
Source-Free Domain Adaptation for RGB-D Semantic
Segmentation with Vision Transformers:

Supplementary Material

Giulia Rizzoli Donald Shenaj Pietro Zanuttigh
University of Padova, Italy

This document contains supporting material for the pa-
per Source-Free Domain Adaptation for RGB-D Seman-
tic Segmentation with Vision Transformers. Here, we in-
clude additional ablation experiments supporting some de-
sign choices of the proposed method along with additional
qualitative visual results on the SELMA dataset [1].

1. Tuning on input level adaptation
In this section, we present some additional results con-

cerning the input level adaptation in the Fourier domain.
For this strategy, a key parameter is β as it selects which

region of the amplitude spectrum is going to be replaced
with the target style. As pointed out in the paper, larger val-
ues of β lead to a stronger adaptation effect but also intro-
duce visual distortion. While this aspect has been discussed
for standard images in previous works [3], its impact on
depth data has never been analyzed.

The main paper already shows an example relative to
the SYNTHIA to Cityscapes adaptation, while Figure 1 in
this document shows an additional example relative to the
SELMA to Cityscapes setting. Notice that, as pointed out in
the main paper, the approach allows to better align the depth
ranges and matches the fact that real-world target data com-
puted with stereo vision has more artifacts and a less sharp
distribution. The example in the image confirms these ob-
servations and shows that they are not dataset-dependent.

Using larger β introduces artifacts that are visually dis-
turbing, yet the key question is if they affect also the net-
work performances. Table 1 shows the mIoU after the pre-
training step for different values of β. Notice how the rela-
tively large value of β = 0.09 leads to depth maps not very
visually appealing but instead effective when used to aid
the segmentation model. The results in Table 1 refer to em-
ploying the average style computed over 2.5k patches of the
target dataset. Based on the empirical findings, it was deter-

Dataset β

0.00 0.01 0.05 0.09 0.12

SYNTHIA 39.79 39.60 40.66 40.82 38.58
SELMA 38.25 39.52 39.17 40.80 38.60

Table 1. Performance with different values of β.

mined that employing the mean value of the objective vari-
able across each training step batch leads to a further per-
formance improvement (e.g., to 41.01 for the SYNTHIA-
to-Cityscapes setting). The utilization of the per-batch style
may explain why it effectively captures the significant vari-
ations in depth values based on the patch’s position. This
strategy was then adopted for all the subsequent tests.

2. Depth-dependent Entropy Loss Weighting
Another design choice that needs to be properly eval-

uated is the depth-dependent weight for the entropy loss.
Various models can be selected for this task, following the
rationale that closer regions should get a higher weight since
they have a better image resolution and depth accuracy. We
considered 4 possible options, where d is the normalized
disparity in the [0, 1] range:

1. Directly using disparity w = d as the weight;

2. Using a piecewise linear function to crop the weights
range, set to w = 1√

10
for d < 0.1, to w =

√
10 for

d ≥ 1 and with a linear disparity-dependent increase
in the middle;

3. Using the square root of disparity, i.e., w =
√
d;

4. Using an exponential function of the disparity value,
i.e., w = ed.

Table 2 shows how directly using the disparity as the
weight led to the best performances.
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Source β = 0.01 β = 0.03 β = 0.05

Target β = 0.07 β = 0.09 β = 0.12

Figure 1. Effect of the Fourier Domain style transfer applied on depth images from the SELMA dataset, whereas β = 0 is equivalent to no
transfer and β = 1 to the transfer of the full target amplitude.

RGB Depth Label Pseudo-label Prediction

Figure 2. Self-training with depth masking allows masking areas where the depth fails to capture the scene content.
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Figure 3. Qualitative semantic segmentation results for the SELMA-to-Cityscapes adaptation task.



Weighting Scheme mIoU
(1) 54.52
(2) 53.05
(3) 52.93
(4) 52.80

Table 2. Ablation on different weighting schemes.

3. Ablation on Self-training with depth
As mentioned in the main paper, pseudo-label filtering

has the capability to help the adaptation process consider-
ably. In Figure 2, we show that masking pixels with miss-
ing or distorted depth data improves the prediction in crit-
ical regions. In the first row, the depth of the car is noisy
and has discontinuities determining misleading predictions
in the pseudo-labels, as evidenced by the circles. There-
fore, it is important to discard the wrong supervision of
the labels corresponding to those regions, by masking the
pseudo-labels. In this way, the model learns to handle the
gaps coherently. Analogously, in the second row, holes in
the depth are introduced by the movement of the people,
and effectively masking them, makes the employed pseudo-
labels more consistent. Finally, in the last row, noisy arti-
facts in the depth are introduced by railway tracks on the
road, compromising significantly the pseudo-labels.

Furthermore, in Table 3, a comparative evaluation is con-
ducted between standard self-training and depth-aware self-
training. The depth usage allows for a noticeable improve-
ment over the RGB and RGB-D self-training. In particular
with the standard self-training, the approach starts the learn-
ing properly, still, it becomes too confident about the wrong
self-predictions in regions like the ones of Figure 2. Us-
ing instead the depth guidance the corrupted pseudo-labels
are discarded and the learning continues to improve up to
convergence at around 52.5%.

Input ST STd mIoU

RGB 36.93
RGB ✓ 40.59

RGB+D 39.79
RGB+D ✓ 41.29
RGB+D ✓ 52.50

Table 3. Improvement of the self-training using depth data. ST
corresponds to the standard self-training, while STd is the depth-
guided self-training.

4. Ablation on different backbones
With the aim of testing the generalization ability of the

transformer architecture, we tested MISFIT over different

backbones (see Table 4). Even with the utilization of less
complex backbones (MiT-B2 and MiT-B4), the results ob-
tained using the model of [2] are comparable to the state-
of-the-art performance. This observation suggests that the
architecture exhibits a level of robustness and efficiency, en-
abling competitive outcomes with lower parameter counts.

Encoder (M)Params. mIoU

MiT-B2 27.7 43.2
MiT-B4 64.1 52.55
MiT-B5 84.7 54.5

Table 4. Ablation on different backbones.

5. Additional Visual Results
Since in the main paper visual results are shown only for

the SYNTHIA-to-Cityscapes setting, in Figure 3, we pro-
vide some qualitative results on the SELMA-to-Cityscapes
setting. In the first row, the feature-level adaptation tech-
nique enhances the accuracy of car shapes and eliminates
segmentation artifacts on the road. Furthermore, incorpo-
rating the entropy output level loss refines the shape of the
sidewalk on the right side. In the second row, in addition
to similar improvements observed on the road and the car
on the right, it is evident that using only input-level adap-
tation results in a complete failure to detect the bus in the
background. In contrast, our approach properly detects it.
In the third row, the approach is able to refine the shape of
the vegetation region on the right side and removes artifacts
on the road.
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