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Abstract

Agricultural monitoring is essential to ensure food se-
curity while minimizing the environmental impacts gener-
ated by the activity. Crop fields are the basic units of man-
agement in farmland, and the delimitation of their bound-
aries is useful for farmers and field-level analysis. In this
work, we address the cropland field boundaries segmenta-
tion challenge by proposing an end-to-end novel segmen-
tation framework. Our framework comprises three main
pipelines: data preparation, in which Sentinel-2 MSI sen-
sor images are handled; segmentation, where we propose
the use of three different methods to obtain a cropland
field map, the Felzenswalb’s segmentation algorithm, and
the neural networks U-Net and R2AttU-Net; and post-
processing, where we propose a novel temporal aggrega-
tion and filtering methodology to enhance crop field bound-
ary delineation. Our results show that our end-to-end
framework is able to outline cropland field boundaries from
Sentinel-2 data. The U-Net segmentation achieved overall
good results, although some small fields may not be cor-
rectly identified. On the other hand, the post-processing
was able to mitigate most incorrectly segmented cropland
field polygons, significantly improving results in most met-
rics, removing isolated pixels, and better delimiting fields.

1. Introduction
In the coming decades, the world has the challenge of

providing an increase in agricultural production to meet the
growing demands of food for human and animal consump-

tion and for the production of biofuels [10, 34], while min-
imizing the environmental impacts generated by the activ-
ity [24, 36]. Agricultural monitoring becomes essential to
achieve these goals [33]. Remote sensing is one of the most
promising data sources for agricultural monitoring as it al-
lows obtaining objective information from large areas peri-
odically [5, 21, 40].

Crop fields are the basic units of management in farm-
land [39]. Delimiting crop field boundaries are helpful
inputs to precision agriculture and digital agriculture ser-
vices [8], as well as, enable field-level analysis of crop
type mapping [3], crop phenology and biomass [31], and
crop yield mapping [30]. Manual digitization with vi-
sual interpretation is one of the methods used for delimit-
ing crop fields [4]. However, this method requires experi-
enced interpreters and is time-consuming. Traditional auto-
matic segmentation methods including edge detection [9],
region-based [23], a combination of the two [28], or graph-
based [15] are, also, adopted. While edge-based detection
does not guarantee closed polygons; region-based detection
boundaries are not always located at the natural edges. The
combination of the two approaches can overcome some of
the weaknesses of each one individually, but usually require
a fine-tune parameterization that may depend on the char-
acteristics of the analyzed region and the image used. The
graph-based is also usually dependent on fine-tune parame-
terization.

Current advances in computer vision and machine learn-
ing applied to remote sensing data have brought break-
throughs in cropland field boundary delimitation. Deep
learning methods offer a vessel for an all-inclusive pro-
cess including feature extraction and classification, which
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makes the field boundary delimitation process much more
polished [6]. However, field delimitation offers some chal-
lenges not commonly encountered in other deep learning
applications, requiring learning complex and specific tem-
poral, spatial, and spectral patterns from the differences in
plant phonological profiles, sub-pixel border information,
swift human interventions such as harvests, and the high
agricultural dynamics [14].

A strategic interpretation of the cropland field bound-
aries segmentation challenge is approximate to a semantic
segmentation problem. This interpretation enables lever-
aging deep convolution neural networks (CNN) to analyze
remote sensing imagery, exploiting different hierarchical
(local to global) features in images [38], such as used in
some methodologies [3, 38]. Nonetheless, CNN-based ap-
proaches still lack represent the spectro-temporal variation
that exists due to the change in phenology during crop grow-
ing.

In this manuscript, we address the cropland field bound-
aries segmentation challenge by proposing a novel end-to-
end segmentation framework. Our framework comprises
three main pipelines: data preparation pipeline, in which
Sentinel-2 MSI sensor images are handled; segmentation
pipeline, where we propose the use of three different meth-
ods to obtain a cropland field map; and post-processing
pipeline, where we propose a novel temporal aggregation
methodology to enhance crop field boundary delineation.
We highlight as main contributions of this manuscript:

(i) A novel cropland boundaries segmentation framework;

(ii) A temporal aggregation post-processing method;

(iii) Set of object-based metrics to evaluate resulting iden-
tified cropland polygons.

2. Related Work
Field boundaries can be defined as the boundaries where

a change in crop type, crop mixture, or farm management
practice takes place, or where two similar cultivation are
separated by a disruption in the landscape, e.g., a road [25].
Conceptually, extracting crop field boundaries consists of
labeling each pixel of a multi-spectral image with one of
two classes “boundary” or “not boundary” [38]. While crop
field boundaries can be manually delimited by visual inter-
pretation of images, it is time-consuming, and as farmers
can change the distribution of their fields from one crop
season to another, manually delimiting them can be costly
as well. Field boundaries delimitation automatic methods
can be roughly divided into traditional algorithms and deep
learning algorithms [19].

Traditional methods include edge-based, region-based,
graph-based, and hybrid approaches. Edge-based relies
on a spatial gradient from discontinuities in images where

pixel values change rapidly by applying various filters with
specific kernels such as Scharr, Sobel, and Canny opera-
tors [17,35]. The region-based method groups adjacent pix-
els into the same field according to a predefined uniformity
criterion [42]. In graph-based, weight is associated with
each edge based on some property of the pixels that it con-
nects, this weight represents a dissimilarity between the two
pixels connected by that edge, such as their image intensi-
ties [15]. Sahadevan [29] applied the Felzenszwalb’s algo-
rithm [15], a graph-based method, on airborne hyperspec-
tral images to extract homogeneous crop fields, obtaining
an Error of 0.276, Precision of 0.568 and Recall of 0.999.
Wagner and Oppelt [37] applied image enhancement tech-
niques and merged edge-based and graph-based techniques
to delimit the field boundaries in Germany, identifying the
number of fields with a difference between -8.9% and 8.3%
for the actual number of fields.

Recently, deep learning networks have gained attention
in the cropland field boundary detection task. Among
the deep network typologies, Convolutional Neural Net-
works (CNNs) became very popular in image analysis and
semantic segmentation because of their capability to learn
a hierarchy of spatial features at different levels of abstrac-
tion [25]. The U-Net architecture [26], made major break-
throughs in image semantic segmentation task when intro-
ducing the encoder-decoder paradigm. The U-Net has also
been used for crop field boundary delimitation. Ajadi et
al. [3] combined U-Net with the Fully Convolutional Neural
Network (FCN), what they called the Boundary Net model,
to extract crop field boundary and improve the crop type and
crop area mapping across Brazil combining synthetic aper-
ture radar and optical imagery. Their field boundary delimi-
tation approach achieved an F1 score of 93%. Unlike tradi-
tional CNNs, which predict one class label per input image,
FCNs are designed to infer pixel-wise predictions directly,
independently from the size of the input image [25], be-
ing essential for semantic segmentation. Several works also
used U-Net enhancements. Waldner and Diakogiannis [38]
used ResUNet-a, a fully connected U-Net architecture that
features dilated convolution, and conditioned inference to
identify the extent of fields, the field boundaries, and the
distance to the closest boundary. To achieve instance seg-
mentation of individual fields they used post-processing af-
ter the ResUNet-a. However, these approaches do not take
advantage of the unique spectro-temporal variation that ex-
ists due to the change in phenology during crop growing.

3. End-to-end cropland field boundaries seg-
mentation framework

In this section, we propose our framework for cropland
field boundaries segmentation. As seen in Fig. 1, the frame-
work comprises three main pipelines: (i) data preparation;
(ii) segmentation; and (iii) post-processing. Briefly, the data
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Figure 1. Overview of our proposed cropland field boundaries seg-
mentation framework.

preparation pipeline manipulates Sentinel-2 raw data to fil-
ter cloudy dates, compute proper bands, and patch data into
segmentation-ready images. The segmentation pipeline em-
ploys the segmentation processor to obtain a segmentation
map for each image. Finally, our post-processing pipeline
temporally aggregates the segmentation maps, and, then,
composes patches to form a unique mosaic of identified
cropland fields.

3.1. Input data and preparation

Our framework uses as input images acquired by the
Multi-Spectral Instrument (MSI), onboard of the twin satel-
lites Sentinel-2A and Sentinel-2B, launched in 2015 and
2017, respectively, within the European Copernicus pro-
gram [11]. MSI sensor acquires images of the Earth’s sur-
face in 13 spectral bands from visible, Near InfraRed (NIR)
and Short Wave InfraRed (SWIR) regions of the electro-
magnetic spectrum at 10, 20, and 60 m [16]. Sentinel-
2/MSI Level-1C (L1C) images from 01-Sep-2020 to 30-

55°0'0"W

55°0'0"W

45°0'0"W

45°0'0"W

30
°0

'0
"S

20
°0

'0
"S

10
°0

'0
"S

Map data © OpenStreetMap contributors

Legend
Training
Test
MGRS tiles

Figure 2. Locations of the training and test patches.

May-2021 with less than 15% cloud cover were accessed
from Amazon Web Services 1 and stored in Amazon Simple
Storage Service (Amazon S3) bucket for further process-
ing. The range of date of the images was selected to include
the period of growth of the major agricultural crops in the
first crop season in the principal farmland regions in Brazil.
Sentinel-2/MSI L1C is a product radiometrically and geo-
metrically corrected with ortho-rectification, and provided
in Top Of Atmosphere (TOA) reflectances [13]. We used
all the spectral bands provided at 10 m and 20 m, i.e., bands
Blue (B2), Green (B3), Red (B4), Red-edge 1 (B5), Red-
edge 2 (B6), Red-edge 3 (B7), NIR (B8), NIR Narrow
(B8A), SWIR 1(B10), and SWIR 2 (B11) 2. The 20 m spec-
tral bands were resampled to 10 m using the nearest neigh-
bor resampling method. In addition to the 10 spectral bands,
the Normalized Difference Vegetation Index (NDVI) [27]
(calculated using the B8) and the Roughness [41] of the B8
were used as additional input.

The selected images are illustrated in Fig. 2 and cover 18
Military Grid Reference System (MGRS) tiles distributed
over Brazil, covering the 314 patches used in our analy-
ses. MSI images were clipped according to each patch,
which has dimensions of 500x500 10m pixels. The patches
were divided into training and test, with 285 for the fur-
ther and 29 for the latter (black and red dots in Fig. 2). Each
patch was labeled by visual interpretation of Sentinel-2/MSI

1https://registry.opendata.aws/sentinel-2
2https://sentinels.copernicus.eu/web/sentinel/technical-

guides/sentinel-2-msi/msi-instrument

638



Input Image Segmentation Map

Skip connection

Max-pooling (2x2) Upsampling (2x2)

Residual and Recurrent unit 
Convolution (3x3) + ReLU

(a) U-Net architecture.
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(b) Residual and Recurrent Attention U-Net architecture.

Figure 3. Convolution neural networks segmentation methodolo-
gies architecture.

false-color composition (NIR-SWIR-red) with cloud cover
less than 10%. Cropland and consolidated pasture fields
were delimited and labeled as one class, and the other tar-
gets were labeled as another class. Three validation patches
were randomly selected in each Brazilian state where there
were patches, to ensure that they are representative of the
different characteristics of size and shape of fields, agricul-
tural crops, cloud cover, relief, and soil, among others, that
exist in Brazil.

3.2. Cropland field boundaries segmentation

Aiming to achieve crop field boundaries segmenta-
tion, i.e., identify and outline croplands, we define the chal-
lenge as semantic segmentation, or image segmentation,
which is a form of pixel-level prediction, defined by cluster-
ing parts of an image together that belong to the same object
class. As such, we propose and evaluate the employment of
the three different segmentation methodologies. One us-
ing a graph-based image segmentation algorithm (Felzen-
szwalb’s algorithm [15]) and two others using convolution
neural networks (U-Net [26] and Residual and Recurrent
Attention U-Net (R2AttU-Net) [2, 22]).

Felzenszwalb’s algorithm Felzenszwalb and Hutten-
locher [15] developed an efficient graph-based image seg-
mentation approach, commonly referred to here as Felzen-
szwalb’s algorithm. Their approach is formulated as given
an image I in the form of an undirected graph G = (V,E),
where vi ∈ V is a vertex within G (a pixel in I) and
(vi, vj) ∈ E corresponding to pairs of neighboring vertices
(adjacent pixels in I), the goal is to produce a new graph
Gseg = (V,E′), such that Gseg is a segmentation of G,
containing distinct and likely-homogeneous regions of G,
and E′ ⊂ E. In our framework, we use Felzenszwalb’s

algorithm as a segmentation technique, and I being each
patch and Gseg an identified cropland field.

U-Net The U-Net architecture, proposed by Ron-
neberger et al. [26] and illustrated in Fig. 3a, was first de-
veloped aiming to perform biomedical image segmentation,
but soon became the state-of-the-art solution for image seg-
mentation and the baseline for newer segmentation neural
network. The main idea of the architecture is to compile an
encoder, known as contraction path, with a decoder, known
as expansion path. The contraction path is composed of
stacked convolutional and max pooling operations, which
learn the image contexts’ representation. The expansion
path is responsible to unfold the learned representation and
spatially align the learned information. To do so, this path
consists of stacked upsampling operations that enable pre-
cise localization by transposing convolutions through a skip
connection [18] mechanism.

Residual and Recurrent Attention U-Net The Residual
and Recurrent Attention U-Net (R2AttU-Net) model, illus-
trated in Fig. 3b, is a variation of the U-Net segmentation
model. The model combines residual and recurrent units [2]
in the encoding path to enhance the feature learning pro-
cessing with attention gates that spatially filter the features
propagated through the skip connections in the decoding
path [22].

We also introduce two modifications to the CNN-based
segmentation methodologies. We replace the traditionally
used Rectified Linear Unit (ReLU) activation function [2,
22, 26] to using the Sigmoid-Weighted Linear Unit (SiLU)
activation function [12]. Also, we modified the traditionally
used cross-entropy loss function to using Lovász-Softmax
loss [7]. Both modifications improve significantly our train-
ing efficiency by fasting model training convergence while
keeping results stable.

3.3. Post-processing

To enhance our results and better outline the detected
croplands, we propose the use of a series of filters and post-
processing methods. Thus, in the following, we discuss
the temporal aggregation post-processing method as well as
area-based and MapBiomas-based filters.

Temporal aggregation The proposed post-processing
pipeline uses temporal information by combining multiple
predictions to better outline the target croplands, which can
increase overall accuracy, especially when more than four
observations are available [38]. Thus, as described in Sec-
tion 3.1, all images with less than 15% clouds from between
01-Sep-2020 to 30-May-2021 in the 314 patches were se-
lected in our experiments. Thus, we combine the multiple
patches’ segmentation map of different dates within a single
stack. Then, for each pixel, we propose computing the el-
ement corresponding to a specific percentile and retrieving
this value as the single value that represents the pixel.
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Filtering To remove pixels that may have been mis-
classified, we use the MapBiomas land use and land
cover (LULC) map as a mask. MapBiomas [32] is the
most recent LULC mapping initiative in Brazil, covering
the entire country annually between 1985 and 2020 in Col-
lection 6. All non-crop and non-pasture-related pixels in
MapBiomas were filtered out from our results. In addition
to MabBiomas filter, areas with less than 1ha were filtered
out, to remove isolated pixels and noise from small areas,
because in Brazil, usually, the fields are larger than 1ha.

4. Experiments
We conduct experiments to evaluate the performance of

the proposed cropland field boundaries segmentation frame-
work. In the following, we present the experimental set-
tings, our results, and our quantitative and qualitative anal-
yses.

4.1. Experimental setting

Datasets In our experiments we aim to evaluate
Felzenswalb’s segmentation algorithm, and the neural net-
works U-Net and R2AttU-Net, described in Section 3.2.
Both neural networks are trained using the training and re-
sults are gathered from the test dataset, both described in
Section 3.1.

Implementation details We implemented the neural net-
works using PyTorch 3 and trained using a single Nvidia
k80 GPU 4. In our best experimentation settings, U-Net uses
a learning rate of 10−5 with Adam optimizer [20], batch
size of 32, and 20 training epochs with early stopping of
0.01 delta and 5 patience. R2AttU-Net uses the same set-
tings as U-Net, with the addition of recurrent units of 2.
The Felzenswalb’s algorithm uses the scikit-image 5 pub-
licly available implementation with the scale factor of 20,
sigma of 0.5, and 100 being the minimum number of pixels
as settings.

Evaluation protocol As described in Section 1, our key
challenge is to best outline cropland areas from a given
image. like so, we evaluate the solutions based on their
capacity to correctly outline these areas. We report re-
sults from a set of metrics, properly divided into pixel-
based and object-based. The pixel-based metrics set in-
cludes Precision (Pr), Recall (Re), F1-score (F1), and
Intersection over Union (IoU) and are performed at a
pixel-level over the raster images. The object-based met-
rics set are performed at an object-level over the derived
polygons from the original raster images, and includes
Under-Segmentation (US), Over-Segmentation (OS), Gen-
eral Segmentation Error (GSE), and Polygons and Line Seg-
ments (PoLiS) [1].

3https://pytorch.org/
4https://www.nvidia.com/en-gb/data-center/tesla-k80/
5https://scikit-image.org/

The pixel-based metrics Precision, Recall, and F1-score
shown in Equations 1, 2, and 3, respectively, measure the
pixel classification provided by each model on the raster
images. The Precision evaluates the ratio of cropland pix-
els correctly classified given all classifications. The Recall
measures the fraction of correctly classified pixels overall.
The F1-score takes the harmonic mean between Precision
and Recall to combine both into a single meaningful met-
ric. The fourth pixel-based metric is the Intersection over
Union (IoU), Equation 4. This metric assesses the over-
lapping pixels of predicted cropland pixels (P ) given their
ground truth pixels (GT ).

Pr =
TP

TP + FP
(1) Re =

TP

TP + FN
(2)

F1 = 2 ∗ Pr ∗Re

Pr +Re
(3) IoU =

|P ∩GT |
|P ∪GT |

(4)

On the object-based evaluation side, we evaluate the de-
rived polygons. To do so, we propose the use of three
metrics to understand and assess the matching areas of
predicted cropland objects versus their ground truth ob-
jects. Like so, the Under-Segmentation metric (Equation 5)
measures how much area of the prediction object (Po) is
missing from the ground truth object (GTo). The Over-
Segmentation metric (Equation 6) measures how much area
of the prediction object is outside the borders of its cor-
respondent ground truth. Following, we employ the root
mean squared error over both Under- and Over- Segmenta-
tion metrics to evaluate a single polygon area error, called
General Segmentation Error (Equation 7).

US = 1− |Po ∩GTo|
|Po|

(5)

OS = 1− |Po ∩GTo|
|GTo|

(6)

GSE =

√
US2 +OS2

2
(7)

Finally, we also employ the Polygons and Line Segments
metric [1], shown in Equation 8. The PoLiS is a metric orig-
inally designed to compare building polygons, however, we
employ it over the cropland polygons. The metric consid-
ers polygons as a sequence of connected edges to compute
differences, approximately linearly, in translation, rotation,
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Table 1. Results obtained from pixel- and object- based metrics from the cropland field boundaries segmentation methodologies with
the post-processing pipeline and without post-processing. Bold results indicates the best results from each pixel-based metric, and
bold with underline indicates the best results from each object-based metric.

2*Approach Pixel-based Object-based

Pr Re F1 IoU US OS GSE PoLiS

Felzenswalb 0.8083 0.8628 0.8347 0.7163 0.6338 0.6841 0.6594 647.15
U-Net 0.8728 0.7923 0.8306 0.7103 0.6735 0.8862 0.7870 709.62

R2AttU-Net 0.7825 0.8914 0.8334 0.7172 0.6476 0.5747 0.6122 731.49

Felzenswalb
+post-processing

0.8375 0.8379 0.8377 0.7208 0.3802 0.4032 0.3918 177.30

U-Net
+post-processing

0.9380 0.7568 0.8377 0.7208 0.3506 0.3711 0.4521 175.46

R2AttU-Net
+post-processing

0.9262 0.7640 0.8373 0.7201 0.5386 0.4056 0.4767 289.91

and scale between predicted and ground truth polygons. pj
and gk represent each vertex of the polygons Po and GTo,
respectively. g and p represent the points of the polygons
GTo and Po closest to the vertices pj and gk, respectively.
q and r represent the number of vertices in polygons Po and
GTo, respectively.

PoLiS =
1

2q

∑
pj∈Po

min
g∈∂GTo

||pj−g||+ 1

2r

∑
gk∈GTo

min
p∈∂Po

||gk−p||

(8)
All accuracy metrics range from 0 to 1, with the excep-

tion of PoLiS. Values of Precision, Recall, F1-score, and In-
tersection over Union equal to 1 represent the ideal cropland
field segmentation. While for Under-, Over- Segmentation,
and General Segmentation Error, values equal to 0 repre-
sent the ideal cropland field segmentation. Lower values of
PoLiS indicate the edges of polygons closer to the edges of
ground truth polygons.

4.2. Quantitative evaluation

Results displayed in Table 1 show that Felzenswalb’s
segmentation algorithm has overall better sensitivity than
other methods while having the worst precision. This re-
sult aligns with our initial expectations that this approach is
able to cover most of the existing cropland, however, it suf-
fers from the identification of true cropland areas. R2attU-
Net has overall mixed results but lacks quality with the de-
rived cropland areas. Finally, U-Net has the most balanced
results. It combines high precision with good sensitivity.
Besides, it features the smaller GSE and PoLiS, showing
that the identified croplands better fit in scale, rotation, and
translation of the ground truth polygons. Regarding the use
of the post-processing pipeline, with the exception of recall,
it improved all other pixel-based metrics. Besides, the post-
processing pipeline efficiently improves results from object-
based metrics, reducing up to 43% of the GSE metric and

76% of the PoLiS metrics on U-Net. These results prove the
effectiveness of the proposed percentile-based temporal ag-
gregation method as a post-processing solution to improve
the cropland field boundary delimitation.

4.3. Qualitative evaluation

Fig. 4 illustrates the results of crop field segmenta-
tion using U-Net, R2AttU-Net, and Felzenszwalb’s algo-
rithm before and after post-processing for four patches from
test dataset. Visually, in general, the results from U-Net
and Felzenszwalb’s method are more similar to the ground
truth, although in some cases U-Net fails to segment part
of the cropland fields (e.g., patch from T22KGB) and the
Felzenszwalb’s algorithm lacks precision (e.g., patch from
T22JBT). On the other hand, R2AttU-Net has more diffi-
culty in identifying roads and field boundaries leaving con-
nected fields, as can be seen in the T22JBT and T22KGB
patches. The post-processing is an important step, in which
it removes non-cropland in the Felzenszwalb’s approach,
and helps to better delineate the fields and remove iso-
lated pixels in the U-Net approach, as can be seen in the
T22JBT and T22KGB patches. The results of the cropland
segmentation by the three methods are dependent on the
characteristics of the cropland fields (e.g., size and shape)
and on the characteristics of the images (e.g., reflectance
according to the phenological stage of the crops). Over-
all, the R2AttU-Net is able to identify croplands well but
is not able to delimit the fields correctly. In a few cases,
the post-processing method ends up dissolving the smaller
identified polygons (e.g., patch from T22JBT), however, it
significantly improves overall results. Felzenszwalb’s algo-
rithm was able to segment the fields well but generates over-
segmentation in some cases. It is dependent on the quality
of the input data for post-processing, often segmenting areas
that are not cropland. U-Net showed good results overall,
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Figure 4. Visual comparison between cropland field boundaries segmentation of Felzenswalb’s algorithm, U-Net, and R2AttU-Net ap-
proaches with the post-processing pipeline and without post-processing on four patches from test dataset.

although some small fields may not be correctly identified
(e.g., patch from T22JBT). Post-processing improves the re-
sults in most cases, removing isolated pixels and delimiting
the fields better (e.g., patch from T22KDF and T23LLH).
5. Conclusion

In this paper, we propose a novel end-to-end framework
for cropland field boundaries segmentation whose objective
was to enhance the existing ML-based pipelines using im-
age processing techniques. The study emphasizes the re-
markable enhancements achieved through the application of
the post-processing methodology, particularly for the U-Net
segmentation approach. The application of post-processing
not only greatly enhances the performance of U-Net but also
outperforms other methods with a remarkable increase in
precision (0.9380) and F1 score (0.8377).

Object-based metrics further underscore the effective-
ness of the post-processing technique, with a notable 43%
reduction in the GSE metric for U-Net+post-processing.
These findings emphasize the critical role of the proposed
percentile-based temporal aggregation method as a post-
processing solution, making U-Net an even more powerful
tool for cropland analysis and precision agriculture. In fu-
ture work, we highlight the opportunity to combine both
Felzewalb’s identified fields and U-Net’s identified crop-
land fields as a possible improvement.
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