
Appendix

1 Model Architecture

1.1 ResNet

We utilize the standard ResNet18 and ResNet101 architectures introduced in [2] with a few modifi-
cations. The first pooling layers are removed, and the kernel size of the first convolution layers is
changed to (3, 3). Additionally, the linear layers are set to have an output dimension of 512.

The following PyTorch-style code demonstrates how we transform the original ResNet into the
version used in our study:

def resnetToCifar(resnet):
resnet.conv1 = nn.Conv2d(3, 64, (3, 3), padding='same')
resnet.maxpool = nn.Identity()
resnet.fc = nn.Linear(resnet.fc.in_features, 512)
return resnet

1.2 Vision Transformer

The basic architecture of the Vision Transformer (ViT) we employ is consistent with the initial version
presented in [1]. However, we adapt its scale to match that of ResNet101 and set the output dimension
to 512. The following code defines the modified ViT:

def ViTCifar():
model = VisionTransformer(image_size=32, patch_size=4,

num_layers=16, num_heads=8, hidden_dim=512,
mlp_dim=1536, dropout=0.2, attention_dropout=0.2)

model.heads = nn.Linear(512, 512)
return model

1.3 Graph Convolution Network

The Graph Convolutional Network (GCN) we utilize consists of three layers, including one embedding
layer and two graph convolution layers proposed in [3]. The input dimension is set to 11, considering
that CIFAR-10 [4] has 10 classes, and we add an additional "masked" class during training. The
hidden dimension is 16, and the output dimension is 10. We also introduce a learnable scale parameter
α in each convolution layer, transforming the adjacency matrix as Â = αA+ IN .

class GCNhead(nn.Module):
def __init__(self):

self.embedding = nn.Embedding(11, 16)
self.GCN = GCNSequential(

GCNWithLoop(16, 16, activation=nn.SELU()),
GCNWithLoop(16, 10))



Table 1: Parameter Counts of the Involved Models.
ResNet18 ResNet101 ViT GCN Linear Classifier

11,431,552 43,541,632 42,363,904 620 5120

def forward(self, A, node_feat):
return self.GCN(A, self.embedding(node_feat))

The parameter counts for each model are listed in Table 1.

2 Training Recipe

We present some key hyperparameters in Table 2. It is important to note that these parameters are
tuned to ensure stable training processes and maximize GPU usage, rather than achieving state-of-
the-art performance.

Table 2: Hyperparameters in the Training Recipe.
Contrastive Supervised

ResNet18 ResNet101 ViT ResNet18 ResNet101 ViT
Epochs 1200 1200 1200 120 120 600

Batch size 1200 700 700 1500 1000 1000
Learning rate 1.E-05 1.E-05 5.E-06 1.E-05 1.E-05 5.E-06

Optimizer AdamW
Learning rate scheduler Cosine Annealing

Warm-up scheduler Linear
Warm-up learning rate 1.E-03 1.E-03 1.E-03 1.E-03 1.E-03 1.E-03

Warm-up epochs 150 150 150 60 60 100
Minimum learning rate 1.E-08 1.E-08 1.E-08 1.E-08 1.E-08 1.E-08

Negative sample for contrast 128,000 128,000 128,000 N/A N/A N/A

References
[1] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,

M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference on Learning Representations, 2020.

[2] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[3] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2016.

[4] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical
Report 0, University of Toronto, Toronto, Ontario, 2009.

2


	Model Architecture
	ResNet
	Vision Transformer
	Graph Convolution Network

	Training Recipe

