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Abstract

Learning temporally coherent representations of multi-
ple objects in videos is crucial for understanding their com-
plex dynamics and interactions over time. In this paper, we
present a deep generative neural network, which can learn
such representations by leveraging pretraining. Our model
builds upon a scale-invariant structured autoencoder, ex-
tending it with a convolutional recurrent module to refine
the learned representations through time and enable infor-
mation sharing among multiple cells in multi-scale grids.
This novel approach provides a framework for learning per-
object representations from a pretrained object detection
model, offering the ability to infer predefined types of ob-
jects, without the need for supervision. Through a series
of experiments on benchmark datasets and real-life video
footage, we demonstrate the spatial and temporal coher-
ence of the learned representations, showcasing their ap-
plicability in downstream tasks such as object tracking. We
analyze the method’s robustness by conducting an ablation
study, and we compare it to other methods, highlighting the
importance of the quality of objects’ representations.

1. Introduction

Human’s ability to perceive and understand the visual
world allows us to comprehend the compositionality of the
scene captured by our eyesight. This cognitive process is
based not only on observing the surroundings at a given
moment but also on comprehending the temporal variance
of the scene, and how the objects move and interact with
each other, enabling a deep understanding of visual scenes.
The complexity of this natural process is a topic of vivid re-
search [12]. Recent machine learning and computer vision
methods aim at learning similar comprehension as a result
of supervised learning for particular tasks, such as object
detection, instance segmentation, visual question answer-
ing, etc. A group of methods allowing for a more general

understanding of scenes is often referred to as multi-object
representation learning models.

Downstream models trained on object-centric represen-
tations are usually easier to train; this approach can also
reduce the amount of data required to achieve good per-
formance. However, the success of these algorithms re-
lies heavily on the quality of embeddings produced by the
representation learning model [2]. Recent methods, build-
ing upon previous developments in this area, extend the
image-based approach to videos and infer temporal changes
of objects in scenes: their movement, variation of shape,
etc. [7, 18, 20, 23, 31]. This makes it possible to capture and
understand the underlying dynamics of complex scenes as
they change through time.

Recently, the research in the area of multi-object rep-
resentation learning has been shifting from unsupervised
models towards semi- or self-supervised approaches [9,
22, 32]. By incorporating additional knowledge these ap-
proaches provide more robust representations and can at-
tend to individual objects in complex scenes more easily.
Unfortunately, many of these methods utilize very computa-
tionally expensive processing, taking multiple days of train-
ing on high-performance GPUs to reach success. Further-
more, the quality of the representations and their temporal
and spatial stability have been given insufficient attention,
as most models are compared by the quality of scene de-
composition (i.e. the accuracy of segmentation masks).

In this paper, we address the challenge of capturing
object-centric, temporally, and spatially stable representa-
tions in videos. We introduce RDIR, a novel method for
multi-object representation learning on videos, which uti-
lizes a recurrent mechanism to provide temporally consis-
tent object representations. It follows the recent shift to-
wards semi- and self-supervised learning, extending a pre-
trained single-shot multi-scale object detection model with
a recurrent mechanism for encoding each object represen-
tation without further supervision. By applying a pre-
trained object detection model, RDIR enables a deeper un-
derstanding of detected objects, which can be obtained on
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any unannotated dataset, with better scalability and shorter
training. Through a series of experiments, we compare it
with other multi-object representation learning models for
videos, proving the ability to capture stable object represen-
tations and showcasing its usability in downstream tasks.

The contributions of the paper are as follows. We in-
troduce a model for learning object-centric representations
on videos and explain the theoretical underpinnings. We
present a comparison of the performance and the quality
of the representations of this model and other state-of-the-
art methods for multi-object representation learning. We
provide a novel experimental approach for evaluating the
temporal and spatial coherence of representations and show
how dataset characteristics and model architecture influence
the performance of the approach.

2. Related Works
The presented research is done in the multi-object visual

representation learning domain, aiming at learning repre-
sentations of multiple objects visible in a scene.

Multi-object representation learning on images is usu-
ally conducted utilizing unsupervised, VAE-based [21, 30]
models. The approaches can be categorized into two
groups: spatial-attention models and scene-mixture mod-
els. Spatial-attention models leverage geometrical figures
(usually rectangles) for attending to individual objects, al-
lowing for faster processing and highly interpretable infer-
ence. These models can work by iteratively predicting sub-
sequent objects (as in AIR [1]) or predicting all objects with
a single-shot model (SPAIR [6] and SPACE [26]). How-
ever, due to strong inductive bias, these models cannot at-
tend to objects of irregular shapes and struggle with large
objects, often splitting them into meaningless parts. Scene-
mixture models such as MONet [4], IODINE [15], Slot At-
tention [28] or GENESIS [10, 11], do not restrict the shape
of masks used to split the scene into parts, enabling the
model to infer on more complex scenes. However, these
methods are expensive to train and infer, as they attend to
the image recurrently (producing one mask at a time or re-
fining representations iteratively) and tend to encapsulate
multiple objects in one mask on complex datasets, unable
to discover meaningful entities.

RDIR builds on the approach suggested in SSDIR [32],
where a spatial-attention model is extended with a multi-
scale convolutional encoder and a non-restricted attention
box size, allowing the model to attend to objects of varying
sizes in one forward pass while preserving lower computa-
tional expense comparing to scene-mixture models.

Multi-object representation learning on videos has
been tackled by extending image-based approaches for

modeling sequential data. A common paradigm involves
applying a recurrent LSTM [16] or GRU [5] cell as a mod-
ule for handling sequences of images. This approach has
been used for both spatial-attention models (recurrent [23]
and single-shot [7, 18]) and scene-mixture models [8, 31],
achieving good results on simple datasets. The results show
however that without any supervision, these methods are not
able to scale to real-world datasets, struggling with issues
similar to their image-based counterparts. What is more, re-
searchers focus on the reconstruction quality and generative
capabilities of these models, rarely reviewing or comparing
the quality of the representations produced by the model.
Another issue is related to the computational expense, in-
creased additionally by the application of recurrent cells.

A unique approach was proposed in SIMONe [20],
where a transformer network is used to explicitly factor-
ize latent representations into temporal and per-object la-
tents. By inferring the entire sequence at once, the model
can extract split representations referring to how the frame
changes over time, and encapsulate each object’s appear-
ance in its per-sequence representation. However, this ap-
proach cannot scale to real-world datasets due to the fully
unsupervised training setup, and it is more computationally
complex with the application of a strong feature extractor
and a transformer network.

RDIR applies a recurrent mechanism similar to
discovery-propagation cells applied for spatial-attention
models, but here we do not explicitly track and associate
new objects discovered in the subsequent frames. Instead,
we apply the recurrent cell in the encoder feature maps, aim-
ing at features refining with the use of hidden state passed
through the sequence and emergent representations’ associ-
ation. See Section 3 for more details.

Supervision in multi-object representation learning
models is suggested as the key factor for scaling the cur-
rent methods to real-world datasets. In the Slot Attention
for Videos model [22] authors leverage a self-supervised
model for training using the optical flow conditioning. An-
other extension to Slot Attention [9] proposes conditioning
the model on depth maps as the target instead of the RGB in-
put frame. Researchers show that these advances enable the
model to scale from benchmark datasets to real-world data,
allowing it to understand complex scenes better. The analy-
sis of these models’ performance was focused on the qual-
ity of instance segmentation in the emergent masks, without
reviewing the quality of representations. Furthermore, the
added supervision requires providing a dataset with depth
maps or estimating the optical flow for training.

In [32] authors postulate a semi-supervised approach.
Here, the model consists of a single-shot object detector,
trained with supervision, which provides spatial attention
locations. Authors extend the model with representation en-
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coders and fine-tune the model without supervision, show-
ing the improved quality of the latent space and the ability
to enforce focus on a selected set of object classes in pic-
tures. This approach requires obtaining a smaller dataset
for training an object detection model, which can then be
extended and trained on a larger dataset without supervision
for learning objects’ representations.

RDIR is an extension to the semi-supervised approach,
utilizing a staged training protocol for optimal computa-
tional expense and fast training. Provided an accurate object
detector, it can attend accurately to given object classes and
learn their representations without further supervision.

3. The Method
In this section, we describe Recurrent Detect, Infer,

Repeat (RDIR). It is a structure autoencoder, extending the
recent semi-supervised approach for multi-object represen-
tation learning with a recurrent encoder network, allowing
it to scale to learning representations on videos.

3.1. Background: SSDIR [32]

SSDIR (Single-Shot Detect, Infer, Repeat) is a neu-
ral network based on variational autoencoder architecture
for multi-object representation learning on images. It ex-
tends the well-known single-shot object detection approach
and integrates knowledge learned in this task for captur-
ing structured representations of images. Each object in the
scene is represented by four latent variables: zwhere defin-
ing the object’s position and size, zpresent - a binary vari-
able indicating the object’s presence, zwhat describing the
object’s appearance and zdepth determining the object’s rel-
ative depth in the scene.

The encoder uses a pretrained SSD [27] object detector
to estimate objects’ positions and presence, and re-uses fea-
ture maps from a pretrained backbone to produce appear-
ance and depth representations. Then, the representations
are forwarded to the decoder and filtered according to the
presence variable; each present object’s appearance latent is
processed by a convolutional decoder, producing per-object
images. These images are translated and scaled according to
the tight bounding box location [17]. The resulting images
are merged using a weighted sum, with zdepth as weights.

SSDIR applies the semi-supervised approach to learning
representations. The object detection model is trained with
supervision on an annotated dataset, and then its weights
are transferred to the SSDIR model and re-used as a base
for learning the detected objects’ representations. This way
SSDIR can be enforced to attend to a specified subset of
objects visible in the scene.

Thanks to multi-scale grid-based inference and unre-
stricted objects’ sizes, SSDIR attends to objects of varying
sizes and positions, and produces scale-invariant represen-
tations in a single processing of an image, without the need

of extracting glimpses, as previous spatial-attention models
did [6, 26]. However, it uses a simple convolutional back-
bone (VGG11) and cannot scale to larger images. The ap-
proach suffers from the problems of other single-shot object
detectors, which struggle with densely packed objects, and
often produce multiple predictions of the same object due
to detecting it on several levels of multi-scale feature maps.

3.2. RDIR

In RDIR we follow the idea of extending a single-shot
object detection model with encoding heads for represen-
tation learning and then training the model as an autoen-
coder. The model encodes each image in a sequence into a
structured representation, referring to each detected object
in the scene, and describing its appearance, location, pres-
ence, and depth in the scene. Then, the representations are
filtered and processed by the decoder, producing per-object
images, which are merged to create the image reconstruc-
tion. In RDIR we attempt to model two functions: the en-
coder P (Z|X), mapping the input image to the latent rep-
resentation, and the decoder P (X|Z), reconstructing the
input image based on the latent representation.

Latent space is structured to represent each object visi-
ble in the scene. By leveraging the single-shot object de-
tection model and the multi-scale feature maps approach,
RDIR produces latent representations for multiple grids, re-
ferring to parts of the input image. These latent representa-
tions consist of four variables:

1. zwhere = [cx, cy,w,h] ∈ R4 - describing each ob-
ject’s position and size (as bounding box center coor-
dinates cx, cy, width w and height h),

2. zpresent = max c ∈ [0, 1] - used to determine if the
given cell detected any object (inferred based on the
maximum of object’s class confidences c),

3. zwhat ∈ RD - D-sized object appearance vector used
for reconstructing per-object image,

4. zdepth ∈ R - relative object depth, used for ordering
object reconstructions in the decoder.

Following the semi-supervised approach, RDIR uses a
pretrained object detection model to provide zwhere and
zpresent latents, simplifying the process of object discovery.
The remaining latent variables are inferred by the model,
trained in the representation learning setup.

The encoder (shown in Fig. 1) is designed to enable cap-
turing spatially and temporally consistent latent represen-
tations. It consists of a convolutional backbone based on
the architecture proposed in YOLOv4 [3] (CSPDarknet53),
which provides significantly improved capability compared
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Figure 1. RDIR encoder architecture. Videos, treated as sequences of images, are processed individually by the convolutional backbone
(Conv). The intermediate features, processed by a pretrained YOLO head, produce zwhere and zpresent latents for each cell in multi-scale
grids. To infer zwhat and zdepth embeddings, these intermediate features are forwarded to the encoding part of the model. Mixer (Fig.
3) enable sharing information across feature maps of all levels of grid resolutions, allowing the Sequence encoder (Fig. 2) to infer on
scale-invariant representations. Next, another Mixer module is provided, transforming the RNN output to share temporal context across
grids. Finally, the resulting latent features are used by zwhat and zdepth encoders, producing embeddings for each cell in each grid.

to SSDIR. YOLOv4 is a well-established single-shot object
detection model; its backbone prepares multi-scale feature
maps, treated as grids of internal representations and used to
predict per-cell bounding box coordinates and class confi-
dences. By default, YOLOv4 utilizes three levels of feature
grids, each with different resolutions and numbers of chan-
nels. RDIR leverages the backbone’s capabilities to pro-
duce intermediate features for each time-step t ∈ 1, ..., T of
the input sequence and then processes these features with a
pretrained YOLO head to infer objects’ locations (zwhere )
and class confidences (used to create zpresent ). Then, RDIR
re-uses the feature maps-based approach to learn represen-
tations of objects contained within each cell in all grids. We
extend the approach proposed by SSDIR and propose sig-
nificant advances to improve the quality of representations.

The key advance in RDIR is the utilization of the Se-
quence encoder (Fig. 2). Different from other spatial-
attention models for learning representations on videos,
RDIR assumes implicit modeling of sequential character-
istics of videos. This is made possible by the application of
grid-based inference. RDIR flattens all grids into a single
tensor of shape [Nobjs, D] (where Nobjs =

∑3
i=1 wi ∗ hi

- the total number of cells in all grids (i = {1, 2, 3}), and
D = cl - the number of channels used in all feature maps),
which allows it to use a recurrent cell for propagating se-
quential information via its hidden state. After the recur-
rent cell, the grid structure is reconstructed, preserving the
original shape and order of cells. This approach allows the
model to consider temporal changes for all cells in each
grid before learning objects’ representations, without ex-
plicit discovery and propagation of objects. However, due to
the separation of Nobjs vectors in the GRU network, it can-
not share any information across neighboring cells, which is
crucial, especially for moving objects (as the object moves
across the image it would activate different cells, which can-

Figure 2. RDIR Sequence encoder processes the feature maps with
dimension-preserving conv layers, which propagate information
from adjacent cells via 2D convolutional layers with larger kernels
(at least 3 × 3). The resulting feature maps are flattened to create
stacked per-cell features, processed by a recurrent GRU cell. Next,
the feature maps structure is recreated, and final conv layers are
added to propagate the temporal state from the GRU cell across
grids. The output feature maps are of the same shape as the input.

not share temporal information). To solve this issue, RDIR
utilizes additional dimension-preserving convolutional lay-
ers, added before and after the recurrent cell. We lever-
age the primary characteristic of convolution which allows
it to consider each cell’s neighborhood, handling the case of
sharing information across adjacent parts of the image.

An important part of the encoder is the Mixer (Fig. 3.
Multi-scale feature maps struggle with sharing information
across objects detected on various level grids. This results
from the fact, that these grids are extracted earlier in the
backbone and do not share context in the lower-level repre-
sentations, which on the other hand are crucial in the rep-
resentation learning setup. To allow RDIR to consider in-
formation from all levels of feature maps we introduce a
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Figure 3. RDIR Mixer, used to share contexts between multi-level
feature maps. The first set of conv layers (consisting of a 2D con-
volution layer, batch normalization, and Leaky ReLU activation
blocks) unifies the number of channels across all feature maps to
cl. Then, a set of conv layers is used to up and down-scale all
neighboring feature maps, enabling their concatenation. Concate-
nated feature maps are once again processed by the final set of
conv layers, restoring the unified number of channels cl.

mixing module; it performs up- and down-scaling to match
the dimensions of adjacent feature maps. By concatenating
the resulting feature maps with the original grids we allow
these grids to consider information from other feature map
levels, in the relevant part of images, as we preserve the or-
der of cells. RDIR encoder utilizes two mixers: before and
after the Sequence encoder. This approach allows the model
to share information across feature grids both without the
temporal context and after adding it to the GRU cell.

The encoder preserves the capability to scale to images
of different shapes, solving this shortcoming of SSDIR.
Also, thanks to a much more advanced convolutional back-
bone, it can be applied to complex datasets with larger input
sizes. Similarly to SSDIR, the YOLO backbone and head
weights are transferred from a pretrained object detection
model and frozen for training, whereas the encoder part is
trained together with the decoder without supervision, al-
lowing the model to focus on relevant parts of the image
during learning representations.

The decoder architecture is similar to those in other
spatial-attention multi-object representation learning mod-
els, especially the one used in SSDIR, with several advance-
ments: the ability to use non-max suppression, batch nor-
malization, and adjustable reconstructed objects’ size.

During training, the latent representation is filtered using
sampled zpresent . We also add several negative examples
apart from the detected objects to improve the stability of
training and ensure the model can learn the entire data dis-
tribution. Then, selected object representations zwhat are
decoded using a convolutional decoder network. The re-
sult is transformed to the original image size using a spatial
transformer [17]; these reconstructions are merged by sort-

ing with the zdepth latent variable.
During inference, sampling zpresent is replaced with

thresholding, and no negative examples are added. We also
utilize Non-Max Suppression to remove duplicated objects
from the zpresent latent variable. This allows the model
to return a more accurate number of representations, espe-
cially in images containing many objects.

Model training is conducted in the setup of a classic au-
toencoder. In this research, the probabilistic characteristics
of the model are not directly utilized, hence we opted for
training the model using the mean squared error loss func-
tion, minimizing the reconstruction error between the orig-
inal input and the reconstructed output (Eq. 1, where X
refers to the input image and Y is the reconstruction, and
N refers to the total number of samples in the dataset). It is
worth pointing out, that extending this model to the Varia-
tional Autoencoder framework would be trivial.

MSE (X,Y ) =
1

N

N∑
i

(Xi − Yi)
2 (1)

In the context of generative modeling, given the noise in-
troduced by the grid-based encoding and injecting negative
samples, this can be viewed as maximizing the likelihood of
the data under the assumed model [13]. Since RDIR does
not model background directly, MSE between input image
and reconstruction can be inflated due to the complexity of
the background. We address this issue by adding a compo-
nent calculating MSE on areas detected by the model. The
final loss function is presented in Eq. 2:

L = αr ∗MSE (X,Y ) + αobj
1

M

M∑
i

MSE
(
Xi

obj ,Y
i
obj

)
(2)

where:
αr is the reconstruction MSE component coefficient,
X is the input image,
Y is the image reconstruction,
αobj is the per-object MSE component coefficient,
M is the number of objects in an image,
Xi

obj , Y i
obj refer to detected objects’ original appearances

and reconstructions.
We apply a staged training protocol. The weights of a

pretrained object detection model are are transferred to an
SSDIR-like model (with the same architecture as RDIR, but
without Sequence encoder and the second Mixer), which is
trained without supervision to establish good base weights
for training RDIR (especially the zwhat encoder and de-
coder). Then, the model is extended with the Sequence en-
coder and the second Mixer and trained as an unsupervised
autoencoder. This way we achieve a shorter training time
and achieve better performance.
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4. Experiments and Discussion
In this section, we present the experimental setup and

evaluation methodology used to assess the performance of
RDIR. The objective is to evaluate the quality of the rep-
resentations learned by RDIR while comparing it against
baseline multi-object representation learning models. We
analyze the consistency of learned representations and re-
view their applicability in downstream tasks. Furthermore,
we conduct an ablation study to examine the impact of the
Mixer in the encoder of RDIR and the method’s robustness
to the number of objects in the sequence.

Datasets used in this research include real-world data, as
well as images created using simulations. Generating data
provides the ability to direct control over the dataset char-
acteristics, necessary to review their influence on the model
performance. We use a simple benchmark dataset, created
from the MNIST dataset. The multi-scale moving MNIST
dataset was generated by pasting a random number of dig-
its (between 2 and 5) into the initial frame and then moving
them with a varying speed throughout the sequence, varying
the digit size. This dataset includes multiple occlusions and
size changes and was used to verify the model’s robustness.

The quality of representations was analyzed using the
MOT15 dataset [24], a real-life multi-object tracking
dataset. It consists of 11 sequences of images, each in-
cluding multiple moving pedestrians; it is annotated with
objects’ positions and unique IDs, making it suitable for
the task of object tracking. In this context, the COCO
dataset [25] was used to train the initial object detection
model (considering only the ’person’ class).

The MOVi datasets come from the Kubric data genera-
tion pipeline [14] and were used to prove the stability of the
representations produced by RDIR. See the Supplementary
Material for an investigation on this matter.

Baseline methods To evaluate the performance of RDIR,
we selected a set of baseline methods. The motivation be-
hind this choice was to select one model from each category
of multi-object representation learning models for videos.
Therefore we have chosen 4 baseline methods:

• SCALOR [18], a single-scale spatial-attention model,
utilizing a recurrent proposal-rejection mechanism for
discovering and propagating detected object represen-
tations across the sequence,

• PROVIDE [31], a recurrent scene-mixture model, that
leverages iterative amortized inference with a 2D-
LSTM, incorporating information from previous re-
finement steps and previous frames,

• SIMONe [20], a transformer-based variational autoen-
coder with factorized latent representation, separating

object attributes from global temporal context,

• SSDIR [32], with upgraded convolutional backbone
from YOLOv4 (same as in RDIR) and with the ad-
dition of the Mixer, denoted as SSDIR-YOLO; used
to verify the improvement of adding the Sequence en-
coder to the model; these upgrades overcome the ma-
jor issues of the original approach (weak backbone and
limited input image size).

We assume the same size of latent representation for each
model. For the experiments on multi-scale moving MNIST
dataset, we use a 64 × 64 input size, but since the size of
grids in RDIR and SSDIR-YOLO depends on the input size,
we upscale these images to 128× 128.

Considering the significantly higher resolution of the
MOT15 dataset, the object tracking experiment uses the
highest possible resolution (limited by each method’s de-
sign and GPU capability). Therefore, SCALOR and PRO-
VIDE use their default 64×64 resolution, SIMONe utilizes
128×128 input, and SSDIR-YOLO and RDIR can work on
416× 416 input data (thanks to their scalability).

4.1. Experiment 1: Predicting the sum of digits in a
sequence

We evaluate quantitatively the quality of learned repre-
sentations by utilizing them in a digit summation task. We
adopt an experimental setup similar to one proposed in [1]:
each model is trained on the full multi-scale moving MNIST
dataset. Then, we extract the representations of each image
for both the train and validation subsets and use them to fit a
linear regression model, predicting the sum of digits in the
sequence. The target is computed from the ground truth.

Since each of the models produces multiple representa-
tions for each image (referring to each detected object or
attention mask), we aggregate them across the frame using
summing. Then, to produce per-sequence representation we
calculate the mean of each per-frame representation. The
resulting 64-element vector is used as the feature vector for
training a linear regression model. This approach enables
direct comparison of methods, which do not explicitly learn
representations of individual objects. Scene-mixture-based
models (such as PROVIDE and SIMONe) create masks,
that overlap multiple objects at once, whereas spatial atten-
tion models with fixed object size (such as SCALOR) tend
to split large objects into smaller parts. By applying this
aggregation we can evaluate these models regardless of the
number of objects they infer on, and it allows us to review
the information they collect on the entire video.

The quality of the regression model is determined by cal-
culating R2 metric across three random seeds for the train
and val subset. The results are shown in Table 1.

RDIR achieves the best results for the full dataset (with
scaling and translation), showing the improvement of apply-
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MNIST (scaling and translation) MNIST (no scaling) MNIST (no translation)
R2 train val train val train val
SCALOR 0.301± 0.009 0.294± 0.028 0.353± 0.018 0.357± 0.024 0.288± 0.017 0.274± 0.010
PROVIDE 0.298± 0.258 0.282± 0.258 0.349± 0.300 0.345± 0.312 0.266± 0.232 0.253± 0.236
SIMONe 0.580± 0.02 0.577± 0.023 0.652± 0.013 0.658± 0.070 0.493± 0.018 0.478± 0.019
SSDIR-YOLO 0.574± 0.015 0.573± 0.012 0.641± 0.013 0.647± 0.015 0.396± 0.011 0.404± 0.019
RDIR 0.579± 0.010 0.581± 0.002 0.625± 0.006 0.636± 0.002 0.425± 0.009 0.429± 0.008

Table 1. Downstream task: regression of the sum of digits in a sequence. RDIR achieves best results on the most complex dataset but is
slightly worse than SIMONe and SSDIR in simpler datasets (without scaling or translation). Values are averaged over 3 random seeds.

ing the Sequence encoder over the SSDIR approach. On the
other hand, the metrics are comparable to those achieved by
running linear regression on SIMONe representation, show-
ing the benefits of its factorized latent space.

It is worth noting, that in the case of a simplified dataset
(without scaling or translation), the performance of RDIR
is slightly worse than SIMONe and SSDIR. This might be
the result of a slight overfitting, as the final metrics are sim-
ilar to the other models. Nevertheless, the ability to include
temporal characteristics is an advantage over the SSDIR,
especially in cases where we aim at preserving the high sta-
bility of representations. On the other hand, applying recur-
rent cells instead of a transformer network allows RDIR to
be used in online inference, without the need for collecting
the entire sequence of images.

The performance of SCALOR and PROVIDE is signifi-
cantly worse than the other methods. During the research,
these models struggled to appropriately discover objects in
the scene, yielding a significantly larger number of repre-
sentations per frame. This shows, that such models struggle
to understand images with highly varying scenes and pro-
vide valuable object representations.

4.2. Experiment 2: Representations-based object
tracking

We explore the application of RDIR representations in
real-life scenarios by utilizing them for object tracking. We
adopt the following setup: each model is trained on the
training subset of the MOT15 dataset. Then, we process the
validation dataset to extract objects’ representations of each
model. We apply a simple object tracker, which matches
objects between consecutive frames using the Hungarian
algorithm based on the cosine similarity between objects’
representations, and keeping track of unique IDs of tracked
objects. Finally, we use bounding box predictions of each
model and the predicted object ID to evaluate the tracking
performance, using TrackEval [19].

The quality of tracking is measured using the HOTA
metric [29] across three random seeds for the train and val-
idation subset. The results for each model and the baseline
object detection (YOLO) are collected in Table 2.

MOT15
HOTA train val
SCALOR 1.452± 0.063 1.305± 0.041
PROVIDE 0.753± 0.038 0.698± 0.036
SIMONe 0.495± 0.275 0.724± 0.597
SSDIR-YOLO 31.774± 2.193 20.752± 1.190
RDIR 30.582± 2.201 20.749± 0.344

YOLO 20.100± 0.520 14.263± 0.525

Table 2. Downstream task: object tracking using learned represen-
tations. RDIR and SSDIR-YOLO achieve much better results than
the baseline methods. Values are averaged over 3 random seeds.

The performance of SSDIR-YOLO and RDIR are sim-
ilar; the metrics show a significant improvement over the
YOLO detection model. Due to mask-based inference in
PROVIDE and SIMONe, it is necessary to convert segmen-
tation masks to bounding boxes. We calculate each mask’s
(i.e. object) center of mass and then build a bounding box
using the area of the mask and a predefined 3 : 1 ratio of
object height (suitable for pedestrian class). Nevertheless,
neither of the baseline methods was able to focus on individ-
ual objects in the scene, instead dividing it into meaningless
parts, which resulted in very low tracking metric.

Leveraging a pretrained object detection model offers the
ability to transfer knowledge from a different dataset. In Ta-
ble 3 we examine the performance of models based on a de-
tector pretrained on the COCO dataset (predicting the ’per-
son’ class). Even though the detector is less fitting to this
problem (the performance of YOLO@COCO is low), the
addition of representations learned by SSDIR-YOLO and
RDIR yields a big increase in the object tracking metric.
On the other hand, a model trained end-to-end (without the
pretrained object detection model) behaves similarly to the
baselines, not being able to focus on individual objects.

The marginal difference between SSDIR-YOLO and
RDIR is worth addressing. Our implementation of SSDIR
performs better than the original approach thanks to the im-
provements proposed in this paper. Even though the perfor-
mance of SSDIR-YOLO and RDIR is similar, RDIR offers
other advantages, especially more stable representations,
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MOT15
HOTA train val
YOLO@MOT15 20.100± 0.520 14.263± 0.525
YOLO@COCO 8.240± 0.154 9.457± 0.141

SSDIR@MOT15 31.774± 2.193 20.752± 1.190
SSDIR@COCO 14.788± 0.607 14.029± 0.751

RDIR@MOT15 30.582± 2.201 20.749± 0.344
RDIR@COCO 13.922± 0.781 13.752± 0.777

RDIR E2E 0.634± 0.076 0.582± 0.120

Table 3. Downstream task: object tracking using learned repre-
sentations. ’@’ denotes the dataset on which the base detection
model was trained. The addition of representations significantly
improves tracking performance, even for less-fitting object detec-
tion models. Values are averaged over 3 random seeds.

MNIST
R2 train val
RDIR 0.579± 0.010 0.581± 0.002
no-mixer 0.561± 0.023 0.562± 0.022
downscaler 0.543± 0.027 0.542± 0.027

Table 4. Ablation study: the influence of the Mixer module on the
quality of representations. Adding the Mixer to RDIR improves
the performance of the linear regression model applied to its rep-
resentations. Values are averaged over 3 random seeds.

which are investigated in a study included in the Supple-
mentary Material.

4.3. Ablation study: influence of the Mixer on model
performance

We review the influence of the Mixer module in the
RDIR model by training three models, and modifying their
architecture. RDIR refers to a standard model, no-mixer is
a model where latent features were not modified (this re-
quires using separate recurrent cells for each feature map,
as they use a varying number of channels), whereas down-
scaler only applies channels reduction, to use a single re-
current cell for all feature maps. Then, the digit summation
experiment (Sec. 4.1) was repeated; the resulting R2 met-
rics were collected in Table 4

It is clear, that applying the Mixer in RDIR improves the
performance of the model. Interestingly, a simple reduction
of the number of channels, which allows the use of a single
recurrent cell does not provide an improvement over three
separate recurrent cells for each latent representation.

4.4. Ablation study: influence of the number of
objects in the sequence on model performance

We verify RDIR’s robustness to varying numbers of ob-
jects visible in a sequence by running a trained model on

Figure 4. Ablation study: the influence of the number of objects in
a sequence on the quality of representations. RDIR can generalize
to a larger number of objects, but the performance of the down-
stream model is worse for one- and two-object sequences.

additionally generated moving multi-scale MNIST datasets,
containing from 1 up to 7 objects in each sequence, split into
train and validation subsets (80 : 20). We follow the digit
summation procedure (Sec. 4.1) and evaluate linear regres-
sion models trained on the representations. The R2 metric
and standard deviation for each dataset are shown in Fig. 4.

The results demonstrate the robustness of the RDIR la-
tent space across sequences with varying numbers of ob-
jects. The model consistently generates versatile embed-
dings, irrespective of the object count in the sequence. No-
tably, a decline in performance is observed in sequences
containing only one or two objects.

5. Conclusion

In this paper, we presented RDIR, a novel method
for capturing stable representations of multiple objects on
videos from a pretrained object detector. We showed how
its latent space can be used by means of applying repre-
sentations in downstream tasks. We reviewed the ability
to transfer knowledge from other datasets into similar tasks
and showed the improvement gained from representations
inferred by RDIR. We also examined the sensitivity of the
model to the dataset characteristics, showing its robustness
to a larger number of objects.

The research could be continued in several aspects. The
model could be trained on a larger unannotated dataset by
transferring knowledge from another dataset and applied in
demanding downstream tasks. Another interesting direc-
tion would be reviewing a more advanced way of modeling
object interactions, as they are crucial for a profound under-
standing of the scene. Finally, the approach could be based
on an instance segmentation model, leading to more granu-
lar masks of objects in the scene.
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