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Abstract

Deep Neural Networks (DNNs) have found widespread
application in various domains, but the challenge of ad-
dressing Algorithmic bias and ensuring fairness in their
decision-making processes has emerged as a critical con-
cern, particularly in mission-critical contexts. One of the
main reasons for this concern is the inadequate represen-
tation of certain groups in the available datasets used for
training. Pre-Training is a powerful technique for train-
ing DNNs, but it can be affected by pre-existing biases in
the dataset. These biases can be transferred to the DNN
during Pre-Training, leading to the DNNs making biased
decisions, even when trained on unbiased datasets. This
study investigates the impact on the fairness of popular Pre-
Training methods, such as Masked Image Modeling (MAE,
SimMIM) and Self-Supervised Learning (BYOL, MoCo,
SimCLR, VICRegL), when used on skin lesion classifica-
tion datasets with underrepresented demographic groups.
The study compares the performance of pre-trained mod-
els to supervised learning backbones on two skin lesion
datasets (ISIC-2019 and Fitzpatrick17k) with different skin
tone distributions. The findings of this study reveal that
Pre-Training improves performance but has a trade-off with
fairness, which can be a potential danger associated with
the model when applied in the real world. This study is
one of the first to investigate how Self-Supervised Learning
and Masked Image Modeling Pre-Training methods affect
fairness in both in-distribution and out-of-distribution sce-
narios. Code is available at https://github.com/
ptnv-s/PretrainingImpactOnSkinBias.

1. Introduction
In recent years, AI has profoundly transformed various

aspects of our lives, including decision-making and daily

Figure 1. Fitzpatrick Labelled Skin-Types in ISIC-2019 [11] &
Fitzpatrick17k Datasets

activities, revolutionizing numerous domains. One critical
sub-field within AI is medical data analysis, which focuses
on processing and analyzing diverse medical data to extract
crucial information for accurate diagnoses [20]

Deep neural networks are increasingly used in computer-
aided health monitoring and diagnosis, but the need for
large amounts of data is a challenge. Acquiring and anno-
tating medical data is time-consuming and expensive, and
it is especially difficult for rare or novel diseases. Can-
cer is the leading global cause of death, with around 10
million fatalities in 2020, representing approximately one
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Figure 2. Illustration of Pipelines involved in experimentation of Self Supervised Learning (SSL) and Masked Image Modelling (MIM)
Pre-Training followed by either Head Tuning and Full Tuning methodologies of Fine Tuning Module.

in six deaths [7]. Skin cancer is among the six most com-
mon cancers. Early detection and treatment of skin lesions
can significantly improve patient survival rates. DNNs can
extract robust features and make predictions directly from
input images of skin lesions. However, their susceptibility
to biases can lead to unfair decisions. Studies indicate that
patients with darker skin tones experience lower diagnosis
accuracy than those with lighter skin [12], limiting their re-
liable clinical use [15].

Fairness in skin lesion classification presents challenges
due to limited annotated data with diverse skin types. Most
publicly available datasets primarily represent fair-skinned
demographics, leading to data imbalance and potential
racial biases in a model’s predictions. Despite these con-
cerns, research evaluating Deep Learning (DL) based mod-
els on diverse skin types remains scarce, leaving their reli-
ability as disease screening tools untested. Previous stud-
ies [21,24,25] have shown inherent racial disparities in ma-
chine learning algorithms across various domains, includ-
ing healthcare applications like cardiac MR imaging, chest
X-rays, and skin disease imaging.

Pre-Training has become a standard practice in training
Deep Learning model pipelines due to its ability to mitigate
the data scarcity challenge, especially in medical imagery.
Inspired by Human Learning, Pre-Training techniques such
as Self Supervised Learning (SSL) are used to learn relevant
knowledge from unlabeled data to acquire universal feature
representations through a two-step process: Pre-Training to
learn these representations and Fine Tuning to adapt to spe-

cific tasks. SSL has gained attention in medical imaging as
it overcomes the lack of annotated data by learning general-
purpose representations without requiring human-annotated
labels. A promising technique for training powerful DNN
models like the transformer models is Masked Image Mod-
eling (MIM), which involves masking parts of input images
randomly and reconstructing them. Recent advancements
in MIM-based techniques have surpassed the performance
of SSL and supervised models.

In this work, we analyze the impact of SSL and MIM
Pre-Training methods on Fairness for Skin Lesion Analysis.
The contributions of this work are:

• Our work is one of the first to explore the impact of
Pre-Training methods on the fairness of models when
trained on datasets that include underrepresented de-
mographic groups.

• We analyze the impact of Pre-Training on the fair-
ness and overall performance of models in Skin Im-
age Analysis by considering different datasets having
different representations of demographic groups (skin
tone).

• We systematically compare eight Pre-Training based
pipelines on six Pre-Training Methods against base-
line methods involving two publicly accessible
test datasets, comprising in-distribution and out-
distribution scenarios of Pre-Training and Fine Tuning
on downstream tasks against their Supervised Learn-
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ing pipelines with a focus on performance and Fairness
metrics.

2. Related Works
Self-Supervised Learning (SSL) involves Pre-Training

models on auxiliary pretext tasks before Fine Tuning
them on the downstream task. The base model, the en-
coder, transforms input images into latent representations.
ResNet-50 [18] is commonly used as a backbone due to
its simplicity and accuracy. Contrastive losses have been
a critical advancement in SSL, organizing the feature space
by bringing related samples together and pushing unrelated
samples apart.

InstDisc [27] significantly contributed to SSL by treat-
ing class-level classification as instance-level discrimina-
tion. It involved using augmented views of training sam-
ples, a modified softmax loss function, and a temperature
hyperparameter to handle multiple labels. It utilized a mem-
ory bank to store instance parameters and Noise-Contrastive
Estimation to approximate the softmax, resulting in more
concise representations. SimCLR [10] took an end-to-end
approach and incorporated a projection network after the
encoder network to reduce dimensions dynamically, similar
to InstDisc with respect to the pretext task and loss function
but calculates the loss based on the batch samples alone,
eliminating the need for a memory bank.

BYOL [14] matches data-augmented views between
positive pairs without using negative pairs. It compares the
outputs of a fast and a slow network and utilizes the cosine
distance between them as a loss. MOCO [17] introduces
a representation dictionary whose size is determined by a
hyperparameter, similar to InstDisc. Negative examples are
sampled from the dictionary, and parameters are updated
using a momentum update. VICRegL [4] expands on the
VICReg objective to improve performance in image-level
and dense prediction tasks. It introduced derived local fea-
tures by considering feature and spatial location distances.

Recent advancements have demonstrated the effective-
ness of Masked Image Modeling (MIM) as a Pre-Training
strategy for Vision Transformers [13]. MIM involves mask-
ing a set of image patches at the input and reconstructing
the masked patches at the output, encouraging the network
to infer the masked target by leveraging contextual infor-
mation. Masked Autoencoders (MAE) [16] is a simple ap-
proach with an asymmetric encoder-decoder architecture.
The encoder receives only visible tokens and a lightweight
decoder that reconstructs the masked patches from the en-
coder’s patch-wise output and trainable mask tokens trained
with L2 loss. SimMIM [29], another famous MIM architec-
ture, employs a linear layer as a decoder and uses L1 loss
instead of L2 loss.

There are two main approaches to Self-Supervised
Learning in Medical Applications. The first adapts gen-

eral pretext tasks [9], and the second combines medical
knowledge with computer vision expertise [19]. In Skin Im-
age Analysis, [26] used a clustering pretext task similar to
SwAV [8]. SimCLR was used for skin-lesion by [3] and
MAE for X-ray tasks by [28].

Bias and Fairness in machine learning is a grow-
ing concern [22], and approaches to address unfairness
in deep learning can be categorized into pre-processing
[5], in-processing [2], and post-processing [23]. Pre-
processing methods transform data to remove discrimi-
nation, achieving a balanced trade-off between accuracy
and non-discrimination. In-processing techniques modify
model architecture or add Fairness-related penalties to train
fairer models. Post-processing methods calibrate predic-
tions using model outputs and sensitive attributes. However,
skin type Fairness receives less attention than age, sex, and
race Fairness.

3. Experimental Setup

3.1. Dataset

The experiments are performed using Fitzpatrick17k
[15] and ISIC 2019 [11] that help us simulate an in and
out-distribution scenario in terms of skin types. During the
Pre-Training phase, we resize the images to 224x224 and
apply the corresponding augmentation techniques specific
to each method. In the Fine Tuning stage, we resize, per-
form random horizontal flipping, and normalize the image.

3.1.1 Fitzpatrick17k Dataset

Fitzpatrick17k Dataset (Fitz-17k) [15] comprises 16577
clinical images labeled with skin conditions and Fitzpatrick
skin-type labels. It includes 114 unique skin conditions with
corresponding Fitzpatrick skin-type labels. These are fur-
ther categorized into 9 categories used in this study.

3.1.2 ISIC-2019

ISIC-2019 [11] Dataset contains 25331 samples with eight
skin conditions and an unknown class. We use the Fitz-
patrick labeling system for the six-point skin tone labeling.

3.1.3 Fitzpatrick labeling system

Fitzpatrick labeling system [15] is a six-point scale ini-
tially developed for classifying sun reactiViTy of skin treat-
ment according to skin phenotype. In this, the skin types are
categorized into six levels. Although commonly used for
categorizing skin types, it has been used recently to eval-
uate algorithmic Fairness. For the Datasets used, the skin
type distribution is shown in Figure 1.
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Dataset Backbone Mean Performance Metrics Fairness Metrics
Model Accuracy(↑) ROC-AUC(↑) F1 Score(↑) DPR(↑) DPD(↓)

ISIC-2019 [11]
ViT-32b 0.92214 0.89290 0.42526 0.70585 0.17906
ViT-16b 0.92609 0.90257 0.48205 0.72679 0.17770

ResNet-34 0.91586 0.87331 0.45153 0.77735 0.13600

Fitz-17k [15]
ViT-32b 0.92039 0.74292 0.24446 0.08761 0.06676
ViT-16b 0.91292 0.75895 0.27437 0.26766 0.07063

ResNet-34 0.91601 0.74326 0.24660 0.11710 0.07171

Table 1. Performance & Fairness Metrics of Backbone Models over ISIC-2019 & Fitzpatrick Dataset.

3.2. Pre-Training & Fine Tuning Methodology

We benchmark the tasks on three commonly used Back-
bones - ResNet-34, ViT-16b, and ViT-32b for supervised
learning pipelines. For Pre-Training Methods, we used
popular methods MAE and SimMIM with ViT-32b as the
backbone for Masked Image Modelling (MIM). For Self-
Supervised Learning (SSL), we have used - BYOL, MOCO,
SimCLR & VICRegL with ResNet-34 as the backbone.

In order to train our supervised backbones, we utilize the
BCE (Binary Cross-Entropy) loss function and the Adam
optimizer with a 10−4 learning rate.

For the Pre-Training pipelines, we employ the conven-
tional training approach that involves utilizing the loss func-
tion and image augmentation techniques associated with
each specific Pre-Training method, followed by Fine Tun-
ing similar to supervised backbones.

3.3. Experimental Design

We evaluate ten pipelines, which vary in the model’s Pre-
Training (PT) and Fine Tuning (FT) alongside the Datasets
involved in the pipelines.

The first two pipelines involve supervised learning
on ResNet34, ViT-16b and ViT-32b on Datasets D1 ∈
(ISIC-2019 [11],Fitzpatrick17k [15]), which acts as a base-
line for our experiments.

The other eight pipelines as shown in Fig-
ure 2, involves Pre-Training on Dataset-1 (D1)
where D1 ∈ (ISIC-2019 [11],Fitzpatrick17k [15]),
followed by Fine Tuning the pre-trained encoder
weights, and evaluation on the Dataset-2 (D2) where
D2 ∈ (ISIC-2019 [11],Fitzpatrick17k [15]). Fine Tuning
can be of two types: Head Tuning and Full Tuning. Head
Tuning is where encoder weights remain frozen, and only
the final linear layer is trainable. Full Tuning involves Fine
Tuning the encoder alongside linear layers.

This results in a total of eight combinations of Pre-
Training methods, with each combination representing a
pipeline. SSL ∈ (BYOL,MoCo,SimCLR,VICRegL) and
MIM ∈ (SimMIM,MAE) .

3.4. Evaluation Metrics

We aim for an accurate and fair skin condition classifier
by assessing each pipeline’s performance using metrics for
both performance and Fairness.

3.4.1 Performance Metrics

The Model Performance is reported using well-known met-
rics such as mean ROC-AUC, Macro F1-score, and mean
Accuracy.

3.4.2 Fairness Metrics

For quantification of Fairness, we use Disparity metrics
[1, 6], namely Demographic Parity Difference (DPD) and
Demographic Parity Ratio (DPR).

Demographic Parity Difference (DPD) reports the ab-
solute difference between the highest and lowest group-
level selection rates across different groups, with 0 indi-
cating demographic parity as all groups have the same se-
lection rate. Whereas, Demographic Parity Ratio (DPR)
reports the ratio of the lowest and highest group-level se-
lection rates across different groups, a result that all groups
have the same selection rate. The mathematical notation for
both of them is as follows :

DPD = ((max
a

E[h(X)|A = a])−(min
a

E[h(X)|A = a])) (1)

DPR =
maxa E[h(X)|A = a]

mina E[h(X)|A = a]
(2)

∀(aXA), where for classifier h, X is the denoted feature vec-
tor used for predictions, h(X) is the predicted value, A is a
single sensitive feature and a denotes all distinct values of
sensitive feature A.

4. Analysis & Findings
To analyze the change of performance with Self Su-

pervised (SSL) and Masked Image Modelling (MIM) Pre-
Training Methods, we experimented with supervised back-
bones - (ResNet34, ViT-16b, ViT-32b) over both datasets
(ISIC-2019 [11],Fitzpatrick17k [15]) as shown in Table 1,

573



Pre- Dataset Average Change (∆) from Supervised Backbone
Training Fine Pre DPD(↓) DPR(↑) Mean(↑) Macro(↑)
Method Tuning Training ROC-AUC F1 Score

MIM
Fitz-17k [15] Fitz-17k [15] 0.003±0.034 0.15±0.114 0.046±0.026 0.123±0.046

ISIC-19 [11] 0.002±0.014 0.166±0.095 0.049±0.017 0.13±0.033

ISIC-19 [11] Fitz-17k [15] -0.017±0.015 0.032±0.022 0.03±0.007 0.15±0.021
ISIC-19 [11] -0.035±0.004 0.066±0.016 0.023±0.004 0.143±0.027

SSL
Fitz-17k [15] Fitz-17k [15] 0±0.037 0.168±0.083 0.089±0.019 0.176±0.081

ISIC-19 [11] 0.023±0.03 0.125±0.082 0.077±0.03 0.132±0.178

ISIC-19 [11] ISIC-19 [11] 0.01±0.027 -0.02±0.05 0.053±0.016 0.132±0.083
Fitz-17k [15] 0.008±0.025 -0.015±0.034 0.041±0.014 0.118±0.074

Table 2. Average Change (∆) in Fairness & Performance Metrics of Pre-Training Methods on Fine Tuning over same and out-of-
distribution Dataset on Full & Head Fine Tuning of the model.

Pre- Fine Tuning Mean Performance & Fairness Metrics
Training Dataset Method DPR(↑) DPD(↓) Mean(↑) Macro(↑)
Method ROC-AUC F1 Score

MIM
Fitz-17k [15] Full 0.252±0.087 0.087±0.022 0.795±0.020 0.383±0.031

Head 0.240±0.121 0.052±0.008 0.786±0.023 0.359±0.0439

ISIC-19 [11] Full 0.766±0.016 0.147±0.004 0.921±0.009 0.578±0.022
Head 0.744±0.031 0.159±0.018 0.918±0.003 0.565±0.024

SSL
Fitz-17k [15] Full 0.297±0.086 0.075±0.025 0.823±0.027 0.413±0.086

Head 0.229±0.067 0.091±0.042 0.830±0.025 0.388±0.178

ISIC-19 [11] Full 0.741±0.028 0.151±0.0283 0.919±0.016 0.579±0.080
Head 0.779±0.034 0.138±0.021 0.921±0.016 0.574±0.078

Table 3. Performance & Fairness Metrics of Pre-Training Methods on Fine Tuning over same and out-of-distribution Dataset on Full &
Head Fine Tuning of model.

which will help us to analyze the change of performance
with Self-supervised and masked Image Modelling. Fur-
ther, we performed the experiments by Pre-Training using
various SSL and MIM algorithms followed by Fine Tuning
for downstream tasks as described in Section 3.3.

4.1. Impact of Pre-Training & Fine Tuning Datasets
on Model’s Performance

We investigated the impact of using in-distribution and
out-of-distribution datasets for Pre-Training and Fine Tun-
ing on model fairness and performance metrics. In the SSL
Pre-Training setting, fairness is maintained in the result-
ing models when Fine Tuning is performed on the same
dataset as pre-trained. However, this setup leads to a more
significant improvement in performance than Fine Tuning
on different datasets. When examining the MIM approach,
we observed that Fine Tuning on the same dataset results
in an improvement in fairness metrics, as shown in Ta-
ble 2. However, if the Pre-Training Dataset differs from
the Fine Tuning Dataset, it leads to a more substantial per-
formance boost. This can be attributed to specific Vision
Transformer (ViT) architecture characteristics, which per-
form better when exposed to varied data sources during Pre-

Training.
We found that including more underrepresented groups

in the Pre-Training dataset improved both the performance
and fairness of the model. This is consistent with the find-
ings from models trained on the Fitzpatrick17k dataset, as
shown in Table 2. The increase in performance is likely
due to the more comprehensive representation of dark skin-
toned samples, as shown in Figure 1.

We conclude that Pre-Training and Fine Tuning on the
same distribution dataset have a limited impact on boost
over fairness and performance metrics in MIM but the effect
is much more evident in SSL-based CNN backbones. How-
ever, the distribution of demographic groups in Pre-Training
plays the most important role in ensuring the fairness and
robustness of the model.

4.2. Examining the effect of different Fine Tuning
methods on the performance of a pre-trained
encoder

We aim to examine how different Fine Tuning methods
affect the performance metrics of a pre-trained encoder to
gain insights into the Fine Tuning method’s influence on
the model’s performance. While analyzing the results for

574



Pre-Training Average Change (∆) from Supervised Backbone
Method DPD(↓) DPR(↑) Accuracy(↑) Mean ROC-AUC(↑) F1-Score(↑)

SSL 0.01±0.03 0.065±0.105 0.017±0.01 0.065±0.027 0.14±0.109
MIM -0.012±0.024 0.104±0.089 0.007±0.004 0.037±0.018 0.136±0.032

Table 4. Average Change (∆) of Performance & Fairness Metrics of Self-Supervised Methods (SSL) & Masked Image Modelling (MIM)
Pre-Training Methods over Supervised Backbones

Fine Pre- Average Change (∆) over Supervised Backbone
Tuning Training DPD(↓) DPR(↑) Mean(↑) Mean(↑) Macro(↑)
Dataset Method Accuracy ROC-AUC F1 Score

ISIC-2019 [11] SSL 0.009±0.025 -0.017±0.041 0.017±0.011 0.047±0.015 0.125±0.076
MIM -0.026±0.014 0.049±0.026 0.009±0.003 0.027±0.006 0.146±0.023

Fitz-17k [15] SSL 0.011±0.035 0.146±0.082 0.016±0.01 0.083±0.025 0.154±0.135
MIM 0.003±0.024 0.158±0.098 0.005±0.003 0.047±0.02 0.127±0.037

Table 5. Average Change (∆) in Fairness Metrics (DPR, DPD) and Performance Metrics (Accuracy, ROC-AUC, F1 Score) of Self-
Supervised & Masked Image Modelling Pre-Training Methods on Fine Tuning Dataset over Supervised Backbones

the MIM Pre-Training, we found that both Fine Tuning
methods, Full Tuning and Head Tuning, lead to slight vari-
ations in performance metrics. We also observe that MIM
Pre-Training performs better when followed by Full Tuning
on the downstream task in Table 3. However, more pro-
nounced differences are observed among the various Fine
Tuning methods for the SSL Pre-Training. In the Fitz-
patrick17k [15] Dataset, Full Tuning of the model appears
to be a superior option with respect to both Fairness and
performance. A reverse scenario is observed in the ISIC-
2019 [11] Dataset, with Head-Tuning found to be fairer.
Overall, we highlight the impact of the Fine Tuning method
on the performance of a pre-trained encoder, with the results
indicating variations in performance metrics across differ-
ent Fine Tuning methods, suggesting that the choice of Fine
Tuning methods significantly influences the model’s perfor-
mance. Full Tuning tends to provide a slight performance
boost compared to Head-Tuning. To mitigate computational
costs, employing Head-Tuning alone can be effective with
a relatively minor trade-off between performance and Fair-
ness.

4.3. Masked Image Modelling makes backbone
fairer than Self-Supervised Learning

We evaluate the impact of Pre-Training approaches on
the Fairness of the model backbone. We aim to compare
the effects of these Pre-Training methods in ensuring Fair-
ness. The results of our experiments reveal some interesting
insights. We find that MIM leads to a more substantial im-
provement in Fairness metrics than SSL, suggesting that it
is more effective in reducing bias in the model backbone as
in Table 4 with a significant boost in DPR and a decrease
in DPD. Furthermore, when considering performance met-
rics, we observe that both Pre-Training methods show im-

provements, with SSL having a better boost in performance.
However, this can be due to fact-learning features related to
skin-tone bias, resulting in a lower Fairness boost.

4.4. Self-Supervised Learning is much better in
boosting the performance of backbone than
Masked Image Modelling

We investigated the effects of Pre-Training methods on
model performance. Our experiments indicate that both the
SSL and MIM-based Pre-Training methods provide a boost
over the supervised learning backbone in terms of perfor-
mance. For Fairness, both Pre-Training methods show pos-
itive effects in DPR, indicating reduced bias. However, a
small increase in DPD is observed, which isn’t ideal. Based
on assessing metrics, we infer that the SSL-based Pre-
Training consistently demonstrates superior performance
enhancement compared to MIM based on the evaluation
done over downstream tasks on both Datasets, as shown in
Table 5.

5. Conclusion

This study investigates the impact on the fairness of
popular Pre-Training methods, such as Masked Image
Modeling (MAE, SimMIM) and Self-Supervised Learning
(BYOL, MoCo, SimCLR, VICRegL), when used on skin
lesion classification datasets with underrepresented demo-
graphic groups. The study compares the performance of
pre-trained models to supervised learning backbones on two
skin lesion datasets (ISIC-2019 and Fitzpatrick17k) with
different skin tone distributions.

We found that Pre-Training can improve the performance
of these models’ performance but also introduce fairness
concerns. This is because pre-trained models are often
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trained on datasets that are not representative of the diver-
sity of skin tones in the real world. As a result, these models
can be more likely to make errors for patients with darker
skin tones.

Our work is one of the first to examine the impact of Pre-
Training on fairness in skin image analysis. We found that
Pre-Training can lead to a trade-off between performance
and fairness. This means that models that are pre-trained
on large datasets may perform better, but they may also
be more likely to make errors for patients with darker skin
tones. Our results underscore the importance of consider-
ing fairness when using pre-trained models for skin image
analysis.
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