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A. Implementation details

A.1. Architectures

Encoders. For the spatial encoder, two different trans-
former architectures are used: ViT [3] and Swin [5]. By de-
fault, the temporal encoder is a stack of 4 attention layers
as in ViT architecture. For ViT, the global architecture cor-
responds to the ViViT model 2 [1]. We keep this name and
refer to the Swin based-architecture as ViSwin. In Tab. 1,
we provide the input dimension of tokens for the spatial
and temporal encoders, and their number of parameters and
GFLOPs for ViViT Tiny, ViViT Small, and ViSwin Tiny.

For all models, the majority of the computations are per-
formed in the spatial encoder which sees a lot of tokens,
and the temporal encoder computational cost is negligible.
However, the number of parameters does not scale well with
the output dimension of the spatial encoder, due to the self-
attention mechanism, which is reflected in ViSwin Tiny. It
has 4 times more temporal parameters than ViViT small but
only 1.25 times more spatial parameters. However, as Swin
has less reduced computational usage in comparison with
ViT by design [5] it scales better to deeper spatial architec-
tures.

A.2. Optimizers

We use the optimizer ADAMW for pretraining and fine-
tuning with a weight decay of 0.05. The initial learning rate
depends on the training step as well as the backbone as de-
tailed below. However, the steps follow different linear scal-
ing rules for an initial learning rate η:

• Step 1: ηscaled = η × batch size
256

• Step 2 and 3: ηscaled = η × batch size
256 × Tg

64 with Tg

the number of global frames per video.

Step 1. The initial learning rate is η = 5 × 10−4 with
10 epochs of warmup and a cosine annealing scheduler is
applied throughout training.

Step 2. The initial learning rate is η = 0.002 with 10
epochs warmup and cosine annealing scheduler that ends at
0.01× η.

Step 3. The initial learning rate is η = 5 × 10−4 for
ViViT and η = 3× 10−4 for ViSwin that ends at 0.01× η.

A.3. Spatial Pretraining.

To perform the pretraining of the spatial encoder, we
follow practices introduced by ρMoCo [4] and SCE [2].
More specifically we use a 3 layers Multi-Layer Perceptron
(MLP) on top of the online and target encoders of hidden
size 1024 and output size 256 that is discarded after this
step. The online predictor is a 2 layers MLP with the same
hidden and output size as the projectors. The data augmen-
tation distributions are the standard contrastive ones used
on images [2] and the temperature applied is τ = 0.1. The
momentum buffer size is 65, 536. For data sampling, all
sub-videos of 1 second, or 2 frames, are used. The model is
trained for 100 epochs with a batch size of 1024.

A.4. Spatio-temporal pretraining.

To perform the pretraining of the spatio-temporal en-
coder, we follow practices introduced by SCE [2]. More
specifically we use a 3-layer MLP on top of the temporal en-
coder of hidden size 1024 and output size 512 to match the
dimension of the Baidu [8] features. The projector is later
discarded. For the SCE loss parameters we use τ = 0.1,



ViViT Tiny ViViT Small ViSwin Tiny

Input dim C × Tg ×H ×W C × Tg ×H ×W C × Tg ×H ×W

Spatial encoder
Input tokens dim

(
H
16

× W
16

+ 1
)
× Tg

2
× 192

(
H
16

× W
16

+ 1
)
× Tg

2
× 384 H

4
× W

4
× Tg

2
× 96

Num parameters 5.7M 22.0M 27.5M
GFLOPs 41.19 149.30 144.68

Temporal encoder
Input tokens dim Tg

2
× 192

Tg

2
× 384

Tg

2
× 768

Num parameters 1.8M 7.1M 28.4M
GFLOPs 0.06 0.24 0.96

Global model
Num parameters 7.5M 29.1M 55.9M
GFLOPs 41.25 149.54 145.64

Table 1. Comparison of the ViViT Tiny, ViViT small, and ViSwin Tiny spatial and temporal encoders and global model in terms of
computational usage.

τm = 0.07, λ = 0.5. The data augmentation used is the
strongγ without cropping reported in the SCE paper. For
data sampling, we randomly extract 150 videos of 32 sec-
onds or 64 frames per game at each epoch. The batch size
for 32-second videos at 2 FPS is 64. For longer clips, the
batch size is inversely proportional to the length and num-
ber of windows. For example, for 64 seconds, the batch size
is 32 and the number of windows sampled per match is 75.

A.5. Finetuning.

A linear classifier is applied to each output temporal to-
ken to perform fine-tuning. Each video sampled is aug-
mented by using color jittering with probability 0.8 and of
strength ±0.4 on brightness, contrast, and saturation and 0
for hue to avoid changing the color of cards. Random Gaus-
sian blur is also applied with probability 0.5 and a kernel
size of 23 with σ ∈ [0.1, 2.]. A horizontal flip of probabil-
ity 0.5 is also applied followed by a mixup [7] whose mix-
ing coefficient is sampled by a Beta law B(0.1, 0.1).

The classifier is first trained during 30 epochs for its ini-
tialization and then the whole architecture is fine-tuned for
20 epochs for ViViT and 10 for ViSwin. The learning rate
is reset for the second part.

For data sampling, 100 videos per match are uniformly
sampled whilst enforcing that the beginning and end of each
half are selected to avoid missing kickoffs and last-second
actions. The batch size for 32-second videos at 2 FPS is
128. For longer clips, the batch size is inversely propor-
tional to the length and number of windows. For example,
for 64 seconds, the batch size is 64 and the number of win-
dows sampled is 50 per match.

Seconds t-AmAP (%)

0 66.4
2 66.6
4 66.7
6 66.6
8 66.6
10 66.8
12 66.8
14 66.8
16 66.7

Table 2. Influence of the number of seconds ignored at the start
and end of each window prediction on the t-AmAP.

Figure 1. Influence of the soft and hard NMS and its window size
in second on the t-AmAP.



B. Inference hyper-parameters search
During inference, a sliding window with half overlap

is applied on all videos. For multiple timestamp classi-
fications, the maximum of predictions per action is kept.
No data augmentation is applied. By default, a hard Non-
Maximum Suppression (NMS) of a 5-second window is ap-
plied. The 6 first and last seconds of each window predic-
tion are ignored to keep predictions that have past and fu-
ture context.

In Tab. 2, we study the effect of varying the number of
seconds to ignore. Taking all predictions has the worst re-
sult of 66.4% t-AmAP showing that it is interesting to re-
move predictions on edge that do not have access to the con-
text from the past or the future. The results increase up to
66.8% at 10 seconds and are stable for further seconds ig-
nored. The increase in performance is relatively low and
can be explained by the fact that the inference sliding win-
dow allows for some undetected predictions on edges to be
retrieved by past or future windows.

In Fig. 1, we study the effect of using Hard or Soft NMS.
As for [6], we see an increase in using soft NMS over hard
NMS. Depending on the NMS type the optimal temporal
window size for NMS is not the same. The best results are
achieved for a hard NMS with a 4-5 seconds window at
66.8% t-AmAP and 68.0% for a soft NMS with an 11-17
seconds window. The results show that not only does soft
NMS perform better than hard NMS but is also more stable.
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