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Abstract

While systems based on deep neural networks have pro-
duced remarkable performance on many tasks such as
face/object detection and recognition, they also require
large amounts of labeled training data. However, there are
many applications where collecting a relatively large la-
beled training data may not be feasible due to time and/or
financial constraints. Trying to train deep networks on
these small datasets in the standard manner usually leads
to serious over-fitting issues and poor generalization. In
this work, we explore how a state-of-the-art deep learn-
ing pipeline for unconstrained visual face identification
and verification can be adapted to domains with scarce
data/label availability using semi-supervised learning. The
rationale for system adaptation and experiments are set in
the following context - given a pretrained network (that was
trained on a large training dataset in the source domain),
adapt it to generalize onto a target domain using a rela-
tively small labeled (typically hundred to ten thousand times
smaller) and an unlabeled training dataset. We present al-
gorithms and results of extensive experiments with varying
training dataset sizes and composition, and model archi-
tectures using the IARPA JANUS Benchmark Multi-domain
Face dataset for training and evaluation with visible and
short-wave infrared domains as the source and target do-
mains respectively.

1. Introduction
There has been tremendous progress in the field of face

recognition in the deep learning era, tackling even uncon-
strained, in-the-wild scenarios. But most of the work has
been done on images/videos in the visible spectrum. Cross-
spectral face recognition [13] refers to the class of prob-
lems where data collected from one part of the spectrum
(or domain) is compared against data from another part of
the spectrum. Some of the commonly used non-visible do-
mains include near-infrared/NIR (750 nm - 1100 nm), short-
wave infrared/SWIR (1100 nm - 2500 nm), medium-wave

infrared/MWIR (3000 nm - 5000 nm), and long-wave in-
frared/LWIR (7000 nm - 14000 nm). Complementing the
visible images with data from these domains can have many
advantages. For example, under low-light conditions, NIR
and SWIR images have higher SNR compared to visible im-
ages. They are also more robust to atmospheric conditions
like rain, fog or smoke.

Examples of cross-spectral face datasets include
Equinox [35], NVIE [37], LDHF-DB [23], CASIA NIR-
VIS 2.0 [21], EURECOM [24], IJB-MDF [16], and ARL-
VTF [30]. The IJB-MDF dataset comprises of images
and videos captured using a variety of cameras: fixed and
body-worn, capable of imaging at visible, short-wave, mid-
wave and long-wave infrared wavelengths at distances up
to 500m. Some sample images from the IJB-MDF dataset
(after cropping and alignment) are shown in Figure 1.
Domains-11, 12, 13 and 14 refer to SWIR - captured with-
out a filter, captured at 1150nm, 1350nm, and 1550nm re-
spectively.

Figure 1. IJB-MDF dataset sample images. Source domain - visi-
ble. Target domains - SWIR at different wavelengths.

Based on the availability of labels in the training data,
the following three learning paradigms are defined - super-
vised learning, semi-supervised learning and unsupervised
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learning. Supervised learning assumes that all the training
examples come with their corresponding labels. This is one
of the most common learning paradigms and comparatively
the easiest. In semi-supervised learning, labels for some of
the training data are missing. Finally, unsupervised learning
algorithms are trained without access to any labels. In this
paper, we look at the problem of face recognition in a con-
text that involves transfer learning, domain adaptation, and
limited labeled data (semi-supervised learning). Although
there has been a lot of work done in each of these areas sep-
arately, there has not been much research done in the area
which lies at their intersection. The aim of this paper is to
design interesting experiments that help shed light on more
fundamental aspects of training with very limited labeled
data in cross-spectral face recognition - how the composi-
tion of the training dataset, complexity of the network, and
the domain gap between the training and test datasets affect
the performance.

A natural way to deal with the lack of labeled data is
data generation and data augmentation [5, 28, 38]. Genera-
tive Adversarial Networks (GANs) and Denoising Diffusion
Probabilistic Models (DDPMs) have improved face synthe-
sis significantly over the past few years. NVIDIA’s Style-
GAN [17] and StyleGAN2 [18] can generate images of re-
markable quality. Image-to-image translation based meth-
ods for transferring the attributes of one image onto another
such as Few Shot Unsupervised Image to Image transla-
tion (FUNIT) [22] and StarGAN v2 [4] can then be used
to increase the diversity of the classes generated by Style-
GAN. Recently, DDPMs [11] have been shown to outper-
form GANs [6]. They have been used for generating syn-
thetic face datasets [19] and also for image-to-image trans-
lation from thermal to visible domain [26]. But the major
concern with using these image generation approaches for
augmenting small datasets is that these models do not gen-
eralize to domains that are very different from the domain
of their training data. And since we do not have access to
a lot of annotated data in the non-visible domains to train
these models, data augmentation is not effective.

The following are the main contributions of this paper:

• We introduce the problem of semi-supervised cross-
spectral face recognition in the context of small train-
ing datasets.

• We describe an end-to-end system for solving this
problem.

• We present extensive experiments with different train-
ing datasets and network architectures to explore their
impact on performance and gain useful insights for
tackling this problem.

Collecting and labeling data is a very expensive process
and we believe that the results of our experiments which an-

alyze the effect of dataset composition (specifically, effects
of adding unlabeled data from the same or similar domains),
will be very helpful in efficient data collection.

The rest of the paper is organized as follows: Section
2 details some works related to cross-spectral face recog-
nition; Section 3 describes the problem formulation, the
pipeline and the evaluation protocol; in Section 4 we present
the experiments and results; and finally Section 5 contains
the conclusions and future work to extend this work.

2. Related Work
Most of the existing works on cross-spectral face recog-

nition are in the supervised learning regime.
Bourlai et al. [3] published one of the first papers which

looked into the problem of cross-spectral SWIR face recog-
nition. They collected the WVU Multispectral dataset with
50 subjects, 1,250 VIS and 1,350 SWIR images, and pre-
sented cross-spectral matching results using classical face
recognition methods like PCA with k-NN. Kalka et al. [15]
extended the work in [3] to heterogenous face recognition
in semi-controlled and uncontrolled environments. Nicolo
et al. [27] proposed an algorithm for SWIR-VIS matching
that encodes the magnitude and phase of images filtered
with a Gabor filter bank using Simplified Weber Local De-
scriptor, Local Binary Pattern and Generalized Local Bi-
nary Pattern. Bourlai et al. [2] studied SWIR-VIS, MWIR-
MWIR, MWIR-VIS and NIR-VIS matching and extended
the work presented in [15] to more challenging scenarios
(cross-distance matching) and other domains like MWIR
and NIR.

Maeng et al. [23] collected the Long Distance Hetero-
geneous Face Database (LDHF-DB) with VIS and NIR im-
ages captured at short and long distances. They proposed
Gauss-SIFT algorithm and reported results on both intra-
spectral and cross-spectral cross-distance matching. Juefei-
Xu et al. [14] proposed a dictionary learning approach to
learn a mapping function between VIS and NIR domains,
thus reducing the problem of cross-spectral matching to
intra-spectral matching. Lezama et al. [20] proposed a deep
learning-based approach which involves producing VIS im-
ages from NIR images by adapting a deep network pre-
trained on VIS images to generate discriminative features
from both VIS and NIR images. They also applied a low-
rank embedding to the deep features which restores a low-
rank structure for the cross-spectral features from the same
subject. Song et al. [36] proposed a deep network with
cross-spectral face hallucination and discriminative feature
learning for VIS-NIR matching using a GAN, by employing
an adversarial loss and a high-order variance discrepancy
loss to measure the global and local discrepancy between
the domains. He et al. [10] extended the work reported
in [36] by performing cross-spectral face hallucination us-
ing inpainting of VIS image textures from NIR textures and,
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pose correction to generate VIS images at frontal pose.
Fu et al. [7] proposed a Dual Variational Generation

framework to learn the joint distribution of paired hetero-
geneous images, and then generated paired images from the
two domains. These generated images are used to train a
face recognition network using a contrastive learning mech-
anism. Peri et al. [29] proposed another synthesis based
approach using GAN architectures for thermal-to-visible
face verification. In contrast to generative models, Miao et
al. [25] used a physically-based renderer to generate a large
dataset of NIR-VIS image pairs. While all these works have
focused on fully-supervised learning, we look into the prob-
lem of semi-supervised cross-spectral face recognition.

3. Problem Formulation

We set the problem in the following context: given a pre-
trained network (that was trained on a large training dataset
in source domain), adapt it to generalize onto a target do-
main using a relatively small training dataset (that is typ-
ically hundred to ten thousand times smaller). The train-
ing data of this semi-supervised (few shot) domain adap-
tation problem, consists of a small labeled source Dl

s =
{(xs

i , y
s
i )}

ns
i=1, a small labeled target Dl

t = {(xt
i, y

t
i)}

ntl
i=1,

and a large unlabeled target dataset Du
t = {(xt

i)}
ntu
i=1. Dl

s

and Dl
t are assumed to share the same label space with each

other, but not necessarily with Du
t . Typically ns ≈ ntl ≪

ntu. In this context, the term ”few shot” means that the
models only have access to a very small amount of labeled
samples per class. For example, a dataset we use in our
work has 126 classes, ns = ntl = 882, and ntu = 3906.
So the total size of the dataset is just 5,669 images.

We now describe the face recognition pipeline as shown
in figure 2.

3.1. Face Detection

Face detection is the first module in any face recognition
pipeline. We employ the Deep Pyramid Single Shot Face
Detector (DPSSD) algorithm presented in [32]. This uses a
modified Single Shot Detector (SSD) algorithm so as to be
able to detect extremely small faces also. This is achieved
by adding additional convolutional layers at the end of the
VGG-16 architecture of the SSD model to detect faces at
different scales.

DPSSD is trained on the WIDER face [39] dataset. More
details about the architecture and training can be found in
[32].

3.2. Keypoint Detection and Alignment

Face keypoints include centers and corners of eyebrows,
eyes, nose, mouth, earlobes and chin. The All-in-One Face
framework [33] is used for keypoint localization. This
method simultaneously does tasks such as face detection,

face alignment, pose estimation, age estimation etc. The all-
in-one model is trained using a multi-task learning frame-
work which helps it to learn the different tasks synergisti-
cally.

Figure 3 shows some examples of the results of the face
detector and keypoint detector on SWIR images. We can
see that even though both the DPSSD face detector and All-
in-One Face network were trained on VIS images, they per-
form well when applied on SWIR images.

3.3. Face Verification

For training our feature extractor in a semi-supervised
manner, we use a combination of crystal loss [31] and en-
tropy loss [34].

Crystal loss, given by (1) constrains all the features of
the deep network to be on a hypersphere with radius α.

minimize − 1

M

M∑
i=1

log
eW

T
yi

f(xi)+byi∑C
j=1 e

WT
j f(xi)+bj

subject to ∥f(xi)∥2 = α, ∀i = 1, 2, ...,M,

(1)

where (xi, yi) are the input image and its label, M is the
mini-batch size, f(xi) is the feature vector extracted from
the penultimate layer of the deep network, C is the num-
ber of classes, W and b are the weights and bias for the
classification layer of the network, and α represents the L2-
constraint on the norm of the feature vector.

Entropy loss, given by (2) is applied on the unlabeled
data such that features are both class dicriminative and do-
main invariant. This is achieved by training the classifier to
maximize the entropy loss and by training the feature ex-
tractor to minimize the entropy loss. The intuition behind
entropy loss is that, maximizing the entropy of predictions
on the target unlabeled data by the classifier brings the class-
mean-features (class prototypes) away from the source do-
main and closer to the target domain, and minimizing the
entropy by the feature extractor clusters all the class fea-
tures around the class-mean-feature.

Lentropy = −E(x,y)∈Du

C∑
i=1

p(y = i|x) log p(y = i|x)

(2)
where C is the number of classes, and p(y = i|x) represents
the probability that x is predicted to belong to class i.

During training, given a mini-batch consisting of both
labeled (VIS and SWIR) and unlabeled examples (SWIR
only), we apply the crystal loss on the labeled samples
and entropy loss on the unlabeled samples, so that the fi-
nal loss functions for the feature extractor and the classifier
are given by (3)
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Figure 2. The face recognition pipeline: crystal loss is calculated on the labeled images, and entropy loss is calculated on the unlabeled
images. Loss back-propagation is shown by the dotted backward-arrows.

Figure 3. Face and Keypoint Detection on SWIR images

Lfeature−extractor = Lcrystal + λLentropy

Lclassifier = Lcrystal − λLentropy

(3)

where λ is the hyperparameter which decides the weight
given to entropy loss over the crystal loss.

3.4. Evaluation Protocol

The evaluation protocol is 1:N identification - query im-
ages from target domain are compared against gallery tem-
plates from source domain. The 875 visible enrollment im-
ages are folded into 125 templates (one for each subject) by
averaging their features and form the gallery set. There are
about 20,000 images from domains-11, 12, 13 and 14 in the
query set. We compare the cosine similarity scores between
the deep features of each query image and all the gallery
templates to predict the label.

4. Experiments
4.1. Dataset

4.1.1 IJB-MDF

The IARPA JANUS Benchmark Multi-domain Face (IJB-
MDF) [16] dataset consists of images and videos of 251
subjects captured using a variety of cameras corresponding
to visible, short-, mid-, and long-wave infrared and long

range surveillance domains. There are 1,757 visible enroll-
ment images, 40,597 short-wave infrared (SWIR) enroll-
ment images and over 800 videos spanning 161 hours. The
dataset can be requested from the authors of [16] as stated
in that paper.

We divide the 251 subjects into two disjoint sets of 126
and 125 to be used for training and testing respectively. The
visible enrollment images form the source labeled dataset
Dl

s with 882 images in total and seven images per sub-
ject. As for the target domain datasets Dl

t and Du
t , we use

short-wave infrared (SWIR) enrollment images from four
sub-domains: Domain 11: SWIR (no filter), Domain 12:
SWIR (captured at 1150 nm), Domain 13: SWIR (captured
at 1350 nm), and Domain 14: SWIR (captured at 1550 nm).

We generate nine different training datasets with vary-
ing compositions of Dl

t and Du
t as shown in Table 1. The

first four datasets (trainset-v1-11, 12, 13, and 14) in the ta-
ble contain data from only a single target domain (either
domain-11, 12, 13 or 14). The next four datasets (trainset-
v2-11, 12, 13 and 14) have unlabeled data added from all
four target domains. Finally the last dataset trainset-v3 con-
tains both labeled and unlabeled data from all the target do-
mains. The numbers in Table 1 represent the number of im-
ages per subject in each of the source and target domains.

4.2. Training Details

We first train our network on a large source domain
dataset Dlarge, using crystal Loss [31] and evaluate it us-
ing our evaluation protocol. This will form our baseline.
We set the crystal loss α parameter to 50 for these baseline
experiments.

We then further train these baseline models (pretrained
on Dlarge) on Dsmall using crystal loss [31] and entropy
loss [34] as described in section 3.3. The entropy loss is
applied on the unlabeled data Du

t , and is maximized by the
classifier (W) and minimized by the feature extractor (F) of
the network. Crystal loss is applied on the labeled source
Dl

s and target Dl
t data as in the baseline network. The pa-

rameter α in crystal loss is set to 10 and λ in the entropy
loss is set to 0.1 in most of these experiments.

We train our base networks on UniverseFaces dataset
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Table 1. Composition of Different Training Datasets Used in the Experiments.

Dataset ↓ Dl
s (source-labeled)

(imgs/sub)
Dl

t (target-labeled)
(imgs/sub)

Du
t (target-unlabeled)

(imgs/sub) Total #imgs

Domain → Vis 11 12 13 14 11 12 13 14
trainset-v1-11 7 7 - - - 31 - - - 5669
trainset-v1-12 7 - 7 - - - 31 - - 5667
trainset-v1-13 7 - - 7 - - - 31 - 5669
trainset-v1-14 7 - - - 7 - - - 31 5668
trainset-v2-11 7 7 - - - 31 41 41 41 20987
trainset-v2-12 7 - 7 - - 41 31 41 41 20987
trainset-v2-13 7 - - 7 - 41 41 31 41 20987
trainset-v2-14 7 - - - 7 41 41 41 31 20987

trainset-v3 7 7 7 7 7 34 34 34 34 20987

(which is a union of cleaned MS-Celeb-1M [8] and
UMDFaces [1] datasets) with 40k subjects and 5M im-
ages. We conduct experiments with the following ar-
chitectures: Resnet-50 [9], Resnet-101 [9], Resnet-152
[9], SENet-50 [12], SENet-101 [12], and SENet-152 [12].
The Resnet models are initialized from their ImageNet-
pretrained weights while the Squeeze-and-Excitation nets
(SENets) are trained from scratch on the UniverseFaces
dataset (since the ImageNet-pretrained weights are not pub-
licly available for SENet-101 and SENet-152).

We train all of these networks on each of the nine train-
ing datasets listed in Table 1. Each of the network training
experiments are repeated 5 times and the average perfor-
mance of the 5 runs is presented (along with the standard
deviation wherever possible). Unless otherwise specified,
the query-set in the test dataset consists of data from all 4
SWIR sub-domains (11, 12, 13 and 14).

4.3. Results

4.3.1 Effect of network architecture

We choose a set of six networks (Resnet-50, Resnet-101,
Resnet-152, SENet-50, SENet-101, and SENet-152) to
study the effect of network architecture on the performance.
Since it is beyond the scope of this paper to conduct an
exhaustive search for the best network architecture for this
problem, we primarily focus on the effect of network com-
plexity. Table 2 compares the performance of these net-
works trained on trainset v3 dataset and the performance of
their corresponding baseline networks. Even though the ab-
solute performance of Resnet-152 is the best, the relative
improvement over the baseline is highest for the SENets.

Even when the training dataset is small, we observe that
as we increase the network size/complexity there is no over-
fitting and the performance consistently improves.

Table 2. Rank 1 retrieval rates of different network architectures
trained on trainset v3 and their corresponding baselines

Network Baseline Trained on trainset v3
Resnet-50 63.19 92.19± 0.53

Resnet-101 74.82 96.62± 0.34
Resnet-152 75.93 96.84± 0.21
SENet-50 65.85 96.15± 0.10

SENet-101 66.41 95.10± 0.33
SENet-152 70.79 96.41± 0.32

4.3.2 Effect of training dataset composition

Column 1 (Test domain: All) of table 3 compares the perfor-
mance of Resnet-152 networks trained with various train-
ing datasets. Networks trained with trainsets v2(-11, 12, 13
and 14) perform better than corresponding networks trained
with trainsets v1(-11, 12, 13 and 14), which shows that
adding more unlabeled data of other domains helps. As we
would expect, the network trained on trainset v3 (which has
the most labeled data) outperforms all the other networks.

Within trainsets v1 and trainsets v2, we observe the fol-
lowing performance trends:

v1-13 ≈ v1-14 > v1-11 > v1-12 (4)

v2-13 ≈ v2-14 ≈ v2-12 > v2-11 (5)

Since the test dataset has images from all 4 SWIR sub-
domains, from (4) we can infer that, the data from domains-
13 and 14 is richer in information compared to domain-11
and domain-12. And (5) shows that when the training set
has unlabeled data from all the four sub-domains, the per-
formance of the network is more or less the same if labeled
data from either of domains-12, 13 or 14 is added. But
adding labeled data from domain-11 does not add as much
information. This can be explained by the fact that domain-
11 is closest to the visible domain in the spectrum and since
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Table 3. Rank 1 retrieval rates of Resnet-152 trained on different trainsets and tested on different domains

Training set Test domain: All Test domain: 11 Test domain: 12 Test domain: 13 Test domain: 14
baseline 75.93 86.73 92.33 76.36 48.29
v1-11 89.50± 0.88 97.52± 0.34 97.84± 0.12 93.27± 1.20 69.35± 2.29
v1-12 84.98± 0.66 95.88± 0.45 97.64± 0.39 88.76± 0.78 57.63± 1.77
v1-13 93.10± 0.30 97.47± 0.17 97.37± 0.23 96.60± 0.18 80.96± 0.86
v1-14 93.09± 0.67 93.66± 0.68 93.70± 1.00 93.37± 0.51 91.64± 0.90
v2-11 92.26± 4.48 97.00± 1.14 97.54± 0.76 94.09± 3.12 80.41± 12.97
v2-12 94.81± 2.42 97.57± 0.63 97.87± 0.33 95.85± 1.81 87.94± 7.11
v2-13 95.70± 0.92 97.66± 0.44 97.68± 0.32 96.77± 0.55 90.70± 2.45
v2-14 95.32± 0.22 97.09± 0.19 97.42± 0.23 95.53± 0.47 91.23± 0.38

v3 96.84 ± 0.21 98.16 ± 0.19 98.27 ± 0.20 97.56 ± 0.25 93.35 ± 0.36

the baseline network is already trained on a large visible
dataset, finetuning on data from domain-11 adds little to
the generalization capabilities of the network onto other do-
mains.

4.3.3 Effect of test dataset domain

Now we look at the performance of the base networks on
different subsets of the test data. As mentioned earlier, the
test query images are from all the SWIR domains (11, 12
,13 and 14). So we separate the test query data into four
subsets each containing images from domains 11, 12, 13
and 14 respectively.

Row 1 of table 3 shows the performance of Resnet-152
base network on these four test subsets and the original
complete test set. The increasing order of difficulty of the
test domains is: domain-12 < domain-11 < domain-13 <
domain-14. This implies that the baseline network trained
on VIS images finds it hardest to generalize to domain-14.

The remaining rows show the performance of Resnet-
152 networks trained on trainsets v1- and v2-(11, 12, 13
and 14) on separate test domains. One common trend that
we observe is that almost all the networks perform best on
domains 11 and 12, followed by the domain which was
predominant in the trainset. Networks trained on train-
sets containing data that is predominantly from domains-
11, 12 and 13 do not generalize to domain-14. Another
interesting observation is the very large standard deviation
in the networks trained on v2-11, 12 and 13 when tested
on domain-14 compared to the network trained on trainset
v2-14. This seems to indicate that when you add unlabeled
data from domain-14 to any of the trainsets v1-11, 12 or 13,
the improvement in performance of the resulting network
on domain-14 has significant variance.

4.3.4 Effect of width and depth of training data

In table 4, we compare the performance of Resnet-152 net-
works trained on wide and deep training datasets. We ob-

serve that training with a wider dataset (trainset v1-11b: 3
labeled samples per subject and 126 subjects) yields bet-
ter performance than training with a deep dataset (trainset
v1-11d: 7 labeled samples per subject and 50 subjects) of
similar overall size. We also observe that adding unlabeled
examples from subjects not in the labeled data (as in train-
set v1-11c) significantly degrades the performance of the
network. This is an unfortunate limitation of entropy loss
in this case, because in most practical scenarios, cleaning
the unlabeled data of specific subjects essentially amounts
to labeling the unlabeled data. To alleviate this issue, we
trained the network without maximizing the entropy loss on
the classifier and only back-propagating it on the feature
extractor. The modified loss function is given by (6). With
this change, rank 1 retrieval rate of this network increased
to 82.43±0.68 from 74.06±7.52. Despite not quite reach-
ing the same performance as the network trained on trainset
v1-11d (unlabeled data taken only from subjects with la-
beled data), we observe a significant improvement when we
remove the classifier entropy loss.

Lfeature−extractor = Lcrystal + λLentropy

Lclassifier = Lcrystal

(6)

From table 4, we also observe that as we increase the
depth of the training dataset from 1 image per subject to 7
images per subject, the performance of the network satu-
rates at about 3 images per subject. This could be because
the main variation in the enrollment images of a subject
is their pose, and the baseline network has already learned
pose-invariance during its pre-training. So adding more la-
beled images to the training data adds little overall informa-
tion.

4.4. Ablation Study

In this section, we evaluate the impact of various com-
ponents of our loss function. Specifically we try training
the networks without the crystal loss, without the entropy
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Table 4. Rank 1 retrieval rates of networks trained on wide and deep datasets

Dataset Dl
s

(imgs/sub)
Dl

t

(imgs/sub)
Du

t

(imgs/sub) #subjects #imgs rank-1

Domain Vis 11 11 Dl
s Dl

t Du
t

v1-11 7 7 31 126 126 126 5669 89.50± 0.88
v1-11b 3 3 31 126 126 126 4665 88.88± 0.79
v1-11c 7 7 31 50 50 126 4609 74.06± 7.52
v1-11d 7 7 31 50 50 50 2253 84.82± 0.92
v1-11e 1 1 31 126 126 126 4161 83.39± 0.41
v1-11f 2 2 31 126 126 126 4413 86.97± 0.63
v1-11g 5 5 31 126 126 126 5169 89.23± 0.82

loss on the classifier and finally without the entropy loss.
We also present results with different α values in the crystal
loss.

From our experiments we see that crystal loss is cru-
cial for the network to perform well. Replacing the crystal
loss with cross entropy loss decreases the performance from
96.84± 0.21 to 40.26± 5.38. This can partly be attributed
to the fact that the base network is trained with crystal loss
and so finetuning that network without crystal loss is more
difficult. But interestingly, we notice that even though the
test performance is so poor, the validation accuracy of the
networks was still around 99%.

Next, we see how much impact the entropy loss (unla-
beled data) has on the performance when trained with train-
set v1-11 and trainset v3. When we remove the entropy loss,
the network trained on trainset v3 showed a drop of 0.63%
in the performance; while the network trained with trainset
v1-11 showed 1.15% drop. This shows that as the amount
of labeled data increases, the impact of unlabeled data in the
training set decreases.

Table 5 shows the affect of the hyperparameter α in the
crystal loss on the performance of the network. For a classi-
fication problem with C classes, [31] provide a lower limit
for α to achieve a classification probability p in equation 7

αlow = log
p(C − 2)

1− p
(7)

In our case, with C = 126 and p = 0.99, αlow comes
out to be around 9.42. From table 5 we do observe that the
best performance is achieved when α = 10.

5. Conclusion
We discussed the problem of semi-supervised cross-

spectral face recognition in the context of very small train-
ing datasets using large pretrained models. Through exten-
sive experiments, we explored how different training dataset
compositions impact the generalization capability of the
trained network on different test domains. We confirmed
that larger models perform better than smaller architectures

Table 5. Rank 1 retrieval rates of with different α values

α rank-1
2 94.20± 0.92
5 95.90± 0.38
8 96.47± 0.38
10 96.84± 0.21
20 96.51± 0.61
30 95.78± 0.31
50 90.34± 7.76

even with very small training datasets without overfitting.
When we have multiple target domains and there are con-
straints on the amount of data that can be collected, it may
be better to prioritize collecting training data for the hard-
est domain (the domain farthest from the source domain).
Wider training datasets (more classes and less samples per
class) perform better than deep datasets (less classes and
more samples per class). When the unlabeled data is noisy
(some of them may belong to classes not represented in
the labeled data), back-propagating the entropy loss only
on the feature-extractor (and not the classifier), significantly
boosts the performance. When designing a dataset for fine-
tuning, trying to label more data without making sure that
there are novel variations in the data (like pose or illumina-
tion) will not help improve performance consistently.
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