
C2T-Net: Channel-Aware Cross-Fused Transformer-Style Networks for
Pedestrian Attribute Recognition

Doanh C. Bui1 Thinh V. Le2 Ba Hung Ngo3

1School of Electrical Engineering, Korea University, Republic of Korea
2University of Information Technology, Vietnam National University, Vietnam

3Graduate School of Data Science, Chonnam National University, Republic of Korea
doanhbc@korea.ac.kr, 20520781@gm.uit.edu.vn, ngohung@jnu.ac.kr

Abstract

Pedestrian attribute recognition (PAR) poses a signif-
icant challenge but holds practical significance in vari-
ous security applications, including surveillance. In the
scope of the UPAR challenge, this paper introduces the
Channel-Aware Cross-Fused Transformer-Style Networks
(C2T-Net). This network effectively integrates two pow-
erful transformer-style networks, namely the Swin Trans-
former (SwinT) and a customized variant of the vanilla vi-
sion transformer (EVA ViT). The aim is to capture both
local and global aspects of an individual for precise at-
tribute recognition. To facilitate the understanding of intri-
cate relationships among channels, a channel-aware self-
attention mechanism is devised and integrated into each
SwinT block. Furthermore, the fusion of features from
the two transformer-style networks is accomplished through
cross-fusion, enabling each network to mutually amplify
and boost the textural nuances present in the other. The effi-
cacy of the proposed model has been demonstrated through
its performance on three PAR benchmarks: PA100K, PETA,
and the UPAR2024 private test. With respect to the
PA100K benchmark, our approach has achieved state-of-
the-art results when compared to models that do not em-
ploy any pre-training techniques. Our performance on the
PETA dataset remains competitive, standing on par with
other cutting-edge models. Notably, our model achieved
runner-up performance on the UPAR2024-track-1 test set.
Source code is available at https://github.com/
caodoanh2001/upar_challenge.

1. Introduction

Pedestrian analysis has emerged as a critical area of fo-
cus in camera surveillance and pedestrian characteristic re-
search. Within this domain, the recognition of pedestrian
attributes (PAR) stands out as a pivotal sub-problem. This
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Figure 1. Prediction for a sample from UPAR2024 dev-test of
our C2T-Net. Focus visualization from two network branches us-
ing GradCAM [23]. Green text denotes correctly predicted at-
tributes compared to ground-truth.

problem, characterized by its formulation as a multi-label
classification task, necessitates the ability to predict mul-
tiple categories within a single prediction. Notably, re-
cent studies [15, 18, 22, 25, 26, 32] have harnessed deep-
learning-based models to yield promising results across var-
ious datasets such as PA100K [18], PETA [7], and RAPv2
[17], highlighting the significance of this area. However,
the continuous influx of samples from diverse datasets has
underscored the pressing need for the development of more
robust methodologies [6, 24].

In this context, the exploration of feature representations
within the PAR problem domain has remained a top prior-
ity, as evidenced by the global-to-local aspect highlighted
in previous research [18]. Besides, hybrid models, which
involve the combination of multiple networks, including
convolutional neural networks (CNNs) or transformer-style
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models, have demonstrated their ability to provide robust
representations, thereby empowering the head classifiers to
perform with superior efficacy [8,20,30]. Against the back-
drop of the UPAR challenge 2024 [5], where pedestrian at-
tribute recognition takes center stage, the development of
a meticulously designed hybrid model integrating a fusion
mechanism holds the promise of delivering even more re-
markable outcomes. Leveraging the proven effectiveness of
transformer-style models, our proposition aims to capitalize
on their capabilities to craft a hybrid model that can yield
robust feature representations, thereby paving the way for
substantial advancements within the PAR problem domain.

In the pursuit of enhancing pedestrian attribute recog-
nition, delving into local information assumes pivotal sig-
nificance. The different regions of the body, including
the upper, middle, and lower sections, often serve as the
bearers of crucial visual characteristics. Our research en-
deavors have shed light on the suitability of Swin Trans-
former (SwinT) [19] for investigating these facets. Cen-
tral to SwinT’s efficacy is the shifted window multi-head
self-attention (W-MSA) mechanism, which, in contrast to
traditional self-attention (SA), computes attention weights
exclusively within designated windows, thereby enabling
window shifting across blocks. This unique approach facili-
tates the assimilation of localized information while nurtur-
ing inter-region awareness across successive layers.

While the emphasis on local body parts is essential, it
is imperative to strike a balance to prevent the incorpora-
tion of extraneous and noisy information, particularly in the
presence of complex backgrounds within the images. The
shifted window of SwinT, in some instances, might inad-
vertently focus on irrelevant regions, thus necessitating the
integration of a fully-connected self-attention mechanism
similar to traditional self-attention. This mechanism, in-
spired by the Vision Transformer model (ViT) [10], oper-
ates across all image patches, effectively filtering out super-
fluous background elements.

Herein, we propose Channel-Aware Cross-Fused
Transformer-Style Networks (C2T-Net), harnessing the
strengths of both SwinT and the traditional self-attention
mechanism from ViT. In addition, the quality of features
obtained from the SwinT branch is enhanced through a
module called the channel-aware self-attention mechanism
(CASA), improving the flow of information within the
channel perspective. Additionally, a cross-fusion (CF)
module has been designed to promote mutual awareness
among the final feature vectors of each branch, yielding a
fused final vector well-suited for the multi-label classifi-
cation task inherent in pedestrian attribute recognition. In
summary, our contributions are listed below:

1. We introduce an advanced approach that leverages the
capabilities of two cutting-edge transformer-style net-
works: SwinT and EVA ViT models.

2. We design a channel-aware attention mechanism that
operates atop each SwinT block, facilitating the com-
prehensive extraction of highlighted features from
each position within the SwinT feature maps.

3. We propose the implementation of a cross-fusion
mechanism, resulting in the creation of fused feature
vectors tailored for pedestrian attribute recognition.
This mechanism effectively integrates the valuable in-
formation derived from the ViT patch tokens and the
feature maps originating from the SwinT network, en-
suring the optimal utilization of pertinent data for en-
hanced performance.

4. The proposed approach is evaluated on the PA100K
[18] and PETA [7] benchmarks, alongside the pri-
vate test set of the UPAR challenge 2024 track 1
(UPAR2024-track-1 test set). In detail, our method
achieves a new state-of-the-art performance on the
PA100K dataset, outperforming models that did not
undergo any pre-training tasks. In the case of the PETA
dataset, we attain competitive results comparable to
other state-of-the-art methods. Lastly, our approach
secures a 2nd ranking on the UPAR2024-track-1 test
set.

2. Related Work
2.1. PAR-specific design models

Imbalance-aware techniques. In surveillance contexts,
the performance of PAR models is often hampered by the
unbalanced distribution of human attributes. To tackle this
issue, Li et al. implemented a weighted binary cross-
entropy loss function [15] and a technique that involves du-
plicating images at random, thereby equalizing the number
of positive and negative examples in the training dataset,
effectively addressing the problem of imbalanced data dis-
tribution.

Attention-based mechanisms. Some researchers [18,
22] exploited the utilization of the visual attention mecha-
nism in attribute recognition. Sarafianos et al. introduced an
effective approach [22] to aggregate visual attention masks
at various scales to enhance the learning process of uncer-
tain samples and maintain the local class structures when
dealing with imbalanced data. Liu et al. applied the concept
of multi-level fusion through the use of multi-scale attentive
maps [18] generated by using Visual semantic attributes as
a mid-level feature, thereby enriching the final feature rep-
resentation. Considering attributes exhibit notable spatial
correlations with human structures, Li et al. [16] attempted
to explore the effectiveness of pose information in the task
of pedestrian attribute recognition. To achieve the final at-
tribute prediction, Li et al. employed the Spatial Trans-
former Network (STN) [13] to merge key points with the
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global body-based outputs.
Multi-scale features aggregation. Tan et al. proposed

an end-to-end unified model [25] that incorporates two
GCN-based modules for capturing both attribute and con-
textual relations, the final prediction is made by leveraging
the aggregated features from these two branches. Tang et
al. presented an end-to-end framework [26] consisting of
an ALM and FPN module, designed to carry out attribute-
specific localization across multiple scales in order to iden-
tify the most distinctive attribute regions. To address the
drop in performance when encountering individuals at a dis-
tance, Zhong et al. proposed the MSSC [32]. This mod-
ule enhances features for inconspicuous attributes by ag-
gregating contextual information across receptive fields, in-
tegrating low to high-level features using non-local atten-
tion, and establishing long-range dependencies in pyramid
feature maps across spatial scales.

Simple strong baselines. Considering PAR as a multi-
label classification problem involving binary attributes as
in [14], Specker et al. introduced a simple classification
framework [24] that consists of a ConvNeXt backbone and
a fully-connected classification head with a final layer us-
ing Sigmoid activation. Additionally, several enhancements
and techniques were applied to the baseline, including ex-
ponential moving averages of model weights, suitable batch
sizes, label smoothing, dropout, and data augmentation
methods.

2.2. Transformer-style models

The Transformer architecture was initially developed for
machine translation tasks in the field of natural language
processing (NLP). Its inherent ability to effectively cap-
ture long-range dependencies in data through global self-
attention mechanisms quickly led to Transformer-based
frameworks dominating this domain. Inspired by this ac-
complishment, Alexey et al. introduced the pioneering Vi-
sion Transformer (ViT) [9] for image classification, achiev-
ing impressive results compared to state-of-the-art CNNs.
ViT’s success has subsequently led to research efforts aimed
at enhancing its performance.

One notable contribution, Deit [28], focuses on various
training strategies designed to mitigate the challenges as-
sociated with pre-training on large datasets. Swin Trans-
former [19], on the other hand, takes inspiration from the
inductive biases of locality, hierarchy, and translation in-
variance. It introduced a shifted windows mechanism, en-
abling it to serve in a wide range of image recognition tasks.
In addition, EVA [11] distills the multi-modal knowledge to
scale up ViT by leveraging unlabeled images with the large-
scale pre-trained image-text model CLIP [21] and achieves
remarkable results in various vision downstream tasks in-
cluding image recognition, video action recognition, object
detection, instance segmentation, and semantic segmenta-

tion, all without the need for extensive supervised training.

3. Methodology
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Figure 2. Overview of our proposed approach: Two network
branches are designed, namely SwinT [19] and Eva vanilla ViT
[11]. At the top of each SwinT block, there is channel-aware at-
tention that calculates attention weights by utilizing spatial infor-
mation. At the core of our network, a cross-fusion mechanism is
employed to fully leverage patch tokens from the ViT branch and
feature maps from the SwinT branch, enabling each final feature
vector to become aware of the other. Finally, the mean is taken
across channels, yielding discrete probabilities for person attribute
recognition.

Overall architecture. Our overall architecture (See Fig.
2) comprises two transformer-style models: SwinT and an
EVA-based Vanilla ViT, both processing images at a reso-
lution of 256 × 128. The base version of SwinT is em-

353



ployed, with embed dim = 1024, and consists of four
SwinT blocks. To enhance channel awareness in token fea-
tures, we introduced channel-aware self-attention (CASA)
after applying shifted window multi-head self-attention op-
erations on each SwinT block. Considering an input image
I ∈ R3×H×W , the process can be formulated as follows:

z(0)s = PatchEmbed(I), (1)

z(i)s = SB(i)
(

CASA(i)
(
z(i−1)
s

))
, 1 ≤ i ≤ Ns, (2)

where z
(0)
s ∈ Rdim×Hs×Ws (Hs = H/4,Ws = W/4)

represents the embedded tokens from the original image I .
Here, CASA(·) refers to the channel-aware self-attention,
detailed in the following sub-sections, and SB(i)(·) denotes
the ith SwinT block introduced in the study [19], with Ns

as the total number of SwinT blocks. Following Ns SwinT
blocks, we obtain final feature maps z(Ns)

s ∈ Rdim×hs×ws ,
where hs = H/32 and ws = W/32. These dim× hs ×ws

features are then pooled into dim features using average
pooling:

zs = AvgPooling(z(Ns)
s ), (3)

where zs ∈ Rdim denotes the pooled features from the
SwinT branch. However, note that z(Ns)

s is still utilized for
cross-fusion.

Simultaneously, we incorporate another vanilla EVA-
based ViT branch (large version, embed dim = 1024)
consisting of Nv transformer blocks. Unlike the original
ViT, where the patch size commonly has the same values
for width wv and height hv , we utilize different values to
better suit the shape of the person sample. Processing the
image I using ViT results in a sequence of patch tokens
z
(Nv)
v ∈ Rdim×(hvwv) along with the [CLS] token, de-

noted as zv ∈ Rdim for convenience.
We then perform cross-fusion to enable the two branches

of networks to be aware of each other in an attention-style
manner:

zs
′
= SVCF(zs, z(Nv)

v ), (4)

zv
′
= VSCF(zv, z(Ns)

s ), (5)

where SVCF(·) and VSCF(·) refer to SwinT-ViT and ViT-
SwinT cross-fusions, respectively. zs

′
and zv

′
represent

cross-aware feature vectors, both with dimensions of dim.
Finally, zs

′
and zv

′
are applied two independent layer

normalizations, to capture pattern-specific distributions,
then concatenated and passed into the fully connected layer
to map dim to natt (the number of attributes that need to be
recognized).

Channel-aware Self-attention (CASA). The spirit of
transformer-style models is the (multi-head) self-attention
mechanism [29], which can construct connections among
all patch tokens in the learning process. Given a sequence
including N tokens z = {zi}Ni=1, three learned matrices
Wq , Wk, and Wv are multiplied with z to yield three
query (q ∈ RN×dim), key (k ∈ RN×dim), and value
(v ∈ RN×dim) tokens, respectively. Subsequently, the atten-
tion weight matrix is computed using the scaled dot prod-
uct between q and v, followed by the softmax function:
att = softmax(qk

T

√
dk
). Finally, the resulting att is multiplied

with v to emphasize the importance of specific tokens. De-
spite its capabilities in computing attention weights based
on spatial aspects, self-attention, unfortunately, does not in-
herently account for channel relationships. Consequently,
the channel aspect is often overlooked. To address this
limitation, we introduce the concept of channel-aware self-
attention at the top of each SwinT block. Given output
zis ∈ Rdim(i)×h(i)×w(i)

at ith SwinT block, this approach
is formulated as CASA(·) operation, which include follow-
ing steps:

zi,Ts = Transpose(Group(zis)), z
i,T
s ∈ R(h(i)w(i))×dim,

qi = zi,Ts ⊙Wq,i,ki = zi,Ts ⊙Wk,i,vi = zi,Ts ⊙Wv,i,

where W·,i ∈ Rh(i)w(i)×h(i)w(i)

,

att = softmax
(
qikiT

√
dk

)
, att ∈ Rh(i)w(i)×h(i)w(i)

,

zi,sb,Ts = zi,Ts + att⊙ zi,Ts ,

zi,sbs = Ungroup(Transpose(zi,sb,Ts )),

zi,sbs ∈ Rdim×h(i)×w(i)

,

zi+1
s = SB(i)(zi,sbs ),

(6)
where zi,Ts denotes the transpose matrix of Group(zis), with
the group of spatial resolutions (h(i) × w(i)) considered as
rows of the matrix. Subsequently, we compute the channel-
aware attention weight matrix att to identify crucial fea-
tures, based on the spatial tokens. Finally, att is multiplied
with the transpose matrix zi,Ts along with the skip connec-
tion, resulting in zi,sb,Ts . This is then rearranged to zi,sbs ,
which represents the input to the ith SwinT block (SB(i)(·)).

Cross-fusion (CF). At the head of the two network
branches, we obtained feature vectors zs ∈ Rdim and zv ∈
Rdim, as well as feature maps z

(Ns)
s ∈ Rdim×h(Ns)×w(Ns)

and z
(Nv)
v ∈ R(hv×wv)×dim. These represent the SwinT

feature vector, the feature vector of ViT [CLS] token, the
feature maps from SwinT, and the sequence of ViT tokens,
respectively. Simply using the concatenate of zs and zv also
show the effectiveness. However, it does not fully take ad-
vantage of z(Nv)

v and z
(Ns)
s , which also contain useful fea-

ture values. Herein, given zs, z(Nv)
v that are considered to

perform cross-fusion, inspired by [1], we design the cross-
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attention as follows:

zs,a = zs ⊙Wa,1,Wa,1 ∈ Rdim×dim

zs,c = Concatenate(zs,a, z(Nv)
v ), zs,c ∈ R(hvwv+1)×dim

q = zs ⊙Wq,k = zs,c ⊙Wk,v = zs,c ⊙Wv,

att = softmax(qk
T

√
dk
), att ∈ R1×(hvwv+1),

zs
′
= (zs,c + zs,c ⊙ att)⊙Wa,2,Wa,2 ∈ Rdim×dim,

(7)
where Wa,1 and Wa,2 are the projection matrices for di-
mension alignment. zs,a denotes the aligned token features,
and zs,c represents the concatenation of zs,a and z

(Nv)
v . By

employing this approach, it becomes evident that a feature
vector from the SwinT, i.e., a single token, can compute
self-attention with a sequence of tokens from EVA ViT, re-
sulting in attention weights att ∈ R1×(hvwv+1). In other
words, this method enables a token to become aware of
other sequences of tokens and compresses the knowledge
across channels. Hence, it explains how zs becomes aware
of z(Nv)

v . This operation is referred to as the SVCF(·) op-
eration. Regarding how zv becomes aware of z

(Ns)
s , the

processing steps in Eq. 9 are also performed and consid-
ered as the VSCF(·) operation. However, it is worth not-
ing that z

(Ns)
s still remains in the form of a tensor, i.e.,

z
(Ns)
s ∈ Rdim×h(Ns)×w(Ns)

. Consequently, we first need
to group the spatial resolutions of z(Ns)

s together, treating
them as a sequence of tokens, to perform cross-fusion with
zv through a cross-attention mechanism.

Independent Layer Normalization. With two
transformer-style networks offering distinct perspectives,
we introduce two independent layer normalizations before
fusion. These normalizations are tailored to capture two
unique distributions for the representations zs

′
and zv

′
. This

can be expressed as the following equations:

Ms = LN(s)(zs
′
;αs, βs),

Mv = LN(v)(zv
′
;αv, βv),

(8)

where LN(s) and LN(v) denote two layer normalizations ap-
plied to the feature vectors from SwinT (zs

′
) and EVA ViT

(zv
′
), respectively. The learnable scale and shift parame-

ters, αs and βs, are applied to the affine feature values of
zs

′
, while αv and βv perform the same function for zv

′
.

Subsequently, we concatenate the two normalized rep-
resentations and pass them through a fully-connected layer
to obtain Nattr-dimensional logits. Finally, we apply the
Sigmoid(·) function to derive the final output for multi-label
classification:

Msv = FC(Concatenate(Ms,Mv)),

ŷ = Sigmoid(Msv).
(9)

Loss function. To facilitate multi-label classification,
we employ the binary cross-entropy (BCE) loss function for
supervised learning. Considering ŷ ∈ RNattr as the output
from the Sigmoid(·) function and y = {yi}Nattr

i=1 ∈ RNattr

as the one-hot encoding ground-truth, where yi ∈ {0, 1},
the binary cross-entropy loss function is defined as follows:

LBCE(ŷ,y) = − (y log(ŷ) + (1− y) log(1− ŷ)) . (10)

4. Challenge Description
The Pedestrian Attribute Recognition and Person Re-

trieval Challenge at WACV 2024 [5] is split into two tracks
that share the same data sources consisting of three pub-
lic benchmark datasets PA100K [18], PETA [7]. Track 1
points to the “Pedestrian Attribute Recognition” task to
classify the semantic attributes of persons under domain
shifts. Track 2 is designed for the “Attribute-based Person
Retrieval” task, where the methods are proposed aiming to
match the attribute-based person retrieval to a specific at-
tribute description. The attributes of these datasets are listed
in Tab. 1. In this paper, we focus on the task 1.

5. Results
Datasets. It is noteworthy that, besides reporting results

for the UPAR2024 dataset, we conducted experiments on
two standard benchmarks for the PAR problem: PA100K
[18] and PETA [7] datasets, both of which are included in
it. The statistics of these datasets are presented in Tab. 2.
The PA100K dataset comprises 100,000 pedestrian images
from 598 scenes with 26 attributes, collected from vari-
ous camera settings with different lighting conditions, im-
age resolutions, and environments. This dataset includes
multiple object-level attributes such as a handbag, phone,
upper-clothing, and global attributes like gender, age, and
etc. The PETA dataset is created by aggregating 19,000
pedestrian images from 10 publicly available datasets, cov-
ering a variety of indoor and outdoor scenes. The dataset
is annotated with 61 binary attributes and four multiclass
attributes. The UPAR2024 dataset provided by the chal-
lenge organizer includes samples from PA100K, PETA,
and Market1501 [31] datasets, which are used for train-
ing and validation (UPAR2024 dev-test), and the testing set
(UPAR2024 private-test) is collected from a private source.

Implemental details. As previously stated, we have in-
tegrated two backbone networks into our system: SwinT
and EVA ViT. The SwinT architecture employs the base
version, while for EVA ViT, we have implemented the
large version. Notably, both networks are configured
with an embed dim of 1024, and solely rely on pre-trained
weights from ImageNet as their initial weights. We com-
pleted training the entire network within 10 epochs, ob-
serving that convergence typically occurs around the 4th or

355



Category Age Gender Hair length UB clothing length UB clothing color LB clothing length LB clothing color LB clothing type Backpack Bag Glasses Hat

Attributes

Young Female Short Short Black Short Black Trousers&Shorts Backpack Bag Normal Hat
Adult Long Blue Blue Skirt&Dress Sun

Elderly Bald Brown Brown
Green Green
Grey Grey

Orange Orange
Pink Pink

Purple Purple
Red Red

White White
Yellow Yellow
Other Other

Table 1. Lists of Pedestrian Attributes in UPAR dataset [24].

PETA [7] PA100K [18] UPAR2024 [5]
# scene - 598 -

# sample 19,000 100,000 159,171
# attribute 61 (+4) 26 40
# tracklet - 18,206 -

# resolution
from 17× 39
to 169× 365

from 50× 100
to 758× 454

from 16× 43
to 338× 766

Table 2. Dataset description.

5th epoch, yielding the best results. Adam optimizes the
model, while the learning rate is dynamically adjusted us-
ing the plateau scheduler (with parameters: factor = 0.1,
patience = 4). The initial learning rate is established at
1e − 6. During training, a batch size of 64 is employed.
To accommodate the human form, all images are resized to
256× 128.

Evaluation metrics. Following the UPAR Challenge
at WACV’241, we used the harmonic mean from mA and
instance-based F1 as evaluation metrics for the task 1. The
mA metric is used to calculate individual attributes, while
the instance-based F1 score is used to estimate the quality
predictions for all attributes associated with the persons.

Main results. Tab. 3 displays a comparison between
our approach and the most recent methods applied to the
PA100K and PETA datasets. When it comes to the PA100K
dataset, our evaluation results indicate that our proposed
approach outperforms the currently employed methods, in-
cluding both those with CNN-based and transformer-based
backbones, in terms of mA and F1 scores. Our method
surpasses state-of-the-art detectors in both two approaches
with an mA score, higher than them by margins of 2.4 and
0.3, respectively. Additionally, we achieved competitive re-
sults on the PETA dataset, securing the second-highest F1
score.

Moreover, the outcomes reveal the impressive capabil-
ities of methods employing transformer-based backbones,
with CNN-based approaches consistently yielding lower re-
sults in terms of mA score. This superior performance can
be attributed in part to the use of pre-training techniques

1https://chalearnlap.cvc.uab.cat/challenge/57/description/

in methods [3], [4], and [27]. Nevertheless, even without
leveraging information from pretraining tasks, our approach
still manages to deliver a competitive performance.

In order to solidify the demonstration of our method’s
effectiveness, we show the results of the private-test set
of UPAR challenge 2024 track 1, as depicted in Tab. 4.
Our method takes the second position on the leaderboard,
achieving an average score of 71.74, surpassing the offi-
cial baseline [5] by 2.32. It’s worth noting that our method
attains the highest performance in both F1label and F1inst
scores, with an F1label score that exceeds the solutions pre-
sented by sophere001 by 1.3, and an F1inst score that out-
performs the solutions provided by fanttee by 0.53.

Fig. 1 depicts a prediction from a sample in the
UPAR2024 dev-test dataset. The EVA ViT network demon-
strates its ability to capture global patterns, aiding in the
accurate recognition of visual attributes. Furthermore, the
SwinT blocks effectively capture local regions, correctly
identifying the person’s bag.

Ablations study. We conducted an ablation study using
five different settings: 1) f (v): single EVA ViT; 2) f (s):
single SwinT; 3) f (s),CASA: single SwinT with CASA in-
corporated on top of each block; 4) f (v) ⊕ f (s),CASA: the
feature vectors of f (v) and f (s),CASA are concatenated;
and 5) f (v)χf (s),CASA, denoted as C2T-Net. When com-
paring the performance of the two individual models, f (v)

and f (s), across all evaluation metrics in the PA100K and
UPAR2024 datasets, our findings suggest that EVA’s abil-
ity to capture global information provides an advantage in
multi-class classification tasks compared to SwinT. This is
because SwinT tends to focus on localized features, poten-
tially leading to a limited focus on specific regions and over-
looking valuable information from other parts of the image.
Such oversight can be crucial in achieving higher accuracy
across different labels. By utilizing the channel aspect in-
formation through the CASA mechanism positioned at the
top of each SwinT block (f (s),CASA), we observed an en-
hancement in the performance of SwinT. In Table 5, we
note a minor increase of +0.7 in mA, although there was
a slight drop in F1. When simply concatenating f (s),CASA

and f (v), some improvements were observed, although they
were marginal and not entirely clear. However, we found
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Method Backbone FT PA100K PETA
mA F1 mA F1

MsVAA [22] ResNet-101 ✗ – – 84.6 86.5
VAC [12] ResNet-50 ✗ 79.0 86.8 83.6 86.2
ALM [26] BN-Inception ✗ 80.7 86.5 83.6 86.9
JLAC [25] ResNet-50 ✗ 82.3 87.6 87.0 87.5
VFA [2] ResNet-50 ✗ 81.3 87.0 86.5 87.3
MSCC [32] ResNet-50 ✗ 82.1 86.8 – –
SB [14] ResNet-50 ✗ 81.6 88.1 84.0 86.3
UPAR [24] ResNet-50 ✗ 82.2 88.5 87.1 87.7
UPAR [24] ConvNeXt-B ✗ 84.8 90.2 88.4 89.9

SOLDIER [3] SwinT-B ✓ 86.4 – – –
UniHCP [4] Enc-Dec ✓ 86.2 – – –
PATH [27] ViT-B ✓ 86.9 – 89.8 –

C2T-Net (ours) SwinT-B + EVA-L ✗ 87.2 91.0 88.0 89.1

Table 3. Comparison of our C2T-Net with other state-of-the-art
models on the PA100K and PETA datasets.

Method Avg mA F1label F1inst

1st fanttec 71.83 71.14 45.25 72.54
3rd sophere001 71.59 70.89 46.30 72.31

Official baseline [5] 69.42 67.97 43.22 70.94

C2T-Net (Ours) 71.74 70.46 47.60 73.07

Table 4. Comparison of our C2T-Net with other participants on the
private-test set of UPAR challenge 2024 track 1.

Method PA100K
UPAR2024

dev-test

Avg mA F1 Avg mA F1

f (v) 87.9 85.2 90.7 87.6 85.8 89.4
f (s) 85.7 82.6 88.8 86.3 84.3 88.2
f (s),CASA 85.9 83.3 88.6 86.5 84.9 88.1
f (v) ⊕ f (s),CASA 87.8 85.4 90.3 87.7 85.6 89.8

f (v) χ f (s),CASA 89.1 87.2 91.0 87.9 85.9 90.0

Table 5. Ablation study on PA100K test set and UPAR2024 dev-
test.

significant improvements across all metrics and datasets by
employing the cross-fusion method before concatenation.
This approach yielded the best results of 89.1% and 87.9%
for the PA100K and UPAR2024 dev-test, respectively. We
employed this proposed model to evaluate the performance
on the UPAR2024 private-test, where it secured the 2nd
rank.

6. Conclusion
In summary, this paper introduces a Channel-Aware

Cross-Fused Transformer-Style Networks (C2T-Net) de-
signed to enhance the accuracy of the pedestrian attribute
recognition task. C2T-Net utilizes two transformer-based
architectures, SwinT and EVA ViT, with one focused
on capturing local features and the other on global fea-

tures. Channel-aware self-attention is proposed to ad-
dress the challenge of comprehending intricate relation-
ships in the perspective of channels. Lastly, our model
combines features from these two transformer-style net-
works to facilitate mutual understanding between local and
global features, ultimately boosting the model’s perfor-
mance.
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