
Supplemental Materials: Self-supervised Pre-training for Semantic
Segmentation in an Indoor Scene

Sulabh Shrestha, Yimeng Li, Jana Košecka
George Mason University

Figure 1. Example of pairing class-agnostic regions using pairing
function. Each color represents a unique region. The output of
element-wise pairing of input label images is another label image
where each unique pair of input labels produces a unique output
region label.

1. Class Agnostic Region Overlap

Let I2 and I ′2 be a pair of images/matrices with region
labels {bj}R2

j=1 and {ai}R1
i=1 respectively. Without loss of

generality, let N be the total number of elements in I2, same
as in I ′2. For each pair of region labels (ai, bj), the task
is to find the (pixel) intersection over union (IoU) of their
regions.

1.1. Brute-Force Algorithm

As shown in the Brute-Force Algorithm 1, the algo-
rithm iterates over each unique label bj ∈ I2 and finds
its boolean mask b̄j that represents locations/mask of ele-
ments in I2 that have label bj . The boolean mask calculation
takes O(N) time per label bj . For each of these labels, the
boolean mask for each label ai in I ′2 needs to be calculated
similarly. Element-wise AND operation of these masks
gives the mask of intersecting elements. Overall, the brute
force method takes O((R1∗N)∗(R2∗N)) = O(R1R2N

2)
time. Alternatively, the mask for each R1 and R2 region
labels could be saved once. However, this requires sav-
ing a mask that has same size as the input image R1 + R2

times i.e. O((R1 ∗+R2) ∗N) space complexity which can
be excessive when the input images have high dimensions
while the time complexity will still be O(R1R2). In worse
case, where every pixel is a separate region this will still be
O(N2).

1.2. Preliminary: Pairing Function

A pairing function π : Z∗ × Z∗ → Z∗ is a reversible
bijective function that maps non-negative integers (x, y) to
a unique integer z. We use one of such pairing functions,
namely, Cantor pairing function which is given by equation
(1).

π(x, y) = z ← 0.5(x2 + 2xy + 3x+ y + y2) (1)

The inverse of the pairing function, π−1 takes the number
z and outputs the input pair (x, y) that produced this num-
ber. For Cantor pairing function, the inverse is given by
equations (2)

c ← ⌊0.5 ∗ (
√
(8 ∗ z + 1)− 1)⌋

x ← z − (0.5 ∗ c ∗ (c+ 1))

y ← c− x

π−1(z) ← (x, y) (2)

One of the desired property is that, for Cantor pairing
function, both π and π−1 takes O(1) time to compute. An-
other valuable property of any pairing function is that the
mapping of unique pair is also unique. Some examples of
the Cantor pairing of numbers are shown below:

• π(1, 1) = 4 and π−1(4) = (1, 1)

• π(1, 2) = 7 and π−1(7) = (1, 2)

• π(2, 1) = 8 and π−1(8) = (2, 1)

• π(2, 2) = 12 and π−1(12) = (2, 2)

Pairing (1, 2) outputs 7 which means no other input pair
produces 7. Similarly, the pairing function is not commu-
tative as can be seen from the example that the pairs (1, 2)
and (2, 1) produce different outputs.

Hence, the same unique pair of inputs (region labels) is
always mapped to the same unique number. A toy example
of element-wise pairing of labels from I2 and I ′2 is shown
in Figure 1 where each color represents a unique label. The
output of this element-wise pairing is equivalent to having

Algorithm 1 Brute Force algorithm for Class Agnostic Region overlap calculation

1: iouMap← {} ▷ HashMap to store IoU of labels/regions
2: for i in R1 do
3: āi ← (I ′2 == ai) ▷ Find boolean mask of ai in I2 in O(N)
4: for j in R2 do
5: b̄j ← (I2 == bj) ▷ Find boolean mask of aj in I ′2 in O(N)
6: intersect = AND(āi, b̄j)
7: union← OR(āi, b̄j) - intersect
8: iou← intersect / union
9: iouMap[(ai, bj)]← iou

10: end for
11: end for

Algorithm 2 Optimized algorithm for Class Agnostic Region overlap calculation

1: iouMap← {} ▷ HashMap to store IoU of labels/regions
2: cB ← {} ▷ HashMap to store region labels and their pixel counts in I2
3: cA← {} ▷ HashMap to store region labels and their pixel counts in I ′2
4: cP ← {} ▷ HashMap to store region labels and their pixel counts from paring I2 and I ′2
5: for e in N do ▷ Iterate over each element in I2 and I ′2 and pair them element-wise in O(N)
6: b← I2[e]
7: a← I ′2[e]
8: p← π(a, b) ▷ Cantor-pairing
9: cB[b] += 1

10: cA[a] += 1
11: cP [p] += 1
12: end for
13: for p in cP do ▷ Iterate over unique pairs in cP in O(||cP || ≤ N)
14: (a, b)← π−1(p)
15: intersect← cP [p]
16: union← cA[a] + cB[b]− cP [p]
17: iou← intersect / union
18: iouMap[(a, b)]← iou
19: end for

Algorithm 3 Class Agnostic Region Overlap

1: R1 ← Unique regions and their pixel counts in I1
2: R2 ← Unique regions and their pixel counts in I2
3: P ← Element wise pairing between I1 and I2 using π
4: Rp ← Unique regions and their counts in P
5: for rp in Rp do
6: r1, r2 ← π−1(rp)
7: intersection← P [rp]
8: union← R1[r1] +R2[r2]− intersection
9: pixel-IoU(r1, r2)← intersection / union

10: end for

another image, shown on the right-most side of Figure 1,
where a unique pairing of labels gives a unique label. For
example, the red region on I2 outputs two unique region
labels, one when paired with yellow region and another with

purple region in I ′2 resulting in an orange label and a red
label in the output image respectively.

1.3. Optimized Algorithm

The Optimized Algorithm 2 utilizes Cantor pairing
function π from Section 1.2 to calculate the IoU of over-
lapping regions. Although, any pairing function takes O(1)
time. The algorithm first iterates over each index e of the
N elements in I2 and I ′2 and element-wise pairs them with
each other. The count of their respective labels are updated
in a HashMap for easier access later. This process takes
O(N) time. A unique pair of inputs give the same unique
output as explained in Section 1.2. Once all elements have
been paired, the unique paired elements (stored in cP in
the algorithm), give the number of all overlapping regions.
So, by default, non-overlapping regions are omitted from
the pairing unlike in the brute force algorithm from Section

1 def find_overlap_iou(img2,img2_from_1):
2 # Calc pixel counts in both images O(N)
3 A, cA = torch.unique(img2_from_1,
4 return_counts=True)
5 B, cB = torch.unique(img2,
6 return_counts=True)
7

8 # Pair labels using pairing function O(N)
9 pairs = pair_func(img1, img2)

10

11 # Calc pixel counts in paired image
12 P, cP = torch.unique(pairs, return_counts=

True)
13

14 ious = {}
15 # Iterate over paired regions O(len(P))
16 for p in cP:
17 a, b = inv_pair_func(p)
18 intersect = cP[P == p]
19 na, nb = cA[A == a], cB[B == b]
20 union = na + nb - intersect
21 iou = intersect / union
22 iou[(a, b)] = iou
23 return ious
24

Figure 2. Pytorch Implementation of Optimized algorithm for
Class Agnostic Region overlap calculation

1.1. Finally, iterating over the unique paired elements (cP)
gives us the count of intersecting pixels while π−1 gives
the original region labels from I2 and I ′2. From this, the
IoU can be easily calculated. The time taken to iterate over
the unique paired elements is proportional to the number of
overlapping regions which is at most N i.e. when each re-
gion is only a single element for both I2 and I ′2. Therefore,
the total computation time for this algorithm is O(N).

The PyTorch implementation of the algorithm is given in
Figure 2. Although it can be further optimized by creating
a dictionary of counts for faster access similar to Algorithm
2, it is omitted in the code for brevity and simplicity.

2. Dataset Generation

2.1. Image generation

Using the habitat simulator [4], we sample and ex-
tract images along with their depths, instance segmentation
and semantic segmentation from multiple locations in each
scene. A grid is formed by horizontal lines parallel to the
x-axis and z-axis. The images are captured from this grid
i.e. from the intersections of the lines. The camera height y
is kept fixed. From each navigable location in this grid, im-
ages are extracted by rotating the camera around the vertical
y-axis separated by 45 degrees from each other resulting in
8 images per location.
Replica The height of the camera is set to -1.0 unit. The
parallel lines that form the grid are 0.5 units apart from

each other. This results in approximately 300 images in the
scene.
Habitat The height of the camera is set to 0.0241 units.
The parallel lines that form the grid are 0.5 units apart from
each other. This results in approximately 600 images in the
scene.
AVD AVD scenes contain images already sampled in a for-
mat very much similar to ours. Hence, the image generation
step is not required.

2.2. View-Pair Sampling

It is possible to pair each image I1 in the scene with ev-
ery image I2, including itself, to get the image pairs (I1, I2).
The number of possible pairs is quadratic with respect to
the number of images existing in a scene. For example, in
Replica, which has the smallest scene with approximately
300 images, this results in 300 x 300 = 90K image pairs. In
the AVD scene with approximately 2400 images, the possi-
ble image pairs reach 5M. Thus, it is computationally inef-
ficient to use every possible image pairs. Furthermore, not
all image pairs contain images that overlap with each other.
Therefore, we select the image pairs that satisfy the follow-
ing criteria:

• The image pairs must be within 3.0 units of each other

• the angle between the viewing directions of the image
pairs must be within 90 degrees

We calculate IoU of the image pairs that satisfy both these
constraints. Finally, as mentioned in the paper, for the ex-
periments, we select image-pairs (I1, I2) whose IoU lies
in the range [IoUl, IoUh]. To ease the training process, we
pre-compute these values such that this process only needs
to be done once per scene.

3. Pre-Training Details
We use a batch size of 16 image pairs. In each batch,

we sample Bpix = 81920 batch of pixel-pairs for Lpix and
Breg = 81920 for Lreg while Bpool is left unbound to in-
clude all region pairs with IoU overlap above IoUr = 0.2.
To generate regions, we use the efficient graph-based seg-
mentation method [2] with scale = 85 and σ = 2000.
We obtain this value by generating segments with different
hyper-parameters and empirically observing the segments
on a handful of images from the Replica dataset. We use
this default value for all other datasets.

4. Class Mappings
Classes are mapped from other Replica and AVD to

ADE20K [6, 7] in a many to one fashion: multiple classes
from Replica can be mapped to a single class in ADE20K.
If any class is ambiguous such that it can be mapped to more

than one class in ADE20K, it is ignored. ADE20K contains
150 classes. Classes from HM3D [3] are kept intact.
Replica to ADE20K Among the 101 classes in Replica [5],
52 classes are mapped to ADE20K. The exact mapping is
shown in Table 1.
AVD to ADE20K Among the 87 classes in AVD [1], 47
classes are mapped to ADE20K. The exact mapping is
shown in Table 2.

5. More Examples of Projection
Both RGB and label images are projected from view I1

to view I2 to get image I ′2. In Replica, most pixels in the
ceiling of the scene do not have depth values. Similarly,
HM3D also has missing depth values for 3D poins which lie
outside the indoors scene. In AVD, many pixels have miss-
ing or erroneous depth values. Hence, some pixels in I ′2 are
invalid and such pixels are not used during pre-training. Ex-
amples from Replica are shown in Figure 3 and from AVD
are shown in Figure 4.

6. More Qualitative Results
More qualitative results on the Replica scene, the HM3D

scene and the AVD scene are shown in Figures 5, 6 and 7
respectively. The colors for their respective classes have
been overlayed on the RGB images to get the segmenta-
tion map. Pixels with classes which were not mapped from
Replica/AVD to ADE20K have their segmentation shown
in black colors. For AVD, we visualize the results from the
model fine-tuned on AVD-hard.

Replica ADE20K
s.no. id name id name

1 2 base-cabinet 11 cabinet
2 3 basket 113 basket;hand
3 4 bathtub 38 bathtub;bat
4 7 bed 8 bed
5 8 bench 70 bench
6 9 bike 128 bicycle;bik
7 10 bin 139 ashcan;tras
8 11 blanket 132 blanket;cov
9 12 blinds 64 blind;scree

10 13 book 68 book
11 14 bottle 99 bottle
12 15 box 42 box
13 18 cabinet 11 cabinet
14 20 chair 20 chair
15 22 clock 149 clock
16 24 clothing 93 apparel;wea
17 29 cushion 40 cushion
18 30 curtain 19 curtain;dra
19 31 ceiling 6 ceiling
20 33 countertop 71 countertop
21 34 desk 34 desk
22 36 desktop-comp 75 computer;co
23 37 door 15 door;double
24 40 floor 4 floor;floor
25 43 handrail 96 bannister;b
26 44 indoor-plant 18 plant;flora
27 47 lamp 37 lamp
28 50 mat 29 rug;carpet;
29 51 microwave 125 microwave;m
30 59 picture 23 painting;pi
31 60 pillar 43 column;pill
32 61 pillow 58 pillow
33 63 plant-stand 126 pot;flowerp
34 64 plate 143 plate
35 67 refrigerator 51 refrigerato
36 69 scarf 93 apparel;wea
37 70 sculpture 133 sculpture
38 71 shelf 25 shelf
39 73 shower-stall 146 shower
40 74 sink 48 sink
41 76 sofa 24 sofa;couch;
42 78 stool 111 stool
43 80 table 16 table
44 84 toilet 66 toilet;can;
45 86 towel 82 towel
46 87 tv-screen 90 television;
47 91 vase 136 vase
48 93 wall 1 wall
49 96 wardrobe 36 wardrobe;cl
50 97 window 9 windowpane;
51 98 rug 29 rug;carpet;
52 100 bag 116 bag

Table 1. Mapping of classes from Replica to ADE20K

AVD ADE20K
s.no. id name id name

1 2 aunt jemima 99 bottle
2 4 cholula chi 99 bottle
3 5 coca cola 99 bottle
4 6 crest compl 99 bottle
5 7 crystal hot 99 bottle
6 10 honey bunch 42 box
7 11 honey bunch 42 box
8 13 listerine g 99 bottle
9 15 nature vall 42 box

10 16 nutrigrain 42 box
11 17 pepto bismo 99 bottle
12 20 quaker chew 42 box
13 22 softsoap cl 99 bottle
14 23 softsoap go 99 bottle
15 24 softsoap wh 99 bottle
16 25 spongebob s 42 box
17 26 tapatio hot 99 bottle
18 27 vo5 tea th 99 bottle
19 28 nature vall 42 box
20 29 nature vall 42 box
21 30 nature vall 42 box
22 31 nature vall 42 box
23 32 paper plate 143 plate
24 35 wall 1 wall
25 36 floor 4 floor;floor
26 37 door 15 door;double
27 38 ceiling 6 ceiling
28 39 couch 24 sofa;couch;
29 40 pillow 58 pillow
30 42 microwave 125 microwave;m
31 43 oven 119 oven
32 44 sink 48 sink
33 45 refridgerato 51 refrigerato
34 46 dining-table 16 table
35 47 chair 20 chair
36 48 tv 90 television;
37 50 potted-plant 18 plant;flora
38 51 desk 34 desk
39 52 bed 8 bed
40 53 toilet 66 toilet;can;
41 60 book 68 book
42 61 clock 149 clock
43 62 vase 136 vase
44 64 teddy-bear 109 plaything;t
45 68 backpack 116 bag
46 80 plate 143 plate
47 81 bottle 99 bottle

Table 2. Mapping of classes from AVD to ADE20K

Figure 3. Examples of projection from I1 to I2 resulting in I ′2 inside Replica scene. Some pixels in I ′2 are invalid because of occlusion and
missing depth. Such pixels share the same label and color in the visualization in I ′2 and are not used during pre-training.

Figure 4. Examples of projection from I1 to I2 resulting in I ′2 inside AVD scene. Some pixels in I ′2 are invalid because of occlusion and
missing or erroneous depth. Such pixels share the same label and color in the visualization in I ′2 and are not used during pre-training.

Figure 5. Results on the Replica scene.

Figure 6. Results on the HM3D scene.

Figure 7. Results on the AVD scene.

References
[1] Phil Ammirato, Patrick Poirson, Eunbyung Park, Jana

Kosecka, and Alexander C. Berg. A dataset for developing
and benchmarking active vision. In IEEE International Con-
ference on Robotics and Automation (ICRA), 2017.

[2] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient
graph-based image segmentation. International Journal of
Computer Vision, 59:167–181, 2004.

[3] Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik Wi-
jmans, Oleksandr Maksymets, Alexander Clegg, John M
Turner, Eric Undersander, Wojciech Galuba, Andrew West-
bury, Angel X Chang, Manolis Savva, Yili Zhao, and Dhruv
Batra. Habitat-matterport 3d dataset (HM3d): 1000 large-
scale 3d environments for embodied AI. In Thirty-fifth Con-
ference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2021.

[4] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili
Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu,
Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Ba-
tra. Habitat: A platform for embodied ai research. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2019.

[5] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J. Engel, Raul Mur-Artal, Carl
Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan, Brian
Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou, Kim-
berly Leon, Nigel Carter, Jesus Briales, Tyler Gillingham,
Elias Mueggler, Luis Pesqueira, Manolis Savva, Dhruv Ba-
tra, Hauke M. Strasdat, Renzo De Nardi, Michael Goesele,
Steven Lovegrove, and Richard Newcombe. The Replica
dataset: A digital replica of indoor spaces. arXiv preprint
arXiv:1906.05797, 2019.

[6] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Bar-
riuso, and Antonio Torralba. Scene parsing through ade20k
dataset. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[7] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler,
Adela Barriuso, and Antonio Torralba. Semantic understand-
ing of scenes through the ade20k dataset. International Jour-
nal of Computer Vision, 127(3):302–321, 2019.

