pixel-level segmentation task. To bridge this gap,

we present a general self-supervised language-video pre-

training (SLVP) architecture. With the relatively cheap

video caption dataset, SLVP can learn pixel-level features

by introducing optical flow as the intermediate target during

pre-training. Correspondingly, we propose simple trans-

fer learning models that can reuse pre-trained modules

for the downstream R-VOS task. Furthermore, the pro-

posed general SLVP architecture can support either ‘lan-

guage as query’ fusion or ‘vision as query’ fusion. Ex-

periments show the superiority of the under-studied ‘vision

as query’ method which can achieve better performance

than the state-of-the-art methods on Ref-Davis17 and Ref-

Youtube-VOS benchmarks even with fewer model parame-

ters. We further adopt the challenging VISOR benchmark

to the R-VOS task and our SLVP serves as the first strong

baseline for R-VOS task on it.

1. Introduction

Referring video object segmentation (R-VOS) is an

emerging multi-modal task, requiring the model to segment

the specific object referred by a language description in all

*Work done during an internship at Google Brain.

input frames. This task is gathering great attention in the re-

search community because of the potential benefits to many

applications in an interactive way, e.g., video editing and

video surveillance. Compared with the traditional video-

object segmentation (Semi-VOS) task [31, 43] which as-

sumes the availability of ground-truth mask annotation in

the first frame during inference, the R-VOS task is more

challenging because it requires the model to have a com-

prehensive understanding of the raw input videos and lan-

guage description without any available mask during infer-

ence. Therefore, the model should know what the target

object is described by the referring expression and then ac-

curately segment it from the raw video.

Existing approaches for the R-VOS task can be catego-

rized into three groups: (1) Bottom-up approaches. These

approaches directly decode the target object masks using

fully convolution networks (FCNs) [21] based on vision-

language fused features. (2) Top-down approaches. These

approaches first segment all potential objects in each frame

using an instance segmentation model then associate each

object using a tracking algorithm. Finally, the target ob-

ject masks are selected based on the language description.

(3) Language as queries approaches. These methods are an

encoder-decoder type of architecture, which takes advan-

tage of the query mechanism in Transformer [38], treating

referring expressions as queries and still using some convo-

lution heads to decode the object mask.

These three streams of approaches have shown promis-

ing results but share an intrinsic limitation, i.e., only some

parts of the model can benefit from pre-training such as

backbones while the remaining parts of the model can

only be trained from scratch on a combination of im-

age/video referring segmentation datasets. This makes

it challenging to further improve the model performance

since pixel-level annotations are extremely expensive. Be-

sides, current pre-training strategies are mainly designed for

image-level or object-level tasks. For example, existing

vision-language pre-training strategies can utilize a large

amount of relatively cheap image-text pairs [33] or object

bounding-box-text pairs [17] and inherently benefit down-

This WACV workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

507



stream image-level or object-level tasks. On the other hand,

self-supervised pre-training strategies may light the way to

help pixel-level tasks since they show vision transformers

such as [2] contain explicit information about the seman-

tic segmentation of an image even when there are no la-

bels during pre-training. However, most existing works fo-

cus on single-modality self-supervised pre-training such as

DINO [2] and MAE [10].

Thus a natural question is when there are no pixel-level

annotation datasets available, how to design a multi-modal

i.e., language and video, self-supervised pre-training

strategy to learn pixel-level semantic information. Further-

more, the second question is how to design the model ar-

chitecture so that the pre-training strategy can benefit the

whole model and further bring improvement to the down-

stream pixel-level and temporal-based R-VOS task. The

above questions motivate us to design a synchronous pre-

training and transfer-learning architecture to tackle the R-

VOS task elegantly. In contrast to existing approaches, our

decoder served for the fusion purpose can also benefit from

the pre-training. Thanks to its simplicity, our general archi-

tecture supports not only the ‘language as query’ fusion

method but also the under-studied ‘vision as query’ fusion

method to be explained in Sec. 3.

The main contributions of this work are as follows. (1)

We propose a self-supervised language-video pre-training

strategy that can leverage relatively cheap video-caption

datasets to make the decoder learn temporal semantic in-

formation based on video and text input. Experiments

show the self-supervised pre-trained decoder can bring non-

negligible improvement to the downstream R-VOS task. (2)

We present a synchronous transfer learning architecture for

the R-VOS task that can maximumly benefit from the pre-

trained model. It shares modules as much as possible with

the pre-training architecture and employs a simple shared

linear mask head on each token. (3) Experiments show the

superiority of the under-studied ‘vision as query’ method

and that even when there are fewer segmentation training

data or fewer model parameters, our proposed method can

achieve on-par or even better performance than the state-of-

the-art methods.

2. Related Work

Semi-supervised Video Object Segmentation. This re-

lated task assumes the ground-truth masks of target objects

are available in the first frame during inference. Thus the

model only needs to propagate these masks to other frames.

Tracking the object based on feature matching is one

mainstream approach in most recent works [4, 29, 40, 44].

STM [29] stores a memory of objects’ features in the past

frames and utilizes the attention mechanism to perform fea-

ture matching to predict the masks in the current frame.

This single-modality-based task does not require the model

to understand any language description.

Referring Video Object Segmentation. Referring

video object segmentation (R-VOS) is a multi-modality

task. It provides the language description instead of the

first frame’s mask ground truth for the target object during

inference. Thus, it is a more challenging task. As men-

tioned previously, the current methods for R-VOS mainly

follow three groups: (1) Bottom-up methods, which directly

apply the image-based methods to each video frame inde-

pendently [9, 14, 22, 49] without learning any temporal in-

formation to predict consistent masks. (2)Top-down meth-

ods, which first find many potential object tracklets using a

tracking algorithm, and the target object is filtered out using

a language grounding model [19] without considering the

model complexity and heavy computation. (3) Language

as query methods. The typical language as query methods,

Referformer [41] and R2-VOS [18], propose a transformer-

based [38] encoder-decoder architecture to fuse language

and vision features and apply dynamic convolution opera-

tion to decode masks for each target object. Although their

text encoder and vision encoders are pre-trained on non-

segmentation datasets, their decoders do not benefit from

any pre-training. This makes it challenging to improve the

performance since pixel-level annotation with referring ex-

pressions is extremely expensive.

In contrast to the above approaches, we propose a syn-

chronous pre-training and transfer-learning architecture to

tackle the R-VOS task elegantly. The proposed self-

supervised pre-training model shares a similar architecture

with the transfer-learning pipeline. Thus, our decoder can

benefit from the pre-training on relatively cheap video-

caption datasets. Thanks to its simplicity, i.e., applying a

shared linear mask head on each token, our architecture sup-

ports two fusion methods, i.e., ‘language as query’ or ‘vi-

sion as query’. For both methods, we explore the gains from

the proposed self-supervised language-video pre-training

strategy.

Self-Supervised Learning Supervised training demon-

strates outstanding performance in many tasks [13, 23–26,

26, 48, 50]. But with Transformers [38] successfully be-

coming a general building block in both language and vi-

sion, the computer vision community starts to bring in

self-supervised representation learning methods such as

MAE [10, 11] by referring to denoising/masked autoencod-

ing methodology [39] introduced in BERT [8]. The features

from the pre-trained model can achieve outstanding perfor-

mance in image-level tasks such as zero-shot image classi-

fication. Recently, contrastive learning [3, 12, 30, 42] which

models image similarity and dissimilarity between aug-

mented views is getting popular. Besides single-modality

training, existing vision-language pre-training strategies

can utilize a large amount of relatively cheap image-text

pairs [33] or object bounding-box-text pairs [17] and inher-

508



(a) Pre-training (b) Transfer Learning (c) Pre-training (d) Transfer Learning

Figure 1. The general SLVP architecture consists of four key components: text encoder, vision encoder, decoder served for the fusion

purpose, and some linear heads for either intermediate optical flow prediction in the pre-training stage or bounding box and mask prediction

in the transfer-learning stage. (a) (b) Vision as Query fusion method. (c) (d) Language as Query fusion method.

ently benefit downstream image-level or object-level tasks.

However, these approaches mainly focus on learning a

good encoder. Although MAE [11] uses a decoder during

the pre-training to reconstruct the original frame, the de-

coder is discarded for the downstream tasks. Our proposed

self-supervised language-video pre-training strategy aims to

also make the decoder learn temporal semantic information

based on video and text input by leveraging relatively cheap

video-caption datasets so that it can bring improvement to

the downstream pixel-level R-VOS task.

3. Methodology

Given a video clip V = {vt}
T

t=1 with T frames and

one corresponding referring expression R = {rl}
L

l=1 with

L words, the R-VOS model is expected to produce T -

frame binary segmentation masks for the referred object,

i.e., M = {mt}
T

t=1 ,mt ∈ R
H×W , where H and W are

the frame height and width. Our proposed general archi-

tecture, called self-supervised language-video pre-training

(SLVP), is an encoder-decoder architecture based on pure

transformer modules. By applying a shared linear head

on each token to get the prediction, the proposed general

architecture can support not only ‘language as query’ fu-

sion but also ‘vision as query’ fusion. Furthermore, due

to the consistency between the proposed pre-training and

transfer-learning architectures, our decoder served for the

fusion purpose can benefit from pre-training and contribute

a non-negligible improvement to the downstream R-VOS

task. Details of using SLVP in pre-training and transfer-

learning for ‘vision as query’ and ‘language as query’ fu-

sion methods are in Fig. 1.

3.1. Vision as Query

Existing methods mainly use ‘language as query’ fusion.

For example, Referformer [41] introduces some learnable

queries conditioned on text features as input to the decoder,

adopted from Deformable-DETR [1, 51] while our general

SLVP architecture supports under-studied ‘vision as query’

fusion as shown in Fig. 1a and 1b.

Self-supervised Pre-training. We use a relatively cheap

non-segmentation dataset for pre-training, i.e., a video-

caption dataset. The intermediate pre-training target is to

predict the optical flow, oi,1 ∈ R
H×W×2, between the first

frame and any ith frame based on the caption and video

input without any optical flow ground truth. Thus, the self-

supervised loss function is applied on the original ith frame

and an RGB image, Ii, reconstructed by applying oi,1 on

the original first frame:

Ii = Flow(oi,1, V1),

LMSE = |Ii − Vi|
2,

(1)

where the mean square error is used as the loss function,

Flow(·) operation is denoted as the blue module in Fig. 1a

and there are no learnable parameters because this operation

just moves every pixel in the first frame V1 to a new location

based on oi,1.

To predict the optical flow oi,1 ∈ R
H×W for the ith

frame from a sequence of text features fr ∈ R
L×d output

from the text encoder and a sequence of frames’ features

fv ∈ R
(T×N)×d (N is the number of tokens of one frame,

i.e., the number of patches of one frame), we first use a

Transformer that consists of self-, cross-attentions and feed-

forward network as our decoder to fuse the text features and

frames feature by using frames’ features as query and text

features as key and value:

ffused = T(fv + Epos + Etem, fr), (2)

where T is a Transformer, Epos ∈ R
N×d and Etem ∈ R

T×d

are the learnable positional and temporal encodings respec-

tively, the first input of T is the query and the second is

key and value. Epos and Etem will be repeated by T , N

times respectively when added to fv . The output ffused ∈
R

(T×N)×d is the fused sequence of frames’ features.
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Figure 2. Self-supervised learned optical flow in pre-training stage. Each image is a sampled frame of its own video from (S-MiT)

dataset [28]. The corresponding video caption is on the top or bottom of each frame. On the right side of each frame, there is the self-

supervised learned optical flow between the shown frame and the first frame in its own video. Predicted directions and the extent of pixel

movement are visualized with different colors.

Finally, inspired by MAE [11] ,we use a shared linear

layer on each token of ffused ∈ R
(T×N)×d to transform

the last dimension from d to p× p× 2, where p is the patch

size and 2 represents two-dimensional optical flow values

for each pixel:

f̂fused = Linear(ffused), (3)

where f̂fused ∈ R
(T×N)×(p×p×2) is the generated optical

flow for each image patch. Then we reshape f̂fused into

R
T×H×W×2 to get optical flow, oi,1 ∈ R

H×W×2, for the

ith frame. A predicted optical flow demo is shown in Fig. 2.

In detail, our vision encoder is applied on each frame

independently while the decoder takes in the concatenated

sequence of frames’ features. This is because it is neces-

sary to allow the decoder to observe nearby frames before

it can predict the meaningful optical flow. Thus, the pro-

posed architecture is a temporal-based method. When only

observing the input and output of the proposed pre-training

architecture, we can see it predicts optical flow for each in-

put image patch.

Transfer Learning. The transfer learning architecture

share all the modules with the pre-training architecture ex-

cept for the last linear layers. Thus all encoders, decoders,

and learnable positional/temporal encodings are initialized

with the pre-trained weights.

Since the last shared linear layer in the pre-training is

trained to predict optical flow, we replace it with another

two reinitialized linear heads, i.e., one for bounding box re-

gression and the other for binary mask prediction for the

downstream R-VOS task as shown in Fig. 1b. The box

linear head is applied on the max-pooled fused features,

fmax ∈ R
T×d, and the mask linear head is shared among

all tokens:

fmax = MaxPooling(ffused),

B = Linearbox(fmax),

M = σ(Linearmask(ffused)),

(4)

where B ∈ R
T×4 is the predicted bounding box

for T frames, σ(·) is the sigmoid operation, M ∈
R

(T×N)×(p×p×1) is the predicted binary mask for each im-

age patch. M will be reshaped into R
T×H×W and then we

can get a binary mask, mi ∈ R
H×W , for the ith frame.

When only observing the input and output of the pro-

posed transfer learning architecture, we can see it predicts

binary masks for each input image patch based on tempo-

ral information and referring expression. It also outputs the

regressed bounding boxes for each frame.

For box loss, we use GIoU [35] and L1 loss; for

mask loss, we use Dice loss [37] and binary cross-entropy.

Box loss. If we denote a predicted bounding box as

Bp(x1, y1, x2, y2) and the ground truth bounding box as

Bg(X1, Y1, X2, Y2), then GIoU [35] is defined as follow-

ing:

IoU =
|Bp ∩Bg|

|Bp ∪Bg|
,

GIoU = IoU −
|C\(Bp ∪Bg)|

|C|
,

(5)

where C is the smallest enclosing bounding box for Bp and

Bg; the nominator in the second equation is the area occu-

pied by C excluding Bp and Bg . IoU has a major weakness

when used as a loss function: if IoU(Bp, Bg) = 0, IoU can

not reflect if two bounding boxes are in the vicinity of each

other or very far from each other. However, GIoU takes

the smallest enclosing bounding box into consideration to

overcome this issue. Finally, the GIoU loss is 1−GIoU .

L1 loss is a straightforward loss between four coordi-

nates (top-left point and bottom-right point) of Bp and Bg:

L1 = |x1 −X1|+ |y1 − Y1|+ |x2 −X2|+ |y2 − Y2|.
(6)

Mask loss. Dice loss [37] and binary cross entropy (BCE)

loss are as follows:
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Dice Loss = 1−
2
∑N

i migi∑N

i m2
i +

∑N

i g2i

,

BCE Loss =
1

N

N∑

i=1

− (gi log (mi) + (1− gi) log (1−mi)) ,

(7)

where N is the total number of pixels; mi and gi are the val-

ues in the predicted mask M and ground-truth binary mask

G respectively. Finally, the total loss is the summation of

Dice loss, BCE loss, GIoU loss, and L1 loss. The coeffi-

cients for losses are set as λL1 = 5, λdice = 5, λgiou = 1,

and λbce = 1.

3.2. Language as Query

Our general SLVP architecture also supports the ‘lan-

guage as query’ fusion method with a slight modification

as shown in Fig. 1c and 1d.

Self-supervised Pre-training. Since we still hold the

same spirit mentioned in the pre-training, i.e., predicting the

optical flow for each image patch, we have to make sure the

length of tokens output from the decoder is the same as the

input sequence of frames’ features fv ∈ R
(T×N)×d. Thus,

we create a shared learnable query token, q ∈ R
d, and re-

peat it by T × N times to get q̂ ∈ R
(T×N)×d, denoted as

gray cubes in Fig. 1c. Then we fuse the text features and

frames features by using text’s features fr ∈ R
L×d concate-

nated by q̂ as query and frame features as key and value:

ffused = T(cat(fr, q̂+Epos+Etem), fv +Epos+Etem),
(8)

where output ffused ∈ R
(L+(T×N))×d is the fused se-

quence of features. But we only use the last T ×N tokens

as the input to the later shared linear layer to predict the op-

tical flow for each image patch. The other parts including

the loss function in the architecture are the same as those of

the ‘vision as query’ architecture.

Transfer Learning. Same as the ‘vision as query’ ar-

chitecture, we also replace the last shared linear layer in

the pre-training with another two reinitialized linear heads

for bounding box regression and binary mask prediction re-

spectively as shown in Fig. 1d. In both the ‘vision as query’

and ‘language as query’ methods, our decoder served for

the fusion purpose can benefit from the self-supervised pre-

training.

4. Experiments

4.1. Implementation Details

Model Settings We use T5-pretrained text encoder [34],

and CoCa-pretrained visual encoder [46], denoted as ‘Pre-

trained Es’ in all experiment tables. Each of the encoders

has 12 transformer self-attention layers. We use an 8-layer

transformer, that consists of self-, cross-attention, and feed-

forward networks, as our decoder. For both pre-training and

transfer learning, we use 18 as patch size, 360× 648 as the

frame resolution, 64 as the maximum sentence length, and

4 as video clip length.

Pre-training Details During our pre-training, we freeze

the text and vision encoders. This is because we want to see

the improvement contributed only by the self-supervised

pre-trained decoder on the downstream pixel-level R-VOS

task. Besides, we use the sliding windows to obtain the

short clips from videos and each clip consists of 4 randomly

sampled frames with 6 as the sampling rate to cover enough

object movement. There is no augmentations used during

pre-training.

Transfer Learning Details In both ‘vision as query’ and

‘language as query’ methods, we concatenate the bound-

ing box prediction with each of the fused tokens before

applying the mask linear head so that the mask prediction

can consider the object location. We also use random-flip,

random-crop augmentation, and color-jittering during trans-

fer learning, denoted as ‘Augs’, in all experiment tables.

During the inference on R-VOS benchmarks, we directly

output the predicted segmentation masks without any post-

processing such as mask propagation [44] used in some pre-

vious works so that we can see the authentic segmentation

improvement contributed by the pre-trained decoder.

4.2. Datasets and Metrics

Pre-training Dataset We use the large-scale Spoken

Moments in Time (S-MiT) dataset [28] as the pre-training

dataset. It consists of 500K pairs of video clips and corre-

sponding captions depicting a broad range of different dy-

namic events. The captions are semantically rich compared

to simple action labels. S-MiT covers a subset of the videos

in the Moments in Time dataset [27]. The clips are 3 sec-

onds long. On average, the captions have a length of 18

words and contain 1.58 verbs. Thus these attributes make it

well-suited for our self-supervised pre-training target, i.e.,

predicting the optical flow for frames.

R-VOS Benchmarks After the pre-training, we fine-

tune and evaluate the models on Ref-Davis17 [16] and Ref-

Youtube-VOS [36]. Ref-Youtube-VOS [36] is a large-scale

benchmark that covers 3,978 videos with about 15K lan-

guage descriptions. Among them, 3,471 videos are for

training and 202 videos are for validation. For a fair com-

parison, we follow ReferFormer’s [41] training setup, i.e.,

before finetuning on Ref-Youtube-VOS, we also first fine-

tune our pre-trained model on RefCOCO/+/g [15, 47]. Ref-

Davis17 [16] is a traditional R-VOS benchmark built upon

DAVIS17 [32] by providing the language description for a

specific object in each video and contains 90 videos with

1,544 expression sentences describing 205 objects in total.
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Method
Vision

Encoder
Query type #params Decoder

∗
Ref-Davis17 Ref-Youtube-VOS

J F J&F J F J&F

CMSA [45] ResNet-50 - - 32.2 37.2 34.7 33.3 36.5 34.9

CMSA+RNN [45] ResNet-50 - - 36.9 43.5 40.2 34.8 38.1 36.4

URVOS [36] ResNet-50 - - 47.3 56.0 51.5 45.3 49.2 47.2

ReferFormer [41] ResNet-50 language 186M 55.8 61.3 58.5 54.8 56.5 55.6

R
2-VOS [18] ResNet-50 language 186M 57.2 62.4 59.7 56.1 58.4 57.3

ReferFormer [41] Swin-L language 360M 57.6 63.4 60.5 60.8 64.0 62.4

SLVP ViT-B vision 258M ✓ 57.6 64.9 61.3 (+0.8) 62.5 66.3 64.4(+2.0)

Table 1. Comparison with the state-of-the-art methods on Ref-Davis17 [16] and Ref-Youtube-VOS [36]. Decoder
∗ represents if the

decoder can benefit from self-supervised pre-training.

Figure 3. Demos of ‘Vision as Query’ model on Ref-Davis17 (left) and VISOR (right). Each row has two frames randomly sampled from

the same video. The referring expression input to the model is displayed on the top or bottom of each row.

The dataset is split into 60 videos for training and 30 videos

for validation. Since there are two annotators and each of

them gives the first frame and full-video language descrip-

tion for each referred object, we report the results by av-

eraging the evaluation scores. For a fair comparison, fol-

lowing [41], we also finetune the pre-trained model on Re-

fCOCO/+/g [15, 47] and Ref-Youtube-VOS [36] and then

directly test it on Ref-Davis17 without finetuning.

Adopted R-VOS Benchmark EPIC-KITCHENS VI-

SOR [6] is a new dataset of pixel annotations and a

benchmark suitable for segmenting hands and active ob-

jects in egocentric videos. It annotates videos from EPIC-

KITCHENS [5] and consists of 174.4K masks from 32.8K

frames of 33 kitchens covering 242 entity classes for train-

ing and 41.5K masks from 7.7K frames of 24 kitchens cov-

ering 182 entity classes for validation. There are 5 un-

seen kitchens and 9 zero-shot entity classes in the valida-

tion. Thus it comes with a new set of challenges not en-

countered in existing R-VOS benchmarks. It is proposed

for the single-modality Semi-VOS task. We adopt it into

the R-VOS task by treating the object names as the refer-

ring expressions. Our proposed method serves as the first

strong baseline for the R-VOS task on this benchmark.

Evaluation Metrics. Following the protocol used

by [32, 41, 43], we use the following evaluation met-

rics: region similarity defined by Jaccard Index/Intersection

over Union (J), contour accuracy defined by Boundary F-

Measure (F ) and their average value (J&F ).

Reference Performance On the adopted VISOR bench-

mark, our proposed method serves as the first strong base-

line for the R-VOS task. Thus, we also report STM [29]

method trained with VISOR and additional COCO [20] data

under the relatively easier Semi-VOS task as the reference

performance. COCO [20] is used for temporal-based train-

ing by synthesizing a video clip of 3 images from random

affine transforms.

We also demonstrate when there are fewer pixel-level

annotated datasets, our proposed SLVP can still bring non-

negligible improvement to the downstream R-VOS task.

4.3. Vision as Query Results

Ref-Davis17 and Ref-Youtube-VOS Benchmarks.

The results and demos are in Table. 1, Fig. 3 Fig. 4, and

Fig. 5. Even with less number of parameters, our model’s

performance can surpass Referformer [41] by +0.8 in terms

of J&F on Ref-Davis17, and +2.0 on Ref-Youtube-VOS.

Ablation Study. Table 2 shows the ablation study

on description-rich Ref-Davis17. It shows that the self-
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Segmentation Training Datasets Pretrained-Es Augs Frozen T-E Decoder∗ J F J&F

Ref-Davis17 [16]

10.4 21.7 16.1

✓ 37.3 41.0 39.2

✓ ✓ 40.8 49.2 45.0

✓ ✓ ✓ 41.7 50.5 46.1

✓ ✓ ✓ ✓ 46.2 55.7 50.5

RefCOCO/g/+ [15, 47], Ref-Davis17 [16] ✓ ✓ ✓ ✓ 52.8 59.4 56.1

RefCOCO/g/+ [15, 47], Ref-Youtube-VOS [36] ✓ ✓ ✓ ✓ 57.657.657.6 64.964.964.9 61.361.361.3

Table 2. Ablation Study of ‘Vision as Query’ Model on Ref-Davis17 Benchmark. Decoder
∗ represents if the decoder uses pre-trained

weights from the proposed self-supervised pre-training stage. ‘Pretrained-Es’ represents pretrained encoders. ‘Frozen T-E’ represents the

frozen text encoder. ‘Augs’ represents augmentations.

Method Pretrained-Es Augs Frozen T-E Decoder∗ Segmentation Training Datasets Task J F J&F

SLVP
VISOR [7]

RVOS

49.7 53.6 51.7

✓ 56.8 60.2 58.5

✓ ✓ 66.6 74.7 70.7

✓ ✓ ✓ 66.4 74.2 70.3

✓ ✓ ✓ 70.870.870.8 78.878.878.8 74.874.874.8

STM [29] as reference performance VISOR [7]
VOS

60.6 64.9 62.8

STM [29] as reference performance MS-COCO [20] + VISOR [7] 73.673.673.6 78.078.078.0 75.875.875.8

Table 3. Performance of ‘Vision as Query’ Model on VISOR Benchmark.We adopt VISOR benchmark into the more challenging R-VOS

task by treating object names as referring expressions. Our proposed ‘Vision as Query’ method serves as the first strong baseline for

the R-VOS task. Thus, we also report STM [29] method trained with VISOR and additional COCO [20] data under the relatively easier

Semi-VOS task as the reference performance. ‘Frozen T-E’ represents the frozen text encoder. ‘Augs’ represents augmentations.

Table 4. Comparison of ‘Language as Query’ and ‘Vision as

Query’ of SLVP architecture on Ref-Davis17 [16]

Method #params J F J&F

Language as Query 258M 54.1 61.3 57.7

Vision as Query 258M 57.6 64.9 61.3

supervised pre-trained decoder brings non-negligible (+4.4
in terms of J&F ) improvement. Besides, the performance

of the ‘vision as query’ model also gains with pre-trained

encoders and augmentations. Interestingly, freezing the text

encoder during transfer learning brings +1.1 improvement

in terms of J&F on Ref-Davis17. This is because Ref-

Davis17 is a relatively small benchmark with longer refer-

ring descriptions. Thus finetuning the text encoder may

make the model overfit on the training data of Ref-Davis17.

Adopted VISOR Benchmark. The results and demos

are in Table. 3 and Fig. 3. Our proposed method serves as

the first strong baseline for the R-VOS task on this bench-

mark. Thus, we also report STM [29] method trained with

VISOR and additional COCO [20] data under the relatively

easier Semi-VOS task as the reference performance. We

can see without the proposed pre-training strategy, our ‘vi-

sion as query’ architecture can already surpass STM [29]

trained on VISOR-only which is under the relatively eas-

ier Semi-VOS setting. After initializing our decoder with

the self-supervised pre-trained weights, the performance is

boosted by +4.1 in terms of J&F , which is only 1.0 lower

than the performance of STM [29] with COCO [20] as an

additional pixel-level training dataset.

Besides, the performance of the ‘vision as query’ model

also gains with pre-trained encoders and augmentations. In-

terestingly, freezing the text encoder during transfer learn-

ing hurts −0.4 in terms of J&F on the VISOR. This is be-

cause VISOR is a relatively large benchmark but with short

entity names as referring expressions thus the text encoder

won’t overfit on the training data during finetuning.

4.4. Language as Query Results

Ref-Davis17 Benchmark. In Table. 4, with the same

number of parameters, our ‘language as query’ model

achieves worse performance than our ‘vision as query’

model, indicating the superiority of the ‘vision as query’

fusion method under our proposed SLVP architecture.

Adopted VISOR Benchmark. In Table. 5, after ini-

tializing our decoder with the self-supervised pre-trained

weights, the performance is boosted by +2.0 in terms of

J&F . This ‘language as query’ model also can surpass

STM [29] trained on VISOR-only which is under the rel-

atively easier Semi-VOS setting.

Ablation Study. During transfer learning, we further

freeze the vision encoder and find performance drops of

−4.8 on Ref-Davis17 in Table. 6 and −7.5 in Table. 5 on
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Method Pretrained-Es Augs Frozen T-E Frozen V-E Decoder∗ Segmentation Training Datasets Task J F J&F

SLVP

✓ ✓

VISOR [7] RVOS

64.3 71.2 67.8

✓ ✓ ✓ 65.4 73.0 69.2

✓ ✓ ✓ ✓ 59.5 63.8 61.7

✓ ✓ ✓ ✓ 67.267.267.2 75.175.175.1 71.271.271.2

STM [29] as reference performance VISOR [7]
VOS

60.6 64.9 62.8

STM [29] as reference performance MS-COCO [20] + VISOR [7] 73.673.673.6 78.078.078.0 75.875.875.8

Table 5. Performance of ‘Language as Query’ Model on VISOR Benchmark. We adopt the VISOR benchmark into the more challenging

R-VOS task by treating object names as referring expressions. Thus, we also report STM [29] method trained with VISOR and additional

COCO [20] data under the relatively easier Semi-VOS task as the reference performance. ‘Frozen T-E’ and ‘Frozen V-E’ represent the

frozen text encoder and vision encoder. ‘Augs’ represents augmentations.

Segmentation Training Datasets Pretrained-Es Augs Frozen T-E Frozen V-E Decoder∗ J F J&F

Ref-Davis17 [16]

✓ 12.5 16.0 14.3

✓ ✓ ✓ 43.3 51.5 47.4

✓ ✓ ✓ ✓ 39.6 45.5 42.6

✓ ✓ ✓ ✓ 45.2 55.8 50.5

RefCOCO/g/+ [15, 47], Ref-Youtube-VOS [36] ✓ ✓ ✓ ✓ 54.154.154.1 61.261.261.2 57.757.757.7

Table 6. Ablation Study of ‘Language as Query’ Model on Ref-Davis17 Benchmark. Decoder
∗ represents if the decoder uses pre-trained

weights from the proposed self-supervised pre-training stage. ‘Pretrained-Es’ represents pretrained encoders. ‘Frozen T-E’ and ‘Frozen

V-E’ represent the frozen text encoder and vision encoder. ‘Augs’ represents augmentations.

VISOR. This indicates ‘language as query’ method also re-

lies on strong visual features to perform R-VOS task, in-

directly indicating the superiority of the ‘vision as query’

method. Besides, we still observe +3.1 improvement in

terms of J&F brought by the self-supervised pre-trained

decoder on Ref-Davis17 in Table. 6 but only +1.0 improve-

ment on VISOR in Table. 5. This indicates that the ‘lan-

guage as query’ method can benefit from the pre-trained de-

coder mainly when finetuning on description-rich datasets.

Figure 4. Demos of ‘Vision as Query’ model on four frames

of two videos from Ref-Davis17.

5. Conclusion

We proposed a general architecture, i.e., SLVP, for

the R-VOS task which can support either the ‘vision as

query’ or ‘language as query’ fusion method. Exper-

iments showed the superiority of the under-studied ‘vi-

Figure 5. Demos of ‘Vision as Query’ model on some ran-

dom frames from Ref-Davis17.

sion as query’ method on both description-rich and -poor

datasets. Specifically, we presented an effective self-

supervised language-vision pre-training strategy to benefit

the decoder, enabling non-negligible improvement to the

downstream R-VOS task. Existing works do not explore

how to make the decoder benefit from the pre-training, leav-

ing it challenging to further improve the performance. Our

work is a step in trying to bridge this gap. Besides demon-

strating our ‘vision as query’ model’s better performance

on well-studied Ref-Davis17 and Ref-Youtube-VOS bench-

marks even with fewer model parameters, we further adopt

the challenging VISOR benchmark to the R-VOS task. Our

‘vision as query’ model serves as the first strong baseline.

We sincerely acknowledge the inspiring discussions with

Chen Sun and Anelia Angelova at Google.
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