# Supplemental Materials: Self-supervised Pre-training for Semantic Segmentation in an Indoor Scene 

Sulabh Shrestha, Yimeng Li, Jana Košecka<br>George Mason University



Figure 1. Example of pairing class-agnostic regions using pairing function. Each color represents a unique region. The output of element-wise pairing of input label images is another label image where each unique pair of input labels produces a unique output region label.

## 1. Class Agnostic Region Overlap

Let $I_{2}$ and $I_{2}^{\prime}$ be a pair of images/matrices with region labels $\left\{b_{j}\right\}_{j=1}^{R_{2}}$ and $\left\{a_{i}\right\}_{i=1}^{R_{1}}$ respectively. Without loss of generality, let $N$ be the total number of elements in $I_{2}$, same as in $I_{2}^{\prime}$. For each pair of region labels $\left(a_{i}, b_{j}\right)$, the task is to find the (pixel) intersection over union (IoU) of their regions.

### 1.1. Brute-Force Algorithm

As shown in the Brute-Force Algorithm 1, the algorithm iterates over each unique label $b_{j} \in I_{2}$ and finds its boolean mask $\bar{b}_{j}$ that represents locations/mask of elements in $I_{2}$ that have label $b_{j}$. The boolean mask calculation takes $O(N)$ time per label $b_{j}$. For each of these labels, the boolean mask for each label $a_{i}$ in $I_{2}^{\prime}$ needs to be calculated similarly. Element-wise AND operation of these masks gives the mask of intersecting elements. Overall, the brute force method takes $O\left(\left(R_{1} * N\right) *\left(R_{2} * N\right)\right)=O\left(R_{1} R_{2} N^{2}\right)$ time. Alternatively, the mask for each $R_{1}$ and $R_{2}$ region labels could be saved once. However, this requires saving a mask that has same size as the input image $R_{1}+R_{2}$ times i.e. $O\left(\left(R_{1} *+R_{2}\right) * N\right)$ space complexity which can be excessive when the input images have high dimensions while the time complexity will still be $O\left(R_{1} R_{2}\right)$. In worse case, where every pixel is a separate region this will still be $O\left(N^{2}\right)$.

### 1.2. Preliminary: Pairing Function

A pairing function $\pi: \mathbb{Z}^{*} \times \mathbb{Z}^{*} \rightarrow \mathbb{Z}^{*}$ is a reversible bijective function that maps non-negative integers $(x, y)$ to a unique integer $z$. We use one of such pairing functions, namely, Cantor pairing function which is given by equation (1).

$$
\begin{equation*}
\pi(x, y)=z \leftarrow 0.5\left(x^{2}+2 x y+3 x+y+y^{2}\right) \tag{1}
\end{equation*}
$$

The inverse of the pairing function, $\pi^{-1}$ takes the number $z$ and outputs the input pair $(x, y)$ that produced this number. For Cantor pairing function, the inverse is given by equations (2)

$$
\begin{align*}
c & \leftarrow\lfloor 0.5 *(\sqrt{(8 * z+1)}-1)\rfloor \\
x & \leftarrow z-(0.5 * c *(c+1)) \\
y & \leftarrow c-x \\
\pi^{-1}(z) & \leftarrow(x, y) \tag{2}
\end{align*}
$$

One of the desired property is that, for Cantor pairing function, both $\pi$ and $\pi^{-1}$ takes $O(1)$ time to compute. Another valuable property of any pairing function is that the mapping of unique pair is also unique. Some examples of the Cantor pairing of numbers are shown below:

- $\pi(1,1)=4$ and $\pi^{-1}(4)=(1,1)$
- $\pi(1,2)=7$ and $\pi^{-1}(7)=(1,2)$
- $\pi(2,1)=8$ and $\pi^{-1}(8)=(2,1)$
- $\pi(2,2)=12$ and $\pi^{-1}(12)=(2,2)$

Pairing $(1,2)$ outputs 7 which means no other input pair produces 7. Similarly, the pairing function is not commutative as can be seen from the example that the pairs $(1,2)$ and $(2,1)$ produce different outputs.

Hence, the same unique pair of inputs (region labels) is always mapped to the same unique number. A toy example of element-wise pairing of labels from $I_{2}$ and $I_{2}^{\prime}$ is shown in Figure 1 where each color represents a unique label. The output of this element-wise pairing is equivalent to having

```
Algorithm 1 Brute Force algorithm for Class Agnostic Region overlap calculation
    iouMap \(\leftarrow\} \quad \triangleright\) HashMap to store IoU of labels/regions
    for \(i\) in \(R_{1}\) do
        \(\bar{a}_{i} \leftarrow\left(I_{2}^{\prime}==a_{i}\right) \quad \triangleright\) Find boolean mask of \(a_{i}\) in \(I_{2}\) in \(\mathrm{O}(\mathrm{N})\)
        for \(j\) in \(R_{2}\) do
                \(\bar{b}_{j} \leftarrow\left(I_{2}==b_{j}\right) \quad \triangleright\) Find boolean mask of \(a_{j}\) in \(I_{2}^{\prime}\) in \(\mathrm{O}(\mathrm{N})\)
                intersect \(=\operatorname{AND}\left(\bar{a}_{i}, \bar{b}_{j}\right)\)
                union \(\leftarrow \operatorname{OR}\left(\bar{a}_{i}, \bar{b}_{j}\right)\) - intersect
                iou \(\leftarrow\) intersect / union
                iouMap \(\left[\left(a_{i}, b_{j}\right)\right] \leftarrow\) iou
        end for
    end for
```

```
Algorithm 2 Optimized algorithm for Class Agnostic Region overlap calculation
    iouMap \(\leftarrow\} \quad \triangleright\) HashMap to store IoU of labels/regions
    \(c B \leftarrow\left\} \quad \triangleright\right.\) HashMap to store region labels and their pixel counts in \(I_{2}\)
    \(c A \leftarrow\left\} \quad \triangleright\right.\) HashMap to store region labels and their pixel counts in \(I_{2}^{\prime}\)
    \(c P \leftarrow\left\} \quad \triangleright\right.\) HashMap to store region labels and their pixel counts from paring \(I_{2}\) and \(I_{2}^{\prime}\)
    for \(e\) in \(N\) do \(\quad \triangleright\) Iterate over each element in \(I_{2}\) and \(I_{2}^{\prime}\) and pair them element-wise in \(\mathrm{O}(N)\)
        \(b \leftarrow I_{2}[e]\)
        \(a \leftarrow I_{2}^{\prime}[e]\)
        \(p \leftarrow \pi(a, b) \quad \triangleright\) Cantor-pairing
        \(c B[b]+=1\)
        \(c A[a]+=1\)
        \(c P[p]+=1\)
    end for
    for \(p\) in \(c P\) do \(\quad \triangleright\) Iterate over unique pairs in \(c P\) in \(\mathrm{O}(\|c P\| \leq N)\)
        \((a, b) \leftarrow \pi^{-1}(p)\)
        intersect \(\leftarrow c P[p]\)
        union \(\leftarrow c A[a]+c B[b]-c P[p]\)
        iou \(\leftarrow\) intersect / union
        iouMap \([(a, b)] \leftarrow\) iou
    end for
```

```
Algorithm 3 Class Agnostic Region Overlap
    \(R_{1} \leftarrow\) Unique regions and their pixel counts in \(I_{1}\)
    \(R_{2} \leftarrow\) Unique regions and their pixel counts in \(I_{2}\)
    \(P \leftarrow\) Element wise pairing between \(I_{1}\) and \(I_{2}\) using \(\pi\)
    \(R_{p} \leftarrow\) Unique regions and their counts in \(P\)
    for \(r_{p}\) in \(R_{p}\) do
        \(r_{1}, r_{2} \leftarrow \pi^{-1}\left(r_{p}\right)\)
        intersection \(\leftarrow P\left[r_{p}\right]\)
        union \(\leftarrow R_{1}\left[r_{1}\right]+R_{2}\left[r_{2}\right]\) - intersection
        pixel-IoU \(\left(r_{1}, r_{2}\right) \leftarrow\) intersection / union
    end for
```

another image, shown on the right-most side of Figure 1, where a unique pairing of labels gives a unique label. For example, the red region on $I_{2}$ outputs two unique region labels, one when paired with yellow region and another with
purple region in $I_{2}^{\prime}$ resulting in an orange label and a red label in the output image respectively.

### 1.3. Optimized Algorithm

The Optimized Algorithm 2 utilizes Cantor pairing function $\pi$ from Section 1.2 to calculate the IoU of overlapping regions. Although, any pairing function takes $O(1)$ time. The algorithm first iterates over each index $e$ of the $N$ elements in $I_{2}$ and $I_{2}^{\prime}$ and element-wise pairs them with each other. The count of their respective labels are updated in a HashMap for easier access later. This process takes $O(N)$ time. A unique pair of inputs give the same unique output as explained in Section 1.2. Once all elements have been paired, the unique paired elements (stored in $c P$ in the algorithm), give the number of all overlapping regions. So, by default, non-overlapping regions are omitted from the pairing unlike in the brute force algorithm from Section

```
def find_overlap_iou(img2,img2_from_1):
    # Calc pixel counts in both images O(N)
    A, CA = torch.unique(img2_from_1,
        return_counts=True)
    B, CB = torch.unique(img2,
        return_counts=True)
    # Pair labels using pairing function O(N)
    pairs = pair_func(img1, img2)
    # Calc pixel counts in paired image
    P, CP = torch.unique(pairs, return_counts=
    True)
    ious = {}
    # Iterate over paired regions O(len(P))
    for p in cP:
        a, b = inv_pair_func(p)
        intersect = CP[P == p]
        na, nb = cA[A == a], cB[B == b]
        union = na + nb - intersect
        iou = intersect / union
        iou[(a, b)] = iou
    return ious
```

Figure 2. Pytorch Implementation of Optimized algorithm for Class Agnostic Region overlap calculation
1.1. Finally, iterating over the unique paired elements $(c P)$ gives us the count of intersecting pixels while $\pi^{-1}$ gives the original region labels from $I_{2}$ and $I_{2}^{\prime}$. From this, the IoU can be easily calculated. The time taken to iterate over the unique paired elements is proportional to the number of overlapping regions which is at most $N$ i.e. when each region is only a single element for both $I_{2}$ and $I_{2}^{\prime}$. Therefore, the total computation time for this algorithm is $O(N)$.

The PyTorch implementation of the algorithm is given in Figure 2. Although it can be further optimized by creating a dictionary of counts for faster access similar to Algorithm 2 , it is omitted in the code for brevity and simplicity.

## 2. Dataset Generation

### 2.1. Image generation

Using the habitat simulator [4], we sample and extract images along with their depths, instance segmentation and semantic segmentation from multiple locations in each scene. A grid is formed by horizontal lines parallel to the x -axis and z -axis. The images are captured from this grid i.e. from the intersections of the lines. The camera height $y$ is kept fixed. From each navigable location in this grid, images are extracted by rotating the camera around the vertical $y$-axis separated by 45 degrees from each other resulting in 8 images per location.
Replica The height of the camera is set to -1.0 unit. The parallel lines that form the grid are 0.5 units apart from
each other. This results in approximately 300 images in the scene.
Habitat The height of the camera is set to 0.0241 units. The parallel lines that form the grid are 0.5 units apart from each other. This results in approximately 600 images in the scene.
AVD AVD scenes contain images already sampled in a format very much similar to ours. Hence, the image generation step is not required.

### 2.2. View-Pair Sampling

It is possible to pair each image $I_{1}$ in the scene with every image $I_{2}$, including itself, to get the image pairs $\left(I_{1}, I_{2}\right)$. The number of possible pairs is quadratic with respect to the number of images existing in a scene. For example, in Replica, which has the smallest scene with approximately 300 images, this results in $300 \times 300=90 \mathrm{~K}$ image pairs. In the AVD scene with approximately 2400 images, the possible image pairs reach 5 M . Thus, it is computationally inefficient to use every possible image pairs. Furthermore, not all image pairs contain images that overlap with each other. Therefore, we select the image pairs that satisfy the following criteria:

- The image pairs must be within 3.0 units of each other
- the angle between the viewing directions of the image pairs must be within 90 degrees

We calculate $I o U$ of the image pairs that satisfy both these constraints. Finally, as mentioned in the paper, for the experiments, we select image-pairs $\left(I_{1}, I_{2}\right)$ whose $I o U$ lies in the range $\left[I o U_{l}, I o U_{h}\right]$. To ease the training process, we pre-compute these values such that this process only needs to be done once per scene.

## 3. Pre-Training Details

We use a batch size of 16 image pairs. In each batch, we sample $B_{p i x}=81920$ batch of pixel-pairs for $\mathcal{L}_{p i x}$ and $B_{\text {reg }}=81920$ for $\mathcal{L}_{\text {reg }}$ while $B_{\text {pool }}$ is left unbound to include all region pairs with IoU overlap above $I o U_{r}=0.2$. To generate regions, we use the efficient graph-based segmentation method [2] with scale $=85$ and $\sigma=2000$. We obtain this value by generating segments with different hyper-parameters and empirically observing the segments on a handful of images from the Replica dataset. We use this default value for all other datasets.

## 4. Class Mappings

Classes are mapped from other Replica and AVD to ADE20K [6, 7] in a many to one fashion: multiple classes from Replica can be mapped to a single class in ADE20K. If any class is ambiguous such that it can be mapped to more
than one class in ADE20K, it is ignored. ADE20K contains 150 classes. Classes from HM3D [3] are kept intact.
Replica to ADE20K Among the 101 classes in Replica [5], 52 classes are mapped to ADE20K. The exact mapping is shown in Table 1.
AVD to ADE20K Among the 87 classes in AVD [1], 47 classes are mapped to ADE20K. The exact mapping is shown in Table 2.

## 5. More Examples of Projection

Both RGB and label images are projected from view $I_{1}$ to view $I_{2}$ to get image $I_{2}^{\prime}$. In Replica, most pixels in the ceiling of the scene do not have depth values. Similarly, HM3D also has missing depth values for 3D poins which lie outside the indoors scene. In AVD, many pixels have missing or erroneous depth values. Hence, some pixels in $I_{2}^{\prime}$ are invalid and such pixels are not used during pre-training. Examples from Replica are shown in Figure 3 and from AVD are shown in Figure 4.

## 6. More Qualitative Results

More qualitative results on the Replica scene, the HM3D scene and the AVD scene are shown in Figures 5, 6 and 7 respectively. The colors for their respective classes have been overlayed on the RGB images to get the segmentation map. Pixels with classes which were not mapped from Replica/AVD to ADE20K have their segmentation shown in black colors. For AVD, we visualize the results from the model fine-tuned on AVD-hard.

| s.no. | Replica |  | ADE20K |  |
| :---: | :---: | :---: | :---: | :---: |
|  | id | name | id | name |
| 1 | 2 | base-cabinet | 11 | cabinet |
| 2 | 3 | basket | 113 | basket;hand |
| 3 | 4 | bathtub | 38 | bathtub;bat |
| 4 | 7 | bed | 8 | bed |
| 5 | 8 | bench | 70 | bench |
| 6 | 9 | bike | 128 | bicycle;bik |
| 7 | 10 | bin | 139 | ashcan;tras |
| 8 | 11 | blanket | 132 | blanket;cov |
| 9 | 12 | blinds | 64 | blind;scree |
| 10 | 13 | book | 68 | book |
| 11 | 14 | bottle | 99 | bottle |
| 12 | 15 | box | 42 | box |
| 13 | 18 | cabinet | 11 | cabinet |
| 14 | 20 | chair | 20 | chair |
| 15 | 22 | clock | 149 | clock |
| 16 | 24 | clothing | 93 | apparel;wea |
| 17 | 29 | cushion | 40 | cushion |
| 18 | 30 | curtain | 19 | curtain;dra |
| 19 | 31 | ceiling | 6 | ceiling |
| 20 | 33 | countertop | 71 | countertop |
| 21 | 34 | desk | 34 | desk |
| 22 | 36 | desktop-comp | 75 | computer;co |
| 23 | 37 | door | 15 | door;double |
| 24 | 40 | floor | 4 | floor;floor |
| 25 | 43 | handrail | 96 | bannister;b |
| 26 | 44 | indoor-plant | 18 | plant;flora |
| 27 | 47 | lamp | 37 | lamp |
| 28 | 50 | mat | 29 | rug;carpet; |
| 29 | 51 | microwave | 125 | microwave;m |
| 30 | 59 | picture | 23 | painting;pi |
| 31 | 60 | pillar | 43 | column;pill |
| 32 | 61 | pillow | 58 | pillow |
| 33 | 63 | plant-stand | 126 | pot;flowerp |
| 34 | 64 | plate | 143 | plate |
| 35 | 67 | refrigerator | 51 | refrigerato |
| 36 | 69 | scarf | 93 | apparel;wea |
| 37 | 70 | sculpture | 133 | sculpture |
| 38 | 71 | shelf | 25 | shelf |
| 39 | 73 | shower-stall | 146 | shower |
| 40 | 74 | sink | 48 | sink |
| 41 | 76 | sofa | 24 | sofa;couch; |
| 42 | 78 | stool | 111 | stool |
| 43 | 80 | table | 16 | table |
| 44 | 84 | toilet | 66 | toilet;can; |
| 45 | 86 | towel | 82 | towel |
| 46 | 87 | tv-screen | 90 | television; |
| 47 | 91 | vase | 136 | vase |
| 48 | 93 | wall | 1 | wall |
| 49 | 96 | wardrobe | 36 | wardrobe;cl |
| 50 | 97 | window | 9 | windowpane; |
| 51 | 98 | rug | 29 | rug;carpet; |
| 52 | 100 | bag | 116 | bag |

Table 1. Mapping of classes from Replica to ADE20K

| s.no. | AVD |  | ADE20K |  |
| :---: | :---: | :---: | :---: | :---: |
|  | id | name | id | name |
| 1 | 2 | aunt_jemima | 99 | bottle |
| 2 | 4 | cholula_chi | 99 | bottle |
| 3 | 5 | coca_cola_ | 99 | bottle |
| 4 | 6 | crest_compl | 99 | bottle |
| 5 | 7 | crystal_hot | 99 | bottle |
| 6 | 10 | honey_bunch | 42 | box |
| 7 | 11 | honey_bunch | 42 | box |
| 8 | 13 | listerine_g | 99 | bottle |
| 9 | 15 | nature_vall | 42 | box |
| 10 | 16 | nutrigrain_ | 42 | box |
| 11 | 17 | pepto_bismo | 99 | bottle |
| 12 | 20 | quaker_chew | 42 | box |
| 13 | 22 | softsoap_cl | 99 | bottle |
| 14 | 23 | softsoap_go | 99 | bottle |
| 15 | 24 | softsoap_wh | 99 | bottle |
| 16 | 25 | spongebob_s | 42 | box |
| 17 | 26 | tapatio_hot | 99 | bottle |
| 18 | 27 | vo5_tea_th | 99 | bottle |
| 19 | 28 | nature_vall | 42 | box |
| 20 | 29 | nature_vall | 42 | box |
| 21 | 30 | nature_vall | 42 | box |
| 22 | 31 | nature_vall | 42 | box |
| 23 | 32 | paper_plate | 143 | plate |
| 24 | 35 | wall | 1 | wall |
| 25 | 36 | floor | 4 | floor;floor |
| 26 | 37 | door | 15 | door;double |
| 27 | 38 | ceiling | 6 | ceiling |
| 28 | 39 | couch | 24 | sofa;couch; |
| 29 | 40 | pillow | 58 | pillow |
| 30 | 42 | microwave | 125 | microwave;m |
| 31 | 43 | oven | 119 | oven |
| 32 | 44 | sink | 48 | sink |
| 33 | 45 | refridgerato | 51 | refrigerato |
| 34 | 46 | dining-table | 16 | table |
| 35 | 47 | chair | 20 | chair |
| 36 | 48 | tv | 90 | television; |
| 37 | 50 | potted-plant | 18 | plant;flora |
| 38 | 51 | desk | 34 | desk |
| 39 | 52 | bed | 8 | bed |
| 40 | 53 | toilet | 66 | toilet;can; |
| 41 | 60 | book | 68 | book |
| 42 | 61 | clock | 149 | clock |
| 43 | 62 | vase | 136 | vase |
| 44 | 64 | teddy-bear | 109 | plaything;t |
| 45 | 68 | backpack | 116 | bag |
| 46 | 80 | plate | 143 | plate |
| 47 | 81 | bottle | 99 | bottle |

Table 2. Mapping of classes from AVD to ADE20K


Figure 3. Examples of projection from $I_{1}$ to $I_{2}$ resulting in $I_{2}^{\prime}$ inside Replica scene. Some pixels in $I_{2}^{\prime}$ are invalid because of occlusion and missing depth. Such pixels share the same label and color in the visualization in $I_{2}^{\prime}$ and are not used during pre-training.


Figure 4. Examples of projection from $I_{1}$ to $I_{2}$ resulting in $I_{2}^{\prime}$ inside AVD scene. Some pixels in $I_{2}^{\prime}$ are invalid because of occlusion and missing or erroneous depth. Such pixels share the same label and color in the visualization in $I_{2}^{\prime}$ and are not used during pre-training.


Figure 5. Results on the Replica scene.


Figure 6. Results on the HM3D scene.


Figure 7. Results on the AVD scene.

## References

[1] Phil Ammirato, Patrick Poirson, Eunbyung Park, Jana Kosecka, and Alexander C. Berg. A dataset for developing and benchmarking active vision. In IEEE International Conference on Robotics and Automation (ICRA), 2017.
[2] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image segmentation. International Journal of Computer Vision, 59:167-181, 2004.
[3] Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alexander Clegg, John M Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang, Manolis Savva, Yili Zhao, and Dhruv Batra. Habitat-matterport 3d dataset (HM3d): 1000 largescale 3d environments for embodied AI. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2021.
[4] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A platform for embodied ai research. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
[5] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J. Engel, Raul Mur-Artal, Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan, Brian Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou, Kimberly Leon, Nigel Carter, Jesus Briales, Tyler Gillingham, Elias Mueggler, Luis Pesqueira, Manolis Savva, Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi, Michael Goesele, Steven Lovegrove, and Richard Newcombe. The Replica dataset: A digital replica of indoor spaces. arXiv preprint arXiv:1906.05797, 2019.
[6] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing through ade20k dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
[7] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic understanding of scenes through the ade20k dataset. International Journal of Computer Vision, 127(3):302-321, 2019.

