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Abstract

This work explores 3D object detection using LiDAR
technology, specifically focusing on pedestrian detection for
video surveillance. While LiDAR is well-established in au-
tonomous driving, its application in video surveillance is
underexplored. We adapt state-of-the-art autonomous driv-
ing models for video surveillance, with CenterPoint be-
ing the top performer. Optimizing hyperparameters, such
as voxel size and sweep merging, enhances pedestrian de-
tection. Incorporating larger range data aids in gener-
alization for video surveillance scenarios. This research
demonstrates the feasibility of pedestrian detection in video
surveillance and highlights open challenges related to do-
main adaptation and the high cost of high-resolution LiDAR
sensors. Code: https://github.com/0Miquel/
OpenPCDet-video-surveillance.

1. Introduction

In recent years, video surveillance has become essential
for public safety and security. However, traditional 2D ob-
ject detection has limitations in estimating depth and han-
dling complex scenarios. To address these issues, LiDAR
sensors, known for their precision, have gained attention in
video surveillance. LiDAR sensors use lasers to create de-
tailed 3D point clouds of the environment. While LiDAR
is commonly associated with autonomous driving, its appli-
cations extend further. LiDAR enhances scene understand-
ing and privacy preservation in video surveillance. Unlike
cameras that capture identifiable images, LiDAR generates
anonymous point clouds, addressing privacy concerns, par-
ticularly in public spaces.

The rise of LiDAR is driven by advances in autonomous
driving. Most existing large-scale datasets for 3D object
detection, like nuScenes [2] and Waymo [15], focus on au-
tonomous driving scenarios. Given this limitation, our study
explores state-of-the-art models originally designed for au-
tonomous driving and applies them to video surveillance,

with a specific emphasis on pedestrian detection.
This study presents the following contributions:

• Evaluate Existing 3D Object Detection Models for
Pedestrian Detection: This objective involves an ex-
tensive evaluation and comparison of state-of-the-art
models, including SECOND [16], PointPillar [7], and
CenterPoint [18]. Performance metrics, such as accu-
racy and speed, will be considered.

• 3D Object Detection Evaluation for Video Surveil-
lance: The study aims to leverage data from au-
tonomous driving scenarios to create an evaluation
context that closely resembles video surveillance chal-
lenges, particularly in human detection. Insights
drawn from this approach will inform the development
of 3D object detection systems for real-world video
surveillance.

• Develop a 3D Human Detection Optimization
Pipeline: The study seeks to design and implement
a dedicated pipeline for optimizing 3D object detec-
tion models, depicted in Fig. 1, specifically for human
detection. This pipeline will encompass various hy-
perparameters, configurations, and data pre-processing
techniques tailored to enhance accuracy and reliability
in detecting humans.

2. Related work
In recent years, LiDAR-based 3D object detection has

seen remarkable progress, transforming industries like au-
tonomous driving, robotics, and video surveillance. This
section provides a review of the state of the art in 3D ob-
ject detection with LiDAR, with a focus on identifying tech-
niques relevant to video surveillance applications.

LiDAR-based 3D object detection is notable for its abil-
ity to provide precise and dense spatial information, en-
abling accurate environmental perception. Within this do-
main, three main paradigms have emerged: point-based,
voxel-based, and multimodal approaches.
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Figure 1. The presented optimized pipeline leverages state-of-the-art techniques to achieve peak performance in pedestrian detection. It
is designed with a voxel-based approach, taking into account the challenges presented by the nuScenes dataset. Through this pipeline, we
aim to comprehensively explore the impact of various hyperparameters and uncover the rationale behind our results.

2.1. Point Cloud 3D Object Detection

3D object detection using point clouds from LiDAR sen-
sors can be summarized into two main categories: point-
based methods and voxel-based methods.

2.1.1 Point-based methods

Point-based techniques, pioneered by PointNet [9], directly
process unordered point cloud data. PointNet introduced
a 3D deep learning architecture capable of handling tasks
like object classification, segmentation, and later, object
detection. PointRCNN [11] extended this approach with
a two-stage framework involving proposal generation and
proposal refinement in canonical coordinates to yield final
detection results. While point-based methods maintain pre-
cise point location and offer flexible receptive fields, they
often spend significant computation organizing irregular
point data, making them less suitable for large-scale point
clouds. Another emerging trend in point cloud process-
ing involves the use of GNNs to learn permutation-invariant
representations implicitly. GNNs are well-suited for point
clouds, which can be naturally represented as graphs. Point-
GNN [12], for instance, reasons on local neighborhood
graphs constructed from point clouds, where each node it-
eratively summarizes semantic information from its neigh-
boring points.

2.1.2 Voxel-based methods

Most existing methods nowadays tend to convert the point
cloud data into a structured representation, typically a 3D
voxel grid, to enable efficient processing. Voxelization pro-
vides a grid-based representation that allows the utilization
of 3D convolutional neural networks (CNNs) for object de-
tection. The first work that considered this approach was
the pioneering VoxelNet [20], which divides the point cloud

into 3D voxels, and encodes scene feature using 3D convo-
lutions. However, its computational cost makes it difficult
to use for real-time applications.

A more efficient approach was presented by SECOND
[16], which proposed to use 3D sparse convolutions to
tackle the high number empty voxels due to point cloud
sparsity, improving VoxelNet results in term of both accu-
racy and speed. Therefore, SECOND has been a very well
established baseline so far. On the other hand, PointPillars
[7] [14] proposed an alternative voxelization approach by
dividing the point cloud into pillar-shaped volumes, which
reduced memory consumption and enabled efficient train-
ing and inference. It employed a lightweight 2D CNN for
feature extraction, followed by a sparse convolutional net-
work for object detection.

All methods proposed at that point used an anchor-based
detection head. It was up until that moment when Center-
Point [18] introduced a center-based voxelization scheme
that enhanced the efficiency and accuracy of 3D object
detection. By representing objects as 3D center points,
it achieved superior performance on various benchmarks
while maintaining a low computational overhead.

At the same time, other works like PillarNet [10] opts
to extend the concept of PointPillars and proposes a more
powerful encoder network for effective pillar feature learn-
ing, a neck network for spatial-semantic feature fusion and
the same detection head proposed by CenterPoint. As such,
they design the first real-time and high-performance pillar-
based 3D detection method.

2.2. Multi-modal 3D Object Detection

In the context of autonomous driving, LiDAR sensors
usually come together with multiple camera sensors which
provide RGB data of the whole scene. This has motivated
the idea of using multi-modal methods that can perform a
more robust estimation at the cost of losing the preservation
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of privacy. Additionally, such approach has been proved to
help detecting pedestrians as it provides denser information.

MVX-Net [13] proposed an early-fusion approach to
combine the RGB and point cloud modalities, by leverag-
ing the pioneering VoxelNet architecture and extracting the
image features from a pretrained 2D Faster R-CNN.

One of the main issues that was identified was the associ-
ation between LiDAR points and image pixels, which most
of the times was challenging due to external factors like Li-
DAR malfunctions or inferior image conditions. BEVFu-
sion [8] proposed a novel yet simple framework that unifies
camera and LiDAR features in a shared BEV space instead
of mapping one modality to the other, preserving camera’s
semantic density and LiDAR’s geometric structure in or-
der to address possible malfunctions. At the same time,
TransFusion [1] also proposed a robust solution to LiDAR-
camera fusion with a soft-association mechanism to handle
inferior image conditions. Specifically, their implementa-
tion consists of a convolutional backbone and a detection
head based on a transformer decoder.

3. Methodology

This section presents the datasets and models that will
be considered. Additionally, a benchmarking protocol has
been defined in the context of video surveillance.

3.1. Data

Video surveillance is essential for public safety and se-
curity, involving the monitoring of video streams to detect
objects like pedestrians and vehicles, often in indoor spaces
like shopping malls and parking lots. Unfortunately, there’s
a lack of indoor datasets with pedestrian annotations, which
posed a challenge for our 3D object detection research. To
overcome this limitation, we expanded our investigation to
outdoor datasets primarily designed for autonomous driv-
ing.

Addtionally, LiDAR devices play a crucial role in our
study due to their spatial and temporal resolutions, which
impact object detection. Spatial resolution, determined by
emitted beams, influences detail capture, while temporal
resolution, determined by sweep frequency, affects data
timeliness and dynamism. Our study examines these res-
olution aspects to align with our goal of creating efficient
detection models tailored for video surveillance.

3.1.1 Outdoor datasets

The surge in autonomous driving has resulted in a wealth
of outdoor datasets for 3D object detection using LiDAR.
These datasets are rich in high-quality pedestrian annota-
tions, making them invaluable for video surveillance appli-
cations.

Figure 2. Correlation between points and distance to the sensor for
pedestrian detections in nuScenes dataset.

In our search to identify the most fitting dataset for our
video surveillance research, we meticulously assessed pop-
ular autonomous driving datasets listed in Tab. 1. Our eval-
uation considered crucial factors such as annotation quality,
diversity, scene variety, and the inclusion of RGB images
for multi-modal approaches.

After a comprehensive evaluation, the nuScenes dataset
[2] emerged as the top choice for video surveillance. It of-
fers meticulous annotations, including 3D bounding boxes,
orientation, and velocity for pedestrians. Notably, nuScenes
aligns closely with our intended LiDAR setup, featuring
low spatial resolution (32 beams) but a high temporal res-
olution (20Hz capture frequency). This resemblance to our
target configuration makes nuScenes an ideal choice for de-
veloping and testing models suitable for real-world deploy-
ment scenarios. To enhance its utility, we leverage multi-
ple consecutive LiDAR sweeps, creating denser represen-
tations. These dense representations span up specifically
to 20 meters, depicted in Fig. 2, a crucial range for video
surveillance.

Furthermore, the cost-effectiveness of low spatial resolu-
tion LiDAR devices adds to nuScenes’ appeal, aligning well
with practical deployment considerations. While datasets
like KITTI [5] and Waymo [15] are recognized, KITTI’s
scale is limited, and Waymo posed challenges due to licens-
ing restrictions. The nuanced features of nuScenes, along
with its convenient mini dataset for experimentation, solid-
ified its position as our dataset of choice.

3.1.2 Indoor datasets

Initially, our focus was on indoor datasets for pedestrian de-
tection. However, due to the scarcity of such datasets with
pedestrian annotations, we had to turn to outdoor alterna-
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Dataset Year Size Diversity

Train Val Test 3D boxes PC frames RGB imgs Scenes Classes Night/Rain

KITTI [5] 2012 7k - 7k 200K 15K 15k 50 3 No
Argoverse [3] 2019 275k 105k 87k 993K 44k 490k 113 15 Yes

Lyft L5 [6] 2019 136k - 164k 1.3M 46k 46k 366 9 No
nuScenes [2] 2019 168k 36k 36k 1.4M 400k (40k)* 1.4M 1000 10 Yes
Waymo [15] 2020 611k 152k 200k 112M 200k 1M 1150 3 Yes

Table 1. Statistics from the datasets studied. *nuScenes only has 40k annotated frames from the 400k total frames available.

tives. Still, we recognize the importance of indoor scenes in
video surveillance.

Indoor datasets like SUN-RGBD [14] and ScanNet [4]
are valuable but lack the specific pedestrian annotations
needed. Instead, the L-CAS dataset from the University
of Lincoln [17] fits our requirements better. This indoor
dataset uses a LiDAR device with 16 beams and closely
simulates real-world indoor surveillance scenarios.

However, the L-CAS dataset has a limitation: it lacks
annotations for many pedestrians, especially those at a dis-
tance.

3.1.3 Other Point Cloud Capture Systems

Beyond LiDAR, there exist alternative point cloud capture
systems, including structured light scanners , stereo cam-
eras and radar. Structured light scanners, while offering
accurate 3D object shape capture, are constrained by lim-
ited working ranges, rendering them unsuitable for large
surveillance areas. Similarly, stereo cameras suffer from re-
stricted field views and computational demands, hindering
their efficacy in comprehensive video surveillance applica-
tions. Radar, while applicable in certain scenarios, faces
issues with shape accuracy and resolution as their working
ranges can be very limiting.

Considering these factors and the predominant focus of
available datasets on LiDAR data, it is evident that LiDAR
devices offer the most promising path for 3D object detec-
tion.

3.2. Model

Voxelization methods have emerged as a popular choice
in 3D object detection tasks, as studied in the state of the
art section, due to their ability to efficiently represent 3D
data using regular grids of voxels. These methods provide
a natural extension from 2D convolutional neural networks
(CNNs) to 3D CNNs. By discretizing the 3D space into
voxels and encoding the data in a structured manner, voxel-
based models efficiently process 3D point clouds while ben-
efiting from the well-established and optimized 3D CNN
operations. This results in impressive accuracy without

compromising inference speed thanks to sparse convolu-
tions, making them well-suited for real-time applications
like pedestrian detection in video surveillance.

Apart from voxelization, pillar encoding, which orga-
nizes point clouds into vertical pillars, is being investigated
as an efficient alternative. Pillar-based models operate di-
rectly in 2D without 3D backbones.

To optimize pedestrian detection, two detection heads
are considered. The anchor-based method, traditional but
computationally intensive, contrasts with the center-based
approach, newer and more efficient, directly predicting ob-
ject centers in BEV space. This exploration seeks to deter-
mine the most effective approach for accurate and efficient
pedestrian detection in diverse indoor and outdoor scenar-
ios.

As a result, for our pedestrian detection experiments, we
have chosen four models from the studied state of the art:
SECOND [16], CenterPoint [18], CenterPoint with Pillar
Encoding, and PillarNet [10]. These models use a con-
sistent point cloud encoding scheme, including dimensions
like x, y, z coordinates, and intensity. The inclusion of
intensity is crucial for object detection, providing insights
into the reflectivity of laser pulses. Additionally, a times-
tamp dimension is added to accommodate multiple sweeps
for each sample, aiding in processing the temporal aspect
of the scene and improving object dynamics and movement
capture. With such temporal dimension it is expected to in-
herently estimate the motion compensation.

In summary, our model research encompasses voxeliza-
tion methods, pillar encoding, and two detection head
approaches (anchor-based and center-based) to develop a
state-of-the-art pedestrian detection system aligned with re-
cent advancements in 3D object detection research.

3.3. Benchmarking protocol

A benchmarking protocol has been designed to adapt 3D
object detection tasks for video surveillance. It evaluates
models across various distance ranges defined in Tab. 2,
with a focus on approximately 20 meters, relevant to video
surveillance. The evaluation metric is the pedestrian mean
average precision (mAP), adapted for 3D object detection,
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using nuScenes’ methodology [2]. This methodology re-
places traditional Intersection over Union (IoU) with 2D
center distance thresholding, ensuring accurate evaluation
regardless of object size or orientation. The protocol aims
to provide a comprehensive evaluation of models in a video
surveillance context.

pedestrian mAP

0-10 (m) 0-20 (m) 0-30 (m) 0-40 (m) 0-50 (m)

Table 2. Metric and evaluation ranges defined by the benchmark-
ing protocol.

Additionally, the protocol considers several critical hy-
perparameters:

• Training range: This defines the maximum range for
training annotations, limiting them to a specific dis-
tance (e.g., 30 meters).

• Voxel size: It determines the size of the voxel used in
point cloud processing.

• Number of sweeps per sample: This influences the
point cloud density by specifying the number of con-
secutive sweeps in a sample, adding a temporal dimen-
sion.

• Classes used: It defines whether the model is trained
with only pedestrian data or includes all available
classes. These hyperparameters play a crucial role in
optimizing model performance for video surveillance.

Based on our exploration and experiments with state-of-
the-art models using the benchmarking protocol, we have
developed an optimized pipeline (Fig. 1) for pedestrian de-
tection in video surveillance scenarios.

4. Experiments
In this section, we present a detailed overview of the

diverse experiments conducted to thoroughly evaluate our
pedestrian detection methodology. Our experimental ex-
ploration encompasses two primary datasets: the nuScenes
dataset and the L-CAS dataset, which will be qualitatively
analyzed.

SOTA Models Comparison and Tuning. The four state-
of-the-art models studied at the methodology were evalu-
ated for pedestrian detection, focusing on the systematic
variation of hyperparameters as outlined in the benchmark-
ing protocol. These hyperparameters included voxel size,
the number of sweeps, training range, and the number of
classes.

The experiments began with the mini nuScenes dataset
for efficient hyperparameter grid search, followed by train-
ing with the full dataset to achieve optimal results.

Multi-modality. The BEVFusion framework is used to
combine camera and LiDAR data in a shared Bird’s Eye
View (BEV) space. Unlike traditional methods that map
one modality to another, BEVFusion preserves the seman-
tic richness of camera data while retaining the geometric
structure of LiDAR. This fusion is expected to enhance ac-
curacy, especially for detecting pedestrians, by providing a
denser representation compared to LiDAR alone.

The experiment employs a Swin Transformer for im-
age encoding, using pretrained weights from the nuImages
dataset. LiDAR encoding is handled by the best-performing
model from previous experiments.

Qualitative analysis. Given the lack of sufficient annota-
tions in the L-CAS dataset, a qualitative analysis was pri-
marily employed. This visual inspection of the model’s
performance offers insights into its indoor detection capa-
bilities. It is important to note that qualitative analysis was
also conducted for the nuScenes dataset, while for L-CAS,
it remains the primary approach due to missing annotations.

The challenges of adapting between datasets with vary-
ing LiDAR devices are recognized. Pre-training models on
one dataset and expecting seamless performance on another
is found to be impractical due to these disparities. To ad-
dress this, the best-performing model from nuScenes was
chosen and fine-tuned using the L-CAS dataset, acknowl-
edging the domain adaptation complexities.

4.1. Results

SOTA Models Comparison and Tuning. Several valu-
able insights were gained through model comparison and
hyperparameter tuning in Tab. 3:

• Training Range Influence: Expanding the training
range to 50 meters positively impacted results, indicat-
ing that a broader training range enhances model gen-
eralization, particularly for metrics relevant to video
surveillance.

• Sweep Number Considerations: Surprisingly, using
5 sweeps per sample outperformed the recommended
10 sweeps, suggesting that an excessive number of
sweeps may not be necessary, especially for close-
range detections.

• Optimal Voxel Size: Smaller voxel sizes were pre-
ferred across all models tested due to improved rep-
resentation, but they come at the cost of increased in-
ference time.
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Training
range (m)

Max
sweeps

Voxel
size Classes

pedestrian mAP

0-10 (m) 0-20 (m) 0-30 (m) 0-40 (m) 0-50 (m)

50 5 [0.08, 0.08, 0.2] pedestrian 0.8991 0.8763 0.8272 0.8087 0.7811
30 5 [0.08, 0.08, 0.2] pedestrian 0.8977 0.8724 0.807 0.7249 0.6547
20 5 [0.08, 0.08, 0.2] pedestrian 0.8473 0.8137 0.5624 0.4608 0.4088

50 10 [0.08, 0.08, 0.2] pedestrian 0.8282 0.7949 0.7601 0.7379 0.702
50 5 [0.08, 0.08, 0.2] pedestrian 0.8991 0.8763 0.8272 0.8087 0.7811
50 1 [0.08, 0.08, 0.2] pedestrian 0.8835 0.841 0.779 0.7325 0.6922

50 5 [0.16, 0.16, 0.2] pedestrian 0.7298 0.7405 0.71 0.6895 0.6587
50 5 [0.1, 0.1, 0.2] pedestrian 0.868 0.8526 0.8013 0.78 0.7533
50 5 [0.08, 0.08, 0.2] pedestrian 0.8991 0.8763 0.8272 0.8087 0.7811

50 5 [0.08, 0.08, 0.2] all 0.8558 0.822 0.7805 0.7636 0.7366
50 5 [0.08, 0.08, 0.2] pedestrian 0.8991 0.8763 0.8272 0.8087 0.7811

Table 3. CenterPoint validation results on the mini nuScenes dataset on different hyperparameter configurations. This table only presents
a portion of the grid search that was conducted for the experiments on one of the selected models. The behaviour found for the rest of the
models was the same. The optimal hyperparameters found are 50m training range, 5 sweeps, 0.08 voxel size and only using pedestrian
class. Blue text indicates the variations of one hyperparameter in the optimal configuration.

• Single-Class Training: Training models exclusively
with pedestrian data consistently outperformed multi-
class training, highlighting the viability of dedicated
pedestrian datasets for video surveillance tasks.

• Model Performance and Representation: Center-
Point utilizing voxel representation emerged as the
highest-performing model, outperforming SECOND
and models employing pillar representation. Pillar-
Net’s claim of surpassing CenterPoint’s results was not
supported by the pedestrian benchmark.

The top-performing model was CenterPoint using voxel
representation in Tab. 4, achieving an mAP@0-20m score
of 0.8763 with optimized hyperparameters. Further train-
ing on the complete dataset is planned to explore its full
potential.

However, it is important to note that due to limitations
in the test set’s ground truth, a direct comparison with the
state-of-the-art using the benchmark on this test set is chal-
lenging. An alternative approach was adopted to compare
results from pretrained models, trained on the complete
dataset.

The comprehensive training on the best CenterPoint con-
figuration and the complete dataset revealed in Tab. 5 that
an expanded training dataset significantly enhances model
generalization. This observation emphasizes the impor-
tance of dataset size in achieving superior model perfor-
mance.

Additionally, the optimized model demonstrated note-
worthy performance, even surpassing most pretrained
weights from state-of-the-art models, underlining the cru-

cial role of the voxel size hyperparameter in model opti-
mization, although achieving the ideal voxel size is influ-
enced by hardware resource constraints.

Multi-modality. Our findings indicate that a smaller win-
dow size yielded better performance, indicating an in-
creased representation power and achieving the best results
using a window size of 7 pixels.

Comparing the results with the single-modality ap-
proach, there is a marginal enhancement within the 10 and
20 meter ranges, visible in Tab. 6. This suggests that mul-
timodality indeed proves advantageous in the context of
video surveillance, particularly for closer instances. It is
worth noting that instances in closer proximity to the sen-
sor are often more visible in RGB images and consist of a
higher point density, likely contributing to improved detec-
tion.

However, for greater distances, we observed no substan-
tial improvement, even though the performance remained
comparable to that of the single-modality setup. Our hy-
pothesis is that objects in closer ranges are more distinctly
captured and aligned between LiDAR and RGB data, fa-
cilitating the enhancement in detection performance within
these ranges.

In summary, the results of the multimodality experiment,
conducted on the mini nuScenes dataset, showed moder-
ate improvements. However, it is worth noting that these
improvements were not as significant as those reported in
some state-of-the-art multimodal models. This could be due
to the limitations of the mini dataset in capturing the full
potential of multimodality and the use of a LiDAR encoder
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Model Training
range (m)

Max
sweeps

Voxel
size Classes pedestrian mAP Inference

time (ms)0-10 (m) 0-20 (m) 0-30 (m)

SECOND 50 5 [0.08, 0.08, 0.2] pedestrian 0.8084 0.8134 0.7406 300
CenterPoint 50 5 [0.08, 0.08, 0.2] pedestrian 0.8991 0.8763 0.8272 261

CenterPoint-P 30 5 [0.1, 0.1, 0.2] pedestrian 0.8696 0.8125 0.7351 93
PillarNet 50 5 [0.08,0.08,0.2] pedestrian 0.8384 0.8075 0.7443 168

Table 4. Hyperparameter optimization results for every selected model. Configuration with the best validation results from the mini
nuScenes dataset are shown for every selected model. Experiments are executed on a Nvidia RTX A2000 12GB.

Model Training
range (m)

Max
sweeps

Voxel
size Classes pedestrian mAP

0-10 (m) 0-20 (m) 0-30 (m)

CenterPoint (Ours) 50 5 [0.08, 0.08, 0.2] pedestrian 0.9737 0.9491 0.9161
CenterPoint - 10 [0.1, 0.1, 0.2] all 0.94905 0.93841 0.91349
CenterPoint - 10 [0.08, 0.08, 0.2] all 0.9636 0.9525 0.9241

CenterPoint-P - 10 [0.2, 0.2, 0.8] all 0.93763 0.91727 0.88813
SECOND - 10 [0.1, 0.1, 0.2] all 0.92078 0.91754 0.8921

Table 5. Validation results from the mini nuScenes dataset. Comparison of our optimized CenterPoint model against the available pretrained
weights of the state of the art. All the models in this table were trained with the full nuScenes dataset.

Model pedestrian mAP

0-10 (m) 0-20 (m) 0-30 (m)

CenterPoint 0.8991 0.8763 0.8272
BEVFusion 0.9084 0.8835 0.8297

Table 6. Validation results from the mini nuScenes dataset. Com-
parison between the top-performing single-modality model and
the top-performing configuration (window size=7) trained on the
multi-modality framework.

optimized for single modality, rather than one tailored for
multimodal fusion.

Qualitative analysis. In the qualitative analysis of the
nuScenes dataset, the study focused on the outputs of the
top-performing CenterPoint model. The analysis revealed
that the confidence threshold parameter had a significant
impact on the model’s performance. When a low confi-
dence threshold of 0.1 was used, there was a noticeable
presence of false positive detections. On the other hand,
raising the confidence threshold to 0.4 led to a substantial
reduction in false positive instances, indicating that increas-
ing the threshold improved detection accuracy. At the same
time, the quality of orientation estimations was observed to
be suboptimal and imprecise, which highlighted the chal-
lenge of accurately predicting orientation in pedestrian de-
tection.

On the other hand, given the constrains presented by the

L-CAS dataset, its qualitative analysis employed the top-
performing CenterPoint model, fully fine-tuned on the L-
CAS dataset. Despite the challenges posed by misannota-
tions in the dataset, several noteworthy observations were
made. The model demonstrated the ability to accurately de-
tect pedestrians even in cases where corresponding ground
truth annotations were lacking in Fig. 3b. Additionally, in
instances where closely positioned pedestrians were anno-
tated as a single group, the model was observed to success-
fully recognize and estimate these grouped pedestrians as
separate entities in Fig. 3a.

In summary, while the L-CAS dataset presented chal-
lenges due to misannotations, it also showed promise for
addressing novel challenges in indoor LiDAR data analy-
sis, emphasizing its value for future enhancements and deep
learning methodologies.

4.2. Ablation Study

In the ablation study, we investigated the effects of an-
notation simplification on our pedestrian detection model’s
performance. This study involved three key modifications
to the nuScenes annotations, aiming to understand the im-
portance of specific attributes for optimal 3D detection out-
comes.

• No Orientation: We removed orientation information
to assess its importance in detection accuracy.

• No Velocity: Velocity data was excluded to investigate
its role in accurate detection.
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(a) Close pedestrians are sometimes annotated as a singular group. (b) Missing annotations sometimes are accurately detected.

Figure 3. Qualitative results in the L-CAS dataset. Blue boxes indicate ground truth, and green indicates our detection. Open3D [19] is
used for visualization.

• Cylindrical Detections: Pedestrian boxes were sim-
plified into cylinders to reduce the number of box pa-
rameters. Given the fact that width and length from
pedestrians are usually very similar, such are simpli-
fied into a single diameter.

Results indicate that predicting orientation and velocity
for pedestrians does not significantly improve pedestrian
detection performance, regardless of whether the model is
trained with all classes or exclusively pedestrian data. This
conclusion is based on experiments using the CenterPoint
model with specific hyperparameters.

Estimating orientation and velocity for pedestrians in the
mini dataset was challenging, as shown in Tab. 7. These
difficulties explain why integrating velocity and orienta-
tion information did not lead to substantial improvements in
pedestrian detection performance. The differences observed
among different combinations of these attributes were min-
imal and may be attributed to random variations. The study
relied on two main metrics, the Mean Absolute Orienta-
tion Error (mAOE) and the Mean Absolute Velocity Error
(mAVE), to assess the accuracy and precision of orientation
and velocity predictions within the models.

Additionally, the study noted that using a cylindrical
bounding volume did not lead to notable changes in perfor-
mance. This observation suggests that a simplified bound-
ing volume could be considered for future dataset annota-
tions without compromising detection accuracy.

5. Conclusions
This work has showcased the effectiveness of voxel-

based models for 3D object detection, particularly in the
context of pedestrian detection within video surveillance.
The use of sparse convolutions, aligned with state-of-the-
art research, proved to be a successful approach. Notably,
we have identified optimized hyperparameter configura-
tions tailored specifically for pedestrian detection, breaking

Orientation Velocity
ped.
mAP

ped.
mAOE

ped.
mAVE

False False 0.7904 - -
False True 0.7896 - 0.9187
True False 0.7889 1.638 -
True True 0.7719 1.518 0.9102

Table 7. Validation result from the mini nuScenes dataset at the
range of 20 meters. Showcasing mAP, mAOE and mAVE for
pedestrian depending on the annotation simplification. The higher
mAP the better, while the lower mAOE and mAVE the better.

away from conventional setups for autonomous driving.

Our exploration with the nuScenes dataset revealed that
pedestrian detection can be achieved effectively without
the need for complex annotations, suggesting the potential
for creating a novel dataset designed specifically for video
surveillance applications. Additionally, our study on multi-
modality demonstrated minor performance enhancements
in critical surveillance ranges, calling for further investiga-
tion in this complex field.

AI ethics, particularly in surveillance, are crucial. RGB
systems may breach privacy, while LiDAR provides spa-
tial data without compromising anonymity. LiDAR’s accu-
rate distance data aids in crowd control, intrusion detection,
and scene understanding, improving security and decision-
making. Future research should involve enhancing anno-
tations in datasets like L-CAS for better applicability in
video surveillance deep learning models. Creating a cus-
tom dataset for surveillance needs is another promising di-
rection, despite the high cost of LiDAR sensors.
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