
Metric Learning for 3D Point Clouds Using Optimal Transport

A. Implementation Details and Discussion

Dataset. In this section, we mention the implementation
details of the training procedure and the different tasks that
we perform. For working with ModelNet [2] and ShapeNet-
Part [4], we randomly sample 2048 points to represent the
object surface. For ScanObjectNN [1], we use the given
pre-processed point cloud having 2048 points per object.
We use the main split for all our experiments of ScanOb-
jectNN provided by [1]. Here, an object which is repre-
sented with 2048 points can also have points that belong to
the background. We do not use the mask label that indicates
whether a point belongs to the foreground or background in
any of our experiments. This interpretation is completely
left to the network to decide and choose which points mat-
ter the most in order to classify a particular object. As a
pre-processing step, we always normalize the coordinates
of the point clouds and scale the object to bring it inside a
unit sphere. Note that, the point clouds are not explicitly
aligned across all datasets.
Contrastive learning. The fixed set of transformations
used in contrastive learning are scaling, rotation, and noise
jittering. The scaling parameter is randomly selected from
a range of 0.8 to 1.25. For rotation, we only rotate the ob-
ject about its Y -axis and choose a rotation angle between
0◦ to 360◦. For points jittering, we first draw noise from a
normal distribution having 0 mean and standard deviation
as 0.01. This noise is then added to each point individually,
introducing surface distortion. We compose these transfor-
mations by selecting two random input parameters for each
of them, resulting in T1 and T2.
Architecture and method. We use a 3-layer MLP net-
work as our encoder for all the classification and segmen-
tation tasks. The number of neurons in each layer are
(64, 128, 256) with batch-norm and ReLU activation after
every layer. Note that, the last layer’s output is not passed
through the activation function. After the max-pooling op-
eration, the encoder gives a 256-dimensional vector, which
is then converted into a discrete distribution z′m depend-
ing on the selected ground metric space (R2,R4,R8). For
example, if the selected ground metric space is R2, then
the 256-dimensional embedding vector is reshaped into
(256/2)× 2, giving us 128 support points in 2 dimensions.
As we use a uniform distribution, each of the points have the

same weightage of (1/128), all effectively making it a dis-
crete distribution in R2. We first pre-train the encoder using
our defined Lsup or Lself with different distance measures.
For Euclidean distances, we use the 256-dimensional vec-
tor straight away, and for the Wasserstein metric, we use
the discrete representation. After pre-training, for evaluat-
ing on a test set of a particular dataset, we extract the learnt
embeddings from the frozen pre-trained encoder and use a
Linear SVM to perform classification. For the object seg-
mentation task, we train a 3-layer MLP network to predict
class labels for all points in a point cloud, where the input is
the embeddings provided by the pre-trained encoder. Note
that, the pre-trained encoder weights are frozen while train-
ing the segmentation network. The number of neurons in
each layer are (256, 128, 50), with batch-norm and ReLU
after each layer except the last one. The global embedding
and per-point embeddings are stacked and passed as input
to the segmentation network.

We use FoldingNet [3] encoder and decoder for the
interpolation task. For this task, the embedding size is
512. These encoder and decoder are trained with our de-
fined Lsup that uses the discrete embeddings, together with
chamfer distance as a reconstruction loss on the decoder’s
output. We use a weighted sum of these two losses as the
total loss to backprop through the network. The weights
assigned to Lsup and chamfer distance are 0.2 and 0.8 re-
spectively. For Wasserstein metric, we use R2 as the ground
metric dimension, and as a Euclidean metric, we use L2-
distance.

B. Explainability: Critical Points
We visualize and compare features captured by Wasser-

stein embeddings and Euclidean embeddings for more ex-
amples in Figure 1, 2. Our Wasserstein embeddings are
able to capture the full skeleton structure of the given point
cloud, whereas critical points captured by Euclidean em-
beddings are comparatively poor with uneven distribution
and missing parts.

C. Ablation Study
We perform point perturbation and point density varia-

tion to test their effects on the encoders embeddings pre-
trained with different distance metrics and report the clas-



sification accuracy on Modelnet10 and ScanObjectNN as
shown in Figure 4, 5 respectively. We can see that our
CL+SW2 performs better in the robustness test for Mod-
elnet10, but the margin of performance difference is less on
ScanObjectNN.

D. 3D Shape Interpolation

We show more examples of 3D point cloud interpola-
tions in Figure 3. For both Euclidean and Wasserstein em-
beddings, we use the 512 dimensional feature vector of
the source and target sample and take the weighted sum
of these embeddings to generate interpolated sample em-
bedding. This interpolated embedding is then passed to the
trained decoder to get a point cloud in 3D space. Overall,
we can see smoothness in the generated point cloud surface
(with better information) as well as in the embedding space
itself, when the space is Wasserstein. In Table 1, we report
the noise measure of the interpolated samples shown in Fig-
ure 3. Most of the interpolated samples from Wasserstein
space have lower values of noise measures.

Table 1. Noise measure for interpolation results shown in Figure
3. Bold values represent smoother surfaces having less noise. The
values are scaled by a factor of 103.

Figure Method Step 1 Step 2 Step 3 Step 4

3 (a)
Euclidean 31.5 36.8 34.6 30.5

Wasserstein 30.0 34.9 35.0 31.8

3 (b)
Euclidean 29.8 31.8 33.4 33.4

Wasserstein 29.1 30.1 33.0 34.5

3 (c)
Euclidean 25.0 24.3 23.3 22.3

Wasserstein 25.3 24.4 23.3 22.5

3 (d)
Euclidean 24.9 26.2 26.0 25.0

Wasserstein 23.2 24.7 25.1 25.3

References

[1] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son
Hua, Duc Thanh Nguyen, and Sai-Kit Yeung. Re-
visiting point cloud classification: A new benchmark
dataset and classification model on real-world data. In
International Conference on Computer Vision (ICCV),
2019.

[2] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu,
Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao.
3D ShapeNets: A deep representation for volumetric
shapes. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1912–1920, 2015.

[3] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian.
FoldingNet: Point cloud auto-encoder via deep grid

deformation. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 206–215,
2018.

[4] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla
Sheffer, and Leonidas Guibas. A scalable active frame-
work for region annotation in 3D shape collections.
ACM Transactions on Graphics (TOG), 2016.



Original Wasserstein Euclidean

Figure 1. Comparison of important points given by network trained with Wasserstein and Euclidean metric. First column shows the original
point cloud, second column shows the critical points set captured by Wasserstein space, and third column shows the same for Euclidean
space.



Figure 2. Comparison of important points given by network trained with Wasserstein and Euclidean metric. First column shows the original
point cloud, second column shows the critical points set captured by Wasserstein space, and third column shows the same for Euclidean
space.



Figure 3. Comparision of interpolation from source (leftmost) to target (rightmost) samples between Euclidean embeddings and Wasser-
stein embeddings. For each sample, top row shows results from reconstruction after interpolating two point cloud embeddings in Euclidean
space. Likewise, bottom row shows results obtained by Wasserstein embeddings. Weight ratio (0.8, 0.6, 0.4, 0.2) (from left to right) with
respect to the source.



0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Standard Deviation of Gaussian Noise

84

85

86

87

88

89

90

91

92

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

CL+L 2

CL+SW2(
2)

CL+SW2(
4)

CL+SW2(
8)

(a)

8192 4096 2048 1024 512 256 128
Number of Points in a Point Cloud

74

76

78

80

82

84

86

88

90

92

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

CL+L 2

CL+SW2(
2)

CL+SW2(
4)

CL+SW2(
8)

(b)

Figure 4. Robustness test with point perturbation and point sampling for our method CL+SW2 and baseline CL+L2 on Modelnet10.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Standard Deviation of Gaussian Noise

45

50

55

60

65

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

CL+L 2

CL+SW2(
2)

CL+SW2(
4)

CL+SW2(
8)

(a)

2048 1024 512 256 128
Number of Points in a Point Cloud

40

45

50

55

60

65

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

CL+L 2

CL+SW2(
2)

CL+SW2(
4)

CL+SW2(
8)

(b)

Figure 5. Robustness test with point perturbation and point sampling for our method CL+SW2 and baseline CL+L2 on ScanObjectNN.


	. Implementation Details and Discussion
	. Explainability: Critical Points
	. Ablation Study
	. 3D Shape Interpolation

