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Abstract

Contrastive learning, a dominant self-supervised tech-
nique, emphasizes similarity in representations between
augmentations of the same input and dissimilarity for dif-
ferent ones. Although low contrastive loss often correlates
with high classification accuracy, recent studies challenge
this direct relationship, spotlighting the crucial role of in-
ductive biases. We delve into these biases from a clustering
viewpoint, noting that contrastive learning creates locally
dense clusters, contrasting the globally dense clusters from
supervised learning. To capture this discrepancy, we intro-
duce the ”RLD (Relative Local Density)” metric. While this
cluster property can hinder linear classification accuracy,
leveraging a Graph Convolutional Network (GCN) based
classifier mitigates this, boosting accuracy and reducing
parameter requirements. The code is available here.

1. Introduction
In recent years, contrastive learning has revolution-

ized machine learning by effectively learning representation
functions from unlabeled data. This method generates sim-
ple augmentations for each data point and enforces, through
an appropriate loss function, that (1) augmentations of a sin-
gle data point are clustered together and (2) augmentations
of different data points remain distant. These represen-
tations yield competitive classification performance, even
when using a linear classifier for various downstream tasks.
This progress brings us closer to the long-standing aspira-
tion of developing machine learning models capable of gen-
eralizing across diverse data distributions and tasks.

Researchers currently lack a conceptual framework for
understanding such phenomena, which is not surprising
considering the limited quantitative understanding of gen-
eralization for a single task and data distribution. How-
ever, even a partial conceptual understanding could advance
the field, and researchers have started to address this chal-
lenge [2, 18, 41, 44].

Recent papers aim to guide the further development of

this emerging theory by (1) analyzing the properties of aug-
mented views’ distributions and making assumptions, and
(2) mathematically proving that, given these properties, an
optimal contrastive loss can guarantee linear classification
accuracy to some extent. Initial works in this area, such
as [37] and [27], assume that two positive samples, as aug-
mented views of the same image, are (nearly) condition-
ally independent given the class y. In other words, aug-
mented views from the same class share the same distribu-
tion, even if they are derived from different images. More
recent works, like [44], adopt a more practical and weaker
assumption: for images from the same class, their distribu-
tions of augmented views overlap, while those from differ-
ent classes do not.

Papers following this paradigm exhibit a limitation. Al-
though the mathematical proofs are rigorous, there is no
guarantee that the assumptions made are correct. These
assumptions are often based on intuition, which is under-
standable given our limited knowledge of the underlying
data distributions. However, this means that such assump-
tions may not hold true in real-world scenarios. For exam-
ple, [36] points out that the assumptions in [44] may not
be valid, as there is little overlap between the distributions
of augmented views in practice, regardless of the class they
belong to.

The paper [36] also demonstrates that when augmenta-
tion distributions for inputs do not overlap (which almost
holds in practice), any discussion that does not consider in-
ductive bias will lead to vacuous guarantees on classifica-
tion accuracy. This raises a natural question: what does
optimal contrastive loss mean in real-world scenarios when
inductive bias is taken into account?

To address this question, we investigate the role of in-
ductive bias in optimal contrastive loss from a clustering
perspective and argue that a Graph Convolutional Network
(GCN)-based classifier [24] is more suitable for contrastive
learning than a linear one. In summary, we make the fol-
lowing observations:

• Visually similar images have similar vector represen-
tations in contrastive learning, regardless of whether
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they belong to the same class. Conversely, images
from the same class that are visually different have
very distinct representations.

• Due to this, all images from the same class form lo-
cally dense clusters in contrastive learning, as most
images visually similar to a specific image usually be-
long to the same class. However, visually different im-
ages with the same class label remain distinct in vector
space, resulting in clusters that are not globally dense.
To quantitatively measure this property, we develop a
metric called ”RLD (Relative Local Density)” that as-
sesses density in graph space.

• Considering that contrastive learning creates dense
clusters (communities) in graph space, we employ a
GCN classifier, which not only achieves higher accu-
racy compared to the linear classifier but also requires
fewer parameters.

2. Related Works
In this section, we discuss the underlying principles of

contrastive learning and review relevant literature on this
topic.

Contrastive learning has achieved remarkable success in
solving downstream tasks by learning representations from
similar pairs of data obtained using temporal information
[28, 43] or different views or augmentations of inputs [3, 6,
8,13,15,19,22,40,45]. By minimizing a contrastive loss [17,
31], the similarity of a representation across various ’views’
of the same image is maximized, while minimizing their
similarity with distracting negative samples.

Multiple views of a single data point can be naturally ex-
tracted from multimodal or multisensory data [1, 25, 30, 32,
33,39], while for an image-only modality, they are typically
constructed via local and global cropping [3, 21, 22, 31] or
data augmentation [6, 11, 13, 19, 45]. Positive pairs corre-
spond to views of the same data point, while negatives are
sampled views of different data points (typically from the
same mini-batch), although the necessity for negative sam-
ples has recently been questioned [8, 16, 46].

With the rapid development of contrastive learning, a
number of studies have attempted to understand it. In
line with the framework discussed in the introduction, [37]
and [27] initially assumed that positive samples are (nearly)
conditionally independent, and then established a bound
connecting contrastive loss and classification performance.
In [44], the author posited an overlap between intra-class
augmented views and provided a bound for downstream
performance in relation to optimal contrastive loss.

However, [36] contends that neglecting inductive biases
of the function class and training algorithm fails to ade-
quately explain the success of contrastive learning, and can

even provably result in vacuous guarantees in certain situa-
tions. Furthermore, the study also asserts that there is mini-
mal overlap between the distributions of augmented images,
which contradicts basic assumptions made in numerous pre-
vious works.

With this understanding of contrastive learning and the
existing literature, we will now proceed to explore the role
of inductive biases and their impact on clustering and clas-
sification performance.

3. Preliminaries

3.1. Cluster and Community Evaluation

In this paper, we define clusters as distinct subsets within
a data partition, where each subset represents a group of
similar data points. Cluster evaluation has been a long-
standing question in the literature [23, 38], focusing on de-
termining whether clusters are well-structured [35] or con-
sistent with ground truth labels [34]. In this study, we pri-
marily concentrate on the former aspect, as ground truth la-
bels themselves are treated as a partition, instead of those
generated by the data-based cluster method.

The conventional notion of well-structured clusters,
adopted in numerous works, is described as ”dense and
well-separated”. A quantitative description of this concept
is the Calinski-Harabasz score, also known as the Variance
Ratio Criterion, introduced by [5]. Given a set of data
points {x1, x2, ..., xn} and the cluster indices they belong
to {y1, y2, ..., yn}, the Calinski-Harabasz score can be de-
fined as:

CH score =

∑k
i=1 ni∥µi − µ∥2/(k − 1)∑k

i=1

∑
x∈Ci

∥x− µi∥2/(n− k)
(1)

where k is the number of clusters, n is the total number of
data points, ni is the number of data points in cluster Ci,
µi is the centroid of cluster Ci, and µ is the centroid of all
data points. In essence, the Calinski-Harabasz score is the
ratio of the sum of between-cluster dispersion to the sum of
within-cluster dispersion for all clusters, where dispersion
is defined as the sum of squared distances.

However, as we will illustrate later, the Calinski-
Harabasz score, based on the conventional concept of clus-
ters, does not correspond to the clusters formed by con-
trastive learning, necessitating the consideration of an al-
ternative notion of clusters.

In this context, communities can be viewed as analogs to
clusters but are based on graph space rather than Euclidean
space, offering increased flexibility. The most commonly
used metric for assessing community quality is modular-
ity [9], which quantifies the density of connections within
communities relative to the expected density of connections
between randomly placed nodes. For graph G with adja-
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cency matrix A ∈ RN×N , modularity Q is:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(yi, yj) (2)

where m is the sum of edge weights in the graph, ki and kj
are the degrees of nodes i and j, respectively, yi and yj are
the community assignments of nodes i and j, and δ(yi, yj)
is the Kronecker delta function, which equals 1 if yi = yj
and 0 otherwise. Our experiments demonstrate that, with
the proper construction of G, modularity can better reveal
underlying cluster structures in contrastive learning.

3.2. Graph Convolutional Network

Graph Convolutional Networks (GCNs) are a class of
neural networks specifically designed for handling graph-
structured data. They have gained considerable attention in
recent years due to their ability to learn and generalize in-
formation from graph data [4, 10, 24].

The term GCN can refer to all graph convolutional net-
works or a specific architecture of a graph convolutional
network proposed by [24]. In this paper, we focus on the
latter for simplicity, as it serves as the origin of many other
GCN models and captures the key characteristics of the
broader class of GCN models.

Typical components of graph-structured data include
node features X ∈ RN×C and an adjacency matrix A ∈
RN×N , where N refers to the number of nodes and C refers
to the dimensions of node features. The adjacency matrix
captures the relationships between nodes in the graph.

A GCN aims to learn a function that maps the input node
features X to a new set of node features Z ∈ RN×F , where
F is the output feature dimension. The GCN proposed by
[24] performs graph convolutions in the following manner:

Z = σ
(
ÃXW

)
, (3)

where Ã = D̂− 1
2 ÂD̂− 1

2 , with Â = A + I being the adja-
cency matrix with added self-connections and D̂ is the di-
agonal degree matrix of Â, having elements D̂ii =

∑
j Âij .

The matrix W ∈ RC×F is a learnable weight matrix, and
σ(·) is the activation function applied element-wise.

For deeper GCN architectures with L layers, the output
feature matrix Z(L) can be computed through a series of
graph convolutions:

Z(l) = σ
(
ÃZ(l−1)W (l)

)
, (4)

where l = 1, . . . , L, Z(0) = X , and W (l) ∈ RFl−1×Fl

are the learnable weight matrices for each layer. The di-
mensions of the input and output features change through
layers, with F0 = C and FL = F .

In this work, we introduce a minor modification to the
GCN by incorporating a learnable scale parameter α in
each layer, which transforms the adjacency matrix as Â =
αA + IN . This adaptation enables the model to dynami-
cally balance the significance of self-connections and con-
nections to neighboring nodes, potentially enhancing the
network’s capability to extract valuable information from
the graph structure. Consequently, the updated adjacency
matrix Ã becomes:

Ã = D̂− 1
2 (αA+ IN )D̂− 1

2 , (5)

With this modified Ã, the GCN can better adjust to the un-
derlying structure of the graph during training, as it learns
the optimal value of α alongside the weight matrices W .

We employ a GCN as the classifier due to its compati-
bility with graph space rather than Euclidean space, making
it a better fit for the properties of clusters formed by con-
trastive learning. Experimental results demonstrate that the
GCN consistently outperforms a linear classifier across var-
ious scenarios, further justifying its use in this context.

4. Experimental Settings

In our analysis of contrastive learning models, several
models were meticulously trained as subjects using stan-
dard procedures. This section delineates the experimental
settings employed, leveraging the CIFAR-10 dataset [26].
We adopt the framework and augmentation proposed in
[7] and incorporate the prediction head improvements sug-
gested by [14], using a representation space dimension of
512. The model architectures tested include ResNet18,
ResNet101, and a modified Vision Transformer with a pa-
rameter count similar to ResNet101 [12, 20]. For compari-
son, we also train three models with identical architectures
using supervised learning on CIFAR-10, maintaining a rep-
resentation dimension of 512. All models presented in this
paper utilize the AdamW optimizer [29]. Further informa-
tion regarding model architectures and hyperparameters can
be found in the appendix. All experiments are done on one
A100 GPU.

In subsequent sections, image vector representations are
derived from raw images in the dataset using both con-
trastive and supervised models, consistent with standard
evaluation methods. For contrastive models, all features are
before the prediction head and normalized to unit vectors
due to the undefined lengths during the training process.

We emphasize that our experimental settings are not ex-
haustively tuned for optimal performance. As such, achiev-
ing state-of-the-art results in not our primary objective.
Instead, our main focus lies in uncovering novel insights
into the inner workings of contrastive learning, rather than
proposing practical improvements or techniques.
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(a)
0.991
0.566

(b)
0.998
0.276

(c)
0.998
-0.070

Contrastive
Supervised

(d)
-0.745
0.957

(e)
-0.722
0.977

(f)
-0.554
0.989

Figure 1. Exploring Image Pairs and Their Cosine Similarities in Representations. (a) displays the image pair with the highest
similarity across different labels in contrastive ResNet18, while (b) demonstrates the same for ResNet101, and (c) for ViT. In contrast, (d)
illustrates the image pair with the lowest similarity within the same class in contrastive ResNet18, (e) for ResNet101, and (f) for ViT. The
first line of the numbers beneath each image pair indicates their similarity in contrastive space, and the second line denotes the similarity in
supervised space (using a supervised model with the same architecture). In (a), the top image portrays a bird, and the bottom one depicts
an airplane. The blue sky backgrounds and dark main bodies contribute to their visual similarity. Contrastive ResNet18 has difficulty
distinguishing them, whereas supervised ResNet18 can. This observation also applies to (b) and (c). Conversely, (d), (e), and (f) present
pairs of visually distinct images (including hue, shape, perspective, etc.) within the same class, which are recognized by supervised models
but not by contrastive models.

5. Micro View: Image Pairs Under Contrastive
Learning

In this section, we delve into the distinct behaviors of
contrastive and supervised learning methods in organiz-
ing images within the representation space. Our analysis
encompasses a comprehensive examination of how these
methods group images based on visual similarities and class
labels. We begin by demonstrating how contrastive learn-
ing effectively groups visually similar images together, ir-
respective of their class labels. We then proceed to discuss
the organization of images in supervised learning, which
primarily focuses on class labels while often overlooking vi-
sual similarities within and across classes. Furthermore, we
investigate the properties of k-nearest neighbors in the con-
trastive representation space and introduce the Class Ho-
mogeneity Index (CHI) to measure the average proportion
of k-nearest neighbors that share the same class label. By
comparing CHI across diverse models under contrastive and
supervised learning, we provide insights into the local and
global class-wise homogeneity of neighborhoods in the rep-
resentation space and how architectural choices influence
the behavior of contrastive learning.

5.1. Contrastive Representation Space and Visual
Similarity

we analyze specific image pairs from the CIFAR-10
training dataset to illustrate the properties of contrastive rep-
resentation space. Fig. 1a, Fig. 1b, and Fig. 1c display im-

age pairs with the highest cosine similarity in contrastive
representation space, even though they belong to different
classes. Conversely, Fig. 1d, Fig. 1e, and Fig. 1f present
image pairs with the lowest cosine similarity in contrastive
representation space, despite having the same class label.

It is important to note that image pairs with high sim-
ilarity in contrastive space exhibit visual resemblance, re-
gardless of their class affiliation. On the other hand, im-
age pairs that share the same label but display divergent
visual appearances have relatively low similarity in con-
trastive space. This pattern is not observed in supervised
space, where class labels rather than visual likenesses pri-
marily influence similarity.

We hypothesize that this is a result of the unsupervised
nature of contrastive learning, which relies solely on the in-
formation inherent in the samples. In contrast, supervised
learning depends on the provided labels to organize images.

5.2. K-Nearest Neighbors in Contrastive Represen-
tation Space

As we have seen in the previous subsections, contrastive
learning tends to group visually similar images together, re-
gardless of their class labels. However, empirically, it is
reasonable to assume that for most images, their visually
similar counterparts belong to the same class. Building on
our former observations and the insights from the analysis
of visually similar image pairs, we can then infer that most
representations have neighbors with the same label.
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k Contrastive Supervised
ResNet18 ResNet101 ViT ResNet18 ResNet101 ViT

k=1 0.8938 0.8818 0.8730 0.9680 0.9611 0.9903
k=10 0.8762 0.8662 0.8473 0.9674 0.9611 0.9893

k=100 0.8457 0.8438 0.8047 0.9669 0.9605 0.9886
k=500 0.7785 0.7945 0.6675 0.9666 0.9605 0.9881
k=1000 0.7094 0.7267 0.5273 0.9663 0.9606 0.9879

Table 1. CHI across diverse models under contrastive and supervised learning. The table presents the CHI for diverse mod-
els—ResNet18, ResNet101, and ViT—under both contrastive and supervised learning conditions, across different k) values. CHI measures
the average proportion of k-nearest neighbors that share the same class label.

To show that, in this subsection, we delve into the proper-
ties of the k-nearest neighbors for each data point within the
contrastive representation space. We use cosine similarity
as our distance metric and compute the average proportion
of k-nearest neighbors that share the same class, a metric
we term the Class Homogeneity Index (CHI). We explore
the effects of varying k values (k = 1, 10, 100, 500, 1000)
on CHI and summarize our findings in Tab. 1.

In light of the findings presented in Tab. 1, several impli-
cations emerge. First, for smaller k values, the high CHI
observed in contrastive learning underscores that nearest
neighbors typically belong to the same class. which exactly
matches our earlier inference.

Second, the steep decrease in CHI as k increases in con-
trastive learning compared to supervised learning reveals an
intriguing attribute. The neighborhood’s class-wise homo-
geneity in the contrastive representation space seems to di-
minish more rapidly as we expand our neighborhood size.
This implies that while contrastive features exhibit a local
class-wise homogeneity, they do not extend this effect at a
more global scale, unlike the supervised features.

Third, the most noticeable decline in CHI is observed for
the ViT. This could indicate that its weaker inductive bias is
a contributing factor. Therefore, the behavior of contrastive
learning might be shaped not only by the data but also by
architectural choices and their inherent inductive biases.

6. Macro View: Contrastive Learning Forms
Locally Dense Clusters

Expanding from our previous analysis of individual im-
ages and their nearest neighbors within the representation
space, we now widen our scope to a macroscopic perspec-
tive. The focus of this paper now shifts towards understand-
ing how contrastive learning arranges data on a larger scale,
specifically at the cluster level. Here, a ”cluster” signifies
the grouping formed by all data points belonging to the
same class.

To characterize these clusters, we present a novel de-
scriptor: ”Locally Dense”. A cluster is deemed ”Locally
Dense” if data points within the cluster are closely packed,

creating a dense local neighborhood. Consequently, for a
specific data point, its nearest neighbors are predominantly
from its own cluster, leading to high class homogeneity
within local regions of the cluster. To quantitatively mea-
sure the local density of a specific cluster, we propose a new
graph-based metric called Relative Local Density (RLD).

Following this, we provide examples to illustrate what
locally dense clusters appear like, and how they contrast
from the typical ”dense and well-separated” clusters. Im-
portantly, ”dense and well-separated” refers to clusters that
are not just densely packed internally (locally dense), but
are also clearly separated from other clusters, implying a
global density and separation.

Lastly, we will substantiate that clusters formed by con-
trastive learning are locally dense but not globally, while
clusters in supervised learning exhibit both local and global
density and separation.

6.1. Relative Local Density: A Quantitative Mea-
sure for Locally Dense Clusters

While the qualitative notion of locally dense clusters pro-
vides a conceptual foundation, it leaves room for a concrete,
quantifiable measure. Thus, we introduce Relative Local
Density (RLD), a novel metric aimed at capturing the notion
of local density. This subsection details the construction of
RLD, illuminating its correspondence to local density and
its utility in comparing learning methods.

The computation of RLD involves several stages, each
contributing to the encapsulation of local density. Initially,
we construct a similarity matrix, S, for a given set of data
points X . Each entry, Sij , captures the pairwise distance
between data points Xi and Xj , normalized by the mean
distance and the square root of the dimension of X to ensure
scale-invariance:

Sij =
−dist(Xi, Xj)√

dim(X) ·mean(dist(Xp, Xq) : p ̸= q)
(6)

This process converts distances into similarity scores,
with higher scores indicating closer data points. The ma-
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Figure 2. Varied Cluster Configurations and Their Corresponding RLDs and CH scores. Each subfigure, from (a) to (f), symbolizes
a unique cluster configuration. Subfigure (a) presents data points uniformly scattered without discernible clustering, whereas (b) demon-
strates a circular pattern with identifiable local clusters. Subfigure (c) showcases clusters arranged along distinct lines, and (d) displays
small, tightly grouped local clusters dispersed throughout the plot. Subfigure (e) illustrates clusters formed along random lines, while (f)
portrays multiple Gaussian distributions, each constituting a separate cluster. These examples underscore the varied characteristics of local
and global densities and highlight the limitations of relying solely on global metrics, like the CH score, for evaluating cluster quality.

trix diagonal elements are set to negative infinity, ensuring
a data point does not regard itself as its neighbor.

The similarity matrix is then transformed into an adja-
cency matrix, A, which encapsulates the relationships be-
tween data points in the feature space. A temperature pa-
rameter, T , modulates this transformation, balancing the
emphasis on local and global structures. A higher T yields a
matrix with a more global structure, while a lower T retains
more local information. The matrix is normalized, each en-
try divided by T and exponentially transformed to accentu-
ate differences between data points:

Aij =
n2 · exp(Sij/T )

2∑n
k=1 exp(Sik/T )2 ·

∑n
k=1 exp(Skj/T )2

(7)

The final RLD computation step measures the modular-
ity of the adjacency matrix concerning class labels, y, with
Eq. (2). Modularity quantifies the strength of a graph’s divi-
sion into clusters. A high modularity score signifies dense
intra-cluster connections and sparse inter-cluster connec-
tions, aligning with our local density intuition.

As a cluster evaluation metric, RLD offers several ad-
vantages:

1. Local structure emphasis: Unlike global metrics like
the CH score, RLD captures local structure details, offering
a more granular data organization understanding.

2. Differentiability: RLD’s full differentiability enables
integration into gradient-based optimization processes.

3. Scale invariance: RLD’s insensitivity to the scale and
number of data points enhances its versatility across diverse
datasets.

4. Graph techniques compatibility: RLD’s graph-
based nature permits integration with other graph tech-
niques, such as community detection.

5. Comparability: The modularity scaling to (−0.5, 1)
standardizes RLD, facilitating comparisons. Its application
enables direct cluster comparison, as scores are relative to
the same scale.
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Figure 3. Comparative Analysis of Cluster Evaluation Metrics and Classifier Accuracy across Models. The figure presents three
scatter plots, each point represents a model, comparing different metrics with linear classifier accuracy for contrastive and supervised
learning methods across three models: ResNet18, ResNet101, and ViT. (a) shows the correlation between CH scores and linear classifier
accuracy. (b) illustrates the relationship between Relative Local Density (RLD) and linear classifier accuracy. (c) provides a comparison
between GCN classifier accuracy and linear classifier accuracy for contrastive learning models.

6.2. Visualizing Locally Dense Clusters: Examples
and Comparisons

To gain a more intuitive understanding of local and
global density concepts, it is important to visualize them be-
fore delving into the cluster analysis formed by contrastive
and supervised learning methods. To facilitate this, we in-
troduce illustrative examples that distinguish between lo-
cally dense clusters, as determined by RLD, and globally
dense ones, as gauged by the CH score.

Fig. 2 presents six distinct cluster examples, each illus-
trating the divergent nature of local and global densities.
Let’s examine some key takeaways:

1. A high RLD does not guarantee a high CH score.
This fact is exemplified by clusters (b), (c), and (d), which,
despite their high RLDs, register significantly lower CH
scores compared to clusters (e) and (f).

2. The CH score fails to acknowledge the well-structured
nature of clusters (b) and (c). This observation underscores
the insensitivity of the CH score to certain types of cluster
formations.

3. Clusters (b), (c), and (d) pose challenges for linear
classifiers, which often struggle to define boundaries effec-
tively. On the other hand, these classifiers are likely to per-
form well with clusters (e) and (f). Conversely, classifiers
that operate in a neighbor-centric space, such as KNN, may
deliver better separation results for clusters (b), (c), and (d).

6.3. Comparing Clusters Formed by Contrastive
Learning and Supervised Learning

With a solid understanding of local and global density
concepts, we can now turn our attention to examining the
clusters produced by contrastive and supervised learning
methods.

To provide a comprehensive and dynamic picture of clus-
ter formation, we consider not only clusters created by fully
trained models, but also those formed during the training
process. This approach enables us to capture the evolu-
tion of clusters throughout the training phase and observe
the unique ways in which different learning methods shape
them over time.

In Fig. 3 (a) and (b), we present a real-case analysis. The
RLDs (T = 0.1) and CH scores for all contrastive and su-
pervised features are displayed in relation to linear classifier
accuracy, along with their respective Spearman correlation
coefficients. This collective view provides a comparative
perspective on how these learning methods impact data or-
ganization.

As demonstrated in Fig. 3 (a), there is a visible posi-
tive correlation between the CH score of supervised learn-
ing and linear classifier accuracy. In contrast, contrastive
learning shows a negative correlation and maintains a nearly
constant CH score throughout the entire training process.
This observation suggests that contrastive learning does not
create globally dense clusters.

However, as depicted in Fig. 3 (b), the Spearman corre-
lation between linear classifier accuracy and RLD remains
positive for both learning methods, given the same architec-
ture. This result implies that both contrastive learning and
supervised learning form locally dense clusters.

Applying a GCN Classifier Given the challenges faced
by linear classifiers in distinguishing locally dense clusters,
as observed in Fig. 2 (b), (c), and (d), we decided to explore
the use of a Graph Convolutional Network (GCN) classifier
as an alternative. To facilitate this, we first constructed a
graph identical to the one used in the computation of the

503



Figure 4. t-SNE Visualization of Normalized CIFAR-10 Features Generated by Contrastive and Supervised Learning. This figure
presents t-SNE visualizations of 25,000 data points for contrastive (left column) and supervised (right column) learning methods, across
three different model architectures: ResNet18, ResNet101, and ViT. Each row corresponds to a different perplexity value (25, 2500, and
24900), showcasing the influence of this parameter on the visualization. As perplexity increases, contrastive clusters begin to dissipate,
while supervised clusters remain relatively stable, highlighting the distinct clusters formed by the two learning methods.

RLDs.
When assigning node features, we utilized a one-hot en-

coding scheme. Each node was assigned a one-hot encoded
vector of length equal to the number of classes, denoted as
num classes. In this scheme, each vector represented a
specific class label, with the element corresponding to the
class label set to 1, and all other elements set to 0.

Following the training method described in [24], we ap-
plied a mask rate of 0.2 and used a four-layer GCN. We
then plotted the model accuracy in Fig. 3 (c), comparing
it with linear accuracy. The results indicated that for the
ResNet101 and ViT models, GCN accuracy was slightly
higher than linear accuracy for most of the models, although
the opposite was observed for the ResNet18 model. This
suggests that a GCN classifier can sometimes outperform
linear classifiers when dealing with clusters formed by con-
trastive learning methods.

Visual Evidence via t-SNE Lastly, we employ t-SNE
[42] as a visualization tool to further illustrate the differ-
ences between the features generated by contrastive and su-
pervised learning methods. t-SNE is known for its ability
to manage both ’local’ and ’global’ views via a tunable pa-
rameter known as perplexity. When we adjust this param-
eter in Fig. 4, it becomes evident that contrastive clusters
start to fade as the perplexity increases. This effect, how-
ever, is not observed in the clusters formed by supervised

learning, thereby reinforcing our earlier observations about
the distinct clusters formed by these two types of learning
methods.

7. Conclusion and Future Directions

This study illuminates distinct differences in how con-
trastive and supervised learning algorithms structure data in
representational space. We discover that contrastive learn-
ing primarily fosters ’locally dense’ clusters while super-
vised learning generates globally dense clusters that align
with class labels. The novel Relative Local Density (RLD)
metric introduced in this study quantifies local density, of-
fering a contrast to the traditional Calinski-Harabasz score.
Implementing a Graph Convolutional Network (GCN) clas-
sifier demonstrates potential in tackling locally dense clus-
ters, and the differences between learning methods are fur-
ther highlighted through t-SNE visualizations.

Looking ahead, we propose two potential research direc-
tions. First, the development of more efficient classifiers
tailored to clusters created by contrastive learning should
be a priority. While GCNs show promise, their computa-
tional and memory requirements present challenges due to
the need for an N ×N adjacency matrix and a N node fea-
ture matrix. Second, creating innovative augmentation al-
gorithms could help prevent models from misclassifying vi-
sually similar images from different classes by distinguish-
ing these images in augmented views.

504



References
[1] Relja Arandjelovic and Andrew Zisserman. Look, listen and

learn. In Proceedings of the IEEE international conference
on computer vision, pages 609–617, 2017. 2

[2] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak,
Orestis Plevrakis, and Nikunj Saunshi. A theoretical analysis
of contrastive unsupervised representation learning. In 36th
International Conference on Machine Learning, ICML 2019,
pages 9904–9923. International Machine Learning Society
(IMLS), 2019. 1

[3] Philip Bachman, R Devon Hjelm, and William Buchwalter.
Learning representations by maximizing mutual information
across views. Advances in neural information processing
systems, 32, 2019. 2

[4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-
Cun. Spectral networks and deep locally connected networks
on graphs. In 2nd International Conference on Learning
Representations, ICLR 2014, 2014. 3
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Stéphane Deny. Barlow twins: Self-supervised learning via
redundancy reduction. In International Conference on Ma-
chine Learning, pages 12310–12320. PMLR, 2021. 2

506


