
Supplementary Material
RDIR: Capturing Temporally-Invariant Representations of Multiple Objects in Videos

Figure 1. Sequences from datasets used in research: (1) multi-
scale moving MNIST, (2) MOT15, (3) MOVi-A, (4) MOVi-C, (5)
MOVi-E.

A. Dataset details

In this research, we used 6 datasets, which we describe
in detail below. See Figure 1 for example sequence from
each dataset (excluding COCO, which is an object detection
dataset).

Multi-scale moving MNIST dataset is a benchmark
dataset, generated to verify the robustness of the model to
objects of varying sizes and locations in the image. It ex-
tends the idea of the multi-scale MNIST dataset proposed
in SSDIR.

The dataset initializes a sequence with an image (sized
128 × 128) of multiple digits (their quantity randomly se-
lected for each sequence, between nmin and nmax ), scaled
to one of the available sizes {s1, s2, ..., sN}. Then, a se-
quence of T images is generated, where each digit moves
around the canvas with the initial speed (vx, vy) (randomly
selected between (−1, 1)). When hitting the border of the
image, the digit bounces symmetrically. The size of each
digit oscillates with a sinusoidal function, its size varia-
tion sv and oscillation period op selected from available:

parameter value
train sequences 8000
test sequences 2000
T 10
nmin 2
nmax 5
s {48, 72, 96}
op {1.0, 1.5, 2.0}
sv {0.0, 0.1, 0.2, 0.3}
FPS 10

Table 1. Parameters used for generating multi-scale moving
MNIST dataset.

{sv1, sv2, ..., svN}, where sv = 0.1 means the size can
vary by 10%; {op1, op2, ..., opN}, where op = 1.0 means
the oscillation period is equal to one second.

In this research, we used the main training dataset with
settings presented in Table 1.

Then, for the evaluation we prepared separate datasets of
the same size, without size oscillation and variance (each
digit of the same size, with sv = 0) - no scaling, and with-
out digit movement (the velocity was always 0) - no trans-
lation.

For the ablation study, we generated additional datasets
with different numbers of objects (minimum 1 object, max-
imum between 1 and 7). These datasets contained only one
subset with 1000 sequences.

MOT15 dataset was designed as a multi-object tracking
benchmark, enables the evaluation of the representations in
a more complex downstream task. The train subset contains
11 sequences of images, containing multiple walking pedes-
trians, as well as ground truth annotations, which include
each object’s bounding box and unique ID. The test subset
does not provide ground truth IDs of each object, therefore
in this research, we decided to extract the validation subset
from the training subset, according to Table 2.

During each video-based model training, the sequences
were split into 10-element subsequences, which could fit in
the GPU memory. Then, for evaluation entire sequences

1



sequence resolution frames

TRAIN

ADL-Rundle-8 1920× 1080 654
ETH-Bahnhof 640× 480 1000
ETH-Pedcross2 640× 480 837
KITTI-13 1242× 375 340
PETS09-S2L1 768× 576 795
TUD-Campus 640× 480 71
TUD-Stadtmitte 640× 480 179
Venice-2 1920× 1080 600

Σ = 4467

VAL
ADL-Rundle-6 1920× 1080 525
ETH-Sunnyday 640× 480 354
KITTI-17 1224× 370 145

Σ = 1024

Table 2. MOT15 dataset split details.

resolution
SSDIR-YOLO 416× 416
RDIR 416× 416
SCALOR 64× 64
SIMONe 128× 128
PROVIDE 64× 64

Table 3. Input sizes for each model training with MOT15 dataset.

were used, together with the provided annotations. Each
sequence was resized to the maximum resolution for each
model (bound by their design and the amount of GPU
VRAM), presented in Table 3.

COCO dataset is a widely used benchmark dataset in
computer vision research. The main aim is to enable the
training and evaluation of algorithms for the task of object
detection across real-life scenarios. The dataset consists of
a diverse set of images, encompassing 80 annotated object
classes, including people, animals, vehicles, and common
household items. In this research, the dataset was used
as the base for a pretrained object detection model, used
later as a starting point to train a multi-object representation
learning model on the MOT15 dataset.

MOVi datasets were used in the representation stability
review in the original form provided by the authors. We
decided to select MOVi-A, MOVi-C, and MOVi-E for the
increasing level of complexity of the dataset. Each dataset
contains sequences of 24 images (sized 256× 256) and an-
notations. The dataset statistics are collected in Table 4.

For the entropy experiment, we generated additional
smaller datasets with a single (nmin = nmax = 1) and two
(nmin = nmax = 2) objects, referring to them as single and
dual respectively. The dataset configuration was the same

MOVi-A MOVi-C MOVi-E
train sequences 9703 9737 9749
test sequences 250 250 250

Table 4. Number of sequences in each MOVi dataset.

as the default dataset, except we generated only one subset
with 1000 sequences.

B. Model architecture
In this section, we supply the description of the model

architecture used by RDIR1.

B.1. Encoder details

Algorithm 1 RDIR Encoder

1: input: image sequence X
2: for x in X do
3: feats = BackboneNeck (x)
4: [Zwhere ,Zwhere ]← YOLOHead (feats)
5: featsmixed ← Mixer (feats)
6: end for
7: featsseq = SeqEncoder (featsmixed)
8: for featsseq in featsseq do
9: featssmixed = SeqMixer

(
featsseq

)
10: Zwhat ←WhatEncoder (featssmixed)
11: Zdepth ← DepthEncoder (featssmixed)
12: end for
13: output: latent representation for each image in se-

quence {Zwhere ,Zpresent ,Zwhat ,Zdepth}

The encoder pipeline is presented in Algorithm 1.
We start by extracting the intermediate feature us-
ing the YOLOv4 backbone (CSPDarknet53) and neck
(SPP+PANet), producing intermediate features. These fea-
tures are then processed by the YOLO head to estimate ob-
jects’ positions and class confidences; these are further pro-
cessed to create zwhere and zpresent latent representation
components. We modify the predicted bounding boxes by
expanding them to squares, which allows for greater sta-
bility of the model (we found out that changing decoded
objects’ proportion in the spatial transformer module stops
the model from converging).

The same intermediate features are forwarded to the
Mixer component of RDIR, where each Conv block con-
sists of a 2D convolutional layer, batch normalization, and
Leaky ReLU activation function. We adjust the number and
parameters of the convolutional layer to allow concatena-
tion of the resulting feature maps, assuming the concate-

1The source code utilized for the research will be made publicly avail-
able for reproducibility upon acceptance of the paper.

2



nated feature map has a 2 times smaller number of chan-
nels than the original one. The output of the mixer contains
the same number of feature maps (in the case of YOLOv4
backbone and neck this number is 3), with equal channel
dimension (reduced to the smallest among all intermediate
feature maps).

The output of the Mixer (a sequence of intermediate fea-
ture maps) is processed by the Sequence encoder. We in-
clude additional Conv blocks (similar to those in the Mixer),
with a configurable number of convolutional layers (seq
CNN hidden) and kernel size (seq CNN kernel size), control-
ling the level of sharing context among neighboring cells.
Then, the output is flattened and forwarded as a sequence
of multiple states to a recurrent layer of a configurable type
(RNN type) and several recurrent cells (RNN cells). The
output vector is transformed to restore the intermediate fea-
ture map shape, and processed by another block of convo-
lutional layers (with the same config as those preceding the
recurrent layer). Finally, the output is processed by another
Mixer (with the same architecture as the previous one).

The resulting feature maps are used to generate latent
representation in zwhat and zdepth encoders. zwhat encoder
contains a configurable number of convolutional blocks
with 3×3 kernels (zwhat hidden); at the end there is another
convolutional layer with 1-sized kernel, outputting feature
maps with zwhat size channels. These feature maps are used
as grids of zwhat latent representations. Similarly, zdepth
encoder uses a single convolutional block and a 1-sized con-
volutional layer to produce feature maps for zdepth latent
representations.

The representation learning part of the RDIR encoder
can utilize a cloned backbone and neck to enable the model
to learn better representations. During our research, we al-
lowed cloning the neck and sharing the YOLO weights of
the backbone for all latent representations. The cloned neck
was trained along with the rest of the model, while the orig-
inal backbone, neck, and YOLO head weights were frozen.

B.2. Decoder details

The flow of the decoder is presented in Algorithm 2. It
is applied per image (it does not utilize the sequential na-
ture of the data). First, each latent representation is filtered
by sampling (training) or thresholding (inference) zpresent .
During training, we found that introducing randomness al-
lows the model to learn faster. To ensure the model learns
the entire data distribution, we level the number of objects
by adding negative examples to zpresent for training. Dur-
ing inference, negative objects are not added, and instead,
we apply Non-maximum Suppression with IoU threshold
0.45 to reduce the number of redundant objects predicted
by YOLO Head.

Filtered zwhat representations are then stacked and for-
warded through the zwhat decoder. It consists of a sequence

Algorithm 2 RDIR Decoder

1: input: latent representation for each image in sequence
{Zwhere ,Zpresent ,Zwhat ,Zdepth}

2: for {zwhere , zpresent , zwhat , zdepth} in
{Zwhere ,Zpresent ,Zwhat ,Zdepth} do

3: zwhat = Filter (zwhat , zpresent)
4: zwhere = Filter (zwhere , zpresent)
5: zdepth = Filter (zdepth , zpresent)
6: for [zwhat , zwhere ] in [zwhat , zwhere ] do
7: odec = Decoder (zwhat)
8: otransformed ← STN (odec , zwhere)
9: end for

10: Y ← Merge (otransformed)
11: end for
12: output: image sequence reconstruction Y

of blocks containing 2D transposed convolutions, followed
by batch normalization and Leaky ReLU activation func-
tion. The parameters of the convolutional layers are se-
lected to provide a preset size of decoded images (decoded
size) and the number of channels in the penultimate layer
(decoder channels), starting from the zwhat size channels.
The final layer is a 2D transposed convolution with fixed 3
output channels, followed by a sigmoid activation function,
outputting M individual objects’ reconstructions images.

Reconstructed objects are transformed to the original im-
age size based on the zwhere latent. The overall image re-
construction is merged by sorting them according to zdepth
latent, and pasting sequentially to the output image. The
result contains individual objects’ reconstructions, without
considering the image background.

C. Model training setup

RDIR was trained on a single NVIDIA A40 GPU in a
staged training setup:

1. An object detection model is trained on an annotated
dataset with supervision. We utilize YOLOv4, which
is then parsed to reuse its backbone and prediction
head in the encoder.

2. An image-based model is trained for learning multiple
representations of objects on images. We remove the
Sequence encoder and the final Mixer from the RDIR
model, and train it as an image autoencoder without
supervision, using MSE as the loss function. During
this stage, the backbone and YOLO head weights are
frozen. Finally, we re-use the checkpoint with the low-
est validation loss for the following stage. In our re-
search we discovered that this step allows us to reach
better results than training the recurrent version di-

3



parameter MNIST MOT15 MOVi-A MOVi-C MOVi-E
batch size 256 4 64 64 64
image size 128 416 256 256 256
decoded size 32 32 32 32 32
decoder channels 16 128 256 256 256
zwhat size 64 128 256 256 256
zwhat hidden 3 5 5 5 5
αtotal 5 5 5 5 5
αobj 10 10 10 10 10
RNN type BiGRU GRU BiGRU BiGRU BiGRU
RNN cells 2 2 2 2 2
seq CNN hidden 2 2 2 2 2
seq CNN kernel size 5 5 5 5 5

Table 5. Model parameters used for learning representations on each dataset.

rectly after the object detection model; the total train-
ing time is reduced as well.

3. Finally, we extend the model from the previous stage
with the Sequence encoder and an additional Mixer to
form the RDIR model. We then start with a short pre-
training, where we find the initial set of parameters
for the newly added modules (the rest of the model is
frozen). After that we continue training the model in
the same way as in the second stage (with the backbone
and YOLO heads frozen), utilizing sequence MSE as
the loss function.

In Table 5 we collected model hyperparameters used in
the research.

D. Representation consistency
The analysis of representation consistency aims at veri-

fying the ability of models to capture temporally- and spa-
tially invariant representations of objects in the scene. To
do that, we use models trained on the multi-scale moving
MNIST dataset to produce representations of each sequence
in the test datasets. Then, all representations are assigned to
the appropriate class (by choosing the ground truth label
according to the maximum intersection over union between
the predicted object mask and the ground truth box), and
we apply Kernel Density Estimation to find the probabil-
ity density of per-class representations across the dataset.
Then, we score each representation to calculate the average
entropy of representations according to Eq. 1:

H(X) = −
n∑

i=1

p(xi) log p(xi) (1)

The final value is obtained by calculating the mean
across all ground truth classes. The resulting value is low
due to the high dimensionality of the representations. We

entropy MNIST (10−24)
SCALOR 1.961± 0.002
PROVIDE 1.951± 0.003
SIMONe 10.649± 2.665
SSDIR-YOLO 3.012± 0.195
RDIR 1.948± 0.001

Table 6. Representation stability on MNIST: average per-class
representation entropy across the dataset. RDIR provides low en-
tropy, which is enough to supply high quality of representations
(as shown in the downstream task).

compare the exact value of entropy - lower means less in-
formation, i.e. less variability of the representation.

Table 6 shows a comparison of representation entropy
among the compared models. RDIR achieves low represen-
tation entropy, which together with high performance in the
downstream task shows, that RDIR can infer valuable rep-
resentations, consistent across the varying sequences. Sim-
ilar levels of entropy were achieved by SCALOR and PRO-
VIDE, but these models performed significantly worse in
the downstream task.

Both SSDIR-YOLO and SIMONe have higher entropy
of representations. This shows that, although these repre-
sentations can be applied in downstream tasks, they vary
more significantly. It is worth noting, that the addition of
the Sequence Encoder improves the representation stability.

In Table 7 we show a similar comparison for RDIR
across additional, more complex MOVi datasets. Here as
well, the model was trained on the train dataset and used for
inference on the test dataset. To review the method’s robust-
ness to multiple objects in the scene, we also included addi-
tional datasets containing only one (single) and two (dual)
objects in each sequence. We can see entropy of representa-
tions decreases with the increasing number of objects within
the scene, as the entropy for all datasets is lower than in the

4



entropy RDIR (10−100)

MOVi-A
all 1.832± 0.059
single 2.126± 0.126
dual 2.161± 0.178

MOVi-C
all 1.667± 0.006
single 2.199± 0.079
dual 1.945± 0.101

MOVi-E
all 1.791± 0.017
single 2.255± 0.199
dual 1.821± 0.035

Table 7. Representation stability on MOVi: average per-class rep-
resentation entropy across the dataset. RDIR infers more stable
representations when more objects are present within the image.

case of dual and single. This shows the method’s robustness
to the number of objects in the scene.

E. Computational expense

In this section, we present a comparative analysis of the
computational costs associated with RDIR in contrast to the
baseline methods. The computational expense of deep neu-
ral networks involves a range of considerations, including
hardware, software, model design, and data. We assess
this computational expense by evaluating each model con-
vergence time and the count of trainable parameters (Table
8), as well as the iteration speed (Table 9). It is important
to note that the training of the baseline methods was exe-
cuted on hardware distinct from that used for our proposed
method. Owing to constraints in computational resources,
we couldn’t execute all experiments on a single machine.
Nevertheless, despite variations in GPU power and batch
size used for training (which, in all instances, maximized
the memory capacity of a single GPU card), it’s evident that
the staged training approach employed by RDIR incurs sig-
nificantly lower computational costs compared to the other
methods.

The inference speed benchmark was executed on the
same GPU (NVIDIA A40). Each model was run on 1000
random sequences (generated and loaded in the memory be-
fore measuring execution time). For each model, we de-
cided to use batch size 1. The input image size was 64×64;
in the case of SSDIR-YOLO and RDIR images were up-
scaled to 128 × 128, following the approach from the pa-
per. The results show a much higher inference speed of
both SSDIR-YOLO and RDIR compared to other methods.
This is caused by the extensive use of recurrent cells and
iterative inference in the baseline methods; RDIR is highly
optimized and allows for parallel inference at all stages.

F. Inference visualizations

In this section we supply qualitative results of RDIR pro-
cessing and compare them with baseline methods: SSDIR-
YOLO, SCALOR, PROVIDE, and SIMONe. The visu-
alization consists of the input image (input), the recon-
struction produced by the model (reconstruction), recon-
struction with attention visualization (attention - bound-
ing boxes for spatial attention-based models and masks for
scene-mixture models), and a few per-object reconstruc-
tions (objects) for a single element in the sequence, show-
ing how the model interprets the scene and objects within it.
We demonstrate visualizations for a few timesteps in the in-
put sequence (T = {1, 4, 7, 10}), for two sample sequences
from each dataset.

F.1. Multi-scale moving MNIST

Figures 2, 3, 4, 5, 6 show inference on the multi-scale
moving MNIST dataset. Thanks to the pretraining phase,
both RDIR and SSDIR can accurately attend to individual
digits in the sequence. The added sequential context allows
RDIR to perform slightly better in cases of high overlap-
ping.

SCALOR succeeds in discovering the initial structure
of the image, however, inference on subsequent frames di-
verges. In the case of scene-mixture models, both SIMONe
and PROVIDE can accurately reconstruct the input image
for each element in the sequence, however, the inferred
masks span across multiple objects, which makes analyz-
ing them individually difficult. It is worth mentioning how
SIMONe can attend to objects only, without focusing on the
background (which in this case does not contain any infor-
mation).

F.2. MOT15

Figures 7, 8, 9, 10, 11 present inference of each model
(RDIR, SSDIR-YOLO, SCALOR, PROVIDE and SIMONe
respectively) trained on the MOT15 dataset.

It is easily visible, that RDIR and SSDIR-YOLO do not
reconstruct the entire image, instead pasting per-object re-
constructions, which results in inaccurate reconstructions of
the input image. However, Per-object reconstructions show
human-like silhouettes, proving these models can infer per-
object representations, which can be used to generate a sim-
plified reconstruction of their appearance. Due to the low
resolution of object reconstructions, their quality is low;
RDIR reconstructions seem to contain more details about
each object’s appearance (such as clothes color, and pos-
ture), whereas SSDIR-YOLO reconstructions are mainly
alike silhouettes.

The reconstructions obtained from the other methods
confirm, that the fully unsupervised setup cannot pro-
vide appropriate scene understanding in complex scenarios.

5



SCALOR PROVIDE SIMONe SSDIR-YOLO RDIR
Training time (103s) 435.54± 3.92 523.11± 3.22 238.71± 15.17 9.34± 0.68 22.34± 1.36
Batch size 16 4 16 256 32
GPU RTX TITAN RTX TITAN RTX TITAN A40 A40

Table 8. Model training expense comparison. SSDIR-YOLO and RDIR converge much faster than other methods, even considering the
use of a more powerful GPU.

Figure 2. RDIR inference on multi-scale moving MNIST dataset.

iterations per second
SCALOR 4.899
PROVIDE 2.758
SIMONe 8.938
SSDIR-YOLO 31.277
RDIR 27.645

Table 9. Model inference speed. SSDIR-YOLO and RDIR are
much faster than other methods, despite using a higher input reso-
lution.

Similarly to insights from previous studies, such models
tend to split the scene into subparts, modeled by each atten-
tion mask, but these masks usually encapsulate multiple ob-
jects at once. Even though input images’ reconstructions are
more accurate than in the case of RDIR and SSDIR-YOLO,
the analysis of attention masks shows that these models did
not focus on objects in the scene (here: pedestrians), which
explains the significantly lower metrics achieved by these
models in the downstream multi-object tracking task.

F.3. MOVi datasets

Finally, Figures 12, 13, 14 present RDIR inference on the
MOVi datasets. Once again, the staged training approach al-
lows the model to accurately focus on the objects detected
in the scene, however, the higher complexity of the data

causes several false positive predictions. Nevertheless, the
model can ignore them in the final reconstruction, as visi-
ble in the reconstructions row. The model performs better
on the simpler MOVi-A dataset, as it contains simple geo-
metric objects. The quality of the individual objects is low,
due to the low resolution used before transforming them to
the original image position. Increasing the intermediate ob-
jects’ resolution could potentially lead to a better quality of
the latent representation, however, it comes at a significant
increase in computational cost. Despite the reduced quality
of per-object reconstructions, the final output of the model
resembles the input in the area of detected objects.

6



Figure 3. SSDIR-YOLO inference on multi-scale moving MNIST dataset.

Figure 4. SCALOR inference on multi-scale moving MNIST dataset.

Figure 5. PROVIDE inference on multi-scale moving MNIST dataset.

7



Figure 6. SIMONe inference on multi-scale moving MNIST dataset.

Figure 7. RDIR inference on MOT15 dataset.

Figure 8. SSDIR-YOLO inference on MOT15 dataset.

8



Figure 9. SCALOR inference on MOT15 dataset.

Figure 10. PROVIDE inference on MOT15 dataset.

Figure 11. SIMONe inference on MOT15 dataset.

9



Figure 12. RDIR inference on MOVi-A dataset.

Figure 13. RDIR inference on MOVi-C dataset.

Figure 14. RDIR inference on MOVi-E dataset.

10


	. Dataset details
	. Model architecture
	. Encoder details
	. Decoder details

	. Model training setup
	. Representation consistency
	. Computational expense
	. Inference visualizations
	. Multi-scale moving MNIST
	. MOT15
	. MOVi datasets


