Supplementary Material

1. Experiments
1.1. Auto-Labeling

In Fig. 1, we visualize the results from the baseline meth-
ods MaskFormer and MaskFormer+SAM alongside our ap-
proach, MaskFormer+SAM+Detic+MV, when applied to
the AVD dataset.

In Fig. 2, we show the results on the ADE20K dataset.
The multi-view verification stage is omitted because of the
lack of information to associate different images in the
dataset, so only MaskFormer and MaskFormer+SAM re-
sults are visualized.

1.2. Object Part Discovery

We additionally annotate ’bottle cap’ via the object part
discovery approach detailed in Sec.5.1.
Fig. 3 shows the annotated bottle caps.

1.3. Object Goal Navigation

Table. 1 provides comprehensive details about the testing
episodes, such as the testing environment, the target object,
and the navigation success rates for both the VL.-Map and
GT-Map approaches.

To gain further insight into the performance of our nav-
igation episodes, Fig. 4, Fig. 5, Fig. 6 and Fig. 7 present
qualitative results across various AVD environments.
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Figure 1. Comparison of auto-labeling results on MaskFormer and MaskFormer+SAM, and MaskFormer+SAM+Detic+MYV (ours)
on AVD images. Notably, MaskFormer+SAM demonstrates improved boundary delineation between distinct objects. Our approach also

utilizes Detic and existing bounding boxes from AVD for getting more object masks, and the multi-view verification stage improves over
single-view results.
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Figure 2. A comparison between MaskFormer and MaskFormer-SAM on the ADE20k-indoor dataset. In certain examples,
MaskFormer-SAM showcases notable improvements, surpassing MaskFormer by 10% in mloU and 12% in mIoU-small.



bottle_cap annotation examples

Figure 3. This figure gives examples of bottle caps marked as red rectangles. For enhanced clarity, the labeled bottle caps have been
enlarged to improve visualization.



Instruction: Go to 'Kitchen Sink'
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Figure 4. A qualitative result of an episode for navigating to a kitchen sink in Home-005. Our approach successfully drives the agent to
the sink, while the VL-Map approach fails to approach the target object.
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Figure 5. A qualitative result of an episode for navigating to a flowerpot in Home-006. Both approaches successfully reach the target
object.



Instruction: Go to 'Toothbrush'
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Figure 6. A qualitative result of an episode for navigating to a toothbrush in Home-014. Both approaches successfully reach the target
object.



Instruction: Go to 'Oven’
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Figure 7. A qualitative result of an episode for navigating to an oven in Home-016. Both approaches successfully reach the target object.
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