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Abstract

This study introduces a novel methodology for the pre-
cise estimation of the three-dimensional (3D) pose of indi-
viduals based on images captured from aerial viewpoints,
particularly from top-to-bottom viewpoints. A motion cap-
ture system utilized for surveillance purposes is frequently
constrained in its ability to capture dynamic scenarios, pri-
marily due to the limited field of view of a third-person-
view camera. To address the problem at hand, various ap-
proaches employ aerial views to overcome limitations in
spatial constraints. Nevertheless, when observing the un-
manned aerial vehicle (UAV) from an aerial perspective, it
is common for the lower body to appear diminished and
obstructed by the upper body. This phenomenon results in
pose estimation that is highly unreliable and inaccurate. To
overcome the existing limitation, we present a novel ap-
proach that utilizes the Vector Quantized-Variational Au-
toEncoder (VQ-VAE) to accurately predict and optimize the
3D human pose from aerial images. Thus, we introduce a
novel pipeline for pose estimation and optimization using
the codebook by learning aerial image features and pose
features from large human pose datasets with VQ-VAE. The
proposed method with the vector quantizer of VQ-VAEs can
help improve the generalization capabilities of 3D pose esti-
mation from aerial top-to-bottom viewpoints. Through con-
ducting comparative experiments, our method has demon-
strated a substantial enhancement in performance com-
pared to those of existing state-of-the-art methods.

1. Introduction
In recent years, many graphics applications, such as

games, augmented reality (AR), and virtual reality (VR),
are based on 3D human poses. As technology advances,
not only graphics applications but also dangerous situations
through action recognition of 3D human poses are being

∗Corresponding author.

Input Aerial Image HMR
(Single-view)

AirPose
(Two-view)

Ours
(Single-view)

Figure 1. Predicted 3D poses (red) are overlaid on the ground truth
(blue). Although our method uses a single-view as input, it is com-
parable to the results of AirPose [28] using multiple views, and
shows significantly more accurate pose prediction performance
than HMR [10] using the same single-view.

applied to various surveillance situations. Previously stud-
ied 3D human pose estimation methods are broadly divided
into marker-based motion capture (MoCap) and markerless
systems using only RGB cameras [6,15,20,24]. The mark-
erless system is used when the target is unable to wear active
or passive markers, which is a standard method for 3D pose
estimation in surveillance situations. Since these markerless
systems use calibrated multi-view cameras, there is a strong
physical requirement that the subject never leaves the fixed
recording volume inside the laboratory. However, in vari-
ous surveillance situations, the target does not stay within
the fixed recording volume, rather the target moves wher-
ever they want, thus the use of a markerless system with
multi-view cameras is not appropriate.

For this reason, some methods utilize the view of an un-
manned aerial vehicle (UAV) to avoid spatial constraints of
capturing the target. The images captured from the top-to-
bottom view on the UAV include the normal camera view,
but also those captured from right above the target, result-
ing in significant occlusion. Since the situation of captur-
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Figure 2. An architecture overview of the proposed method. The pose estimator takes a single-view aerial image as input and extracts a
2D joint heatmap from the image. The features are then extracted from the heatmap to obtain the closest latent vector in the codebook, and
this is used to estimate the 3D pose. The pose optimizer takes as input an estimated 3D pose with increased channels for coordinates via
positional encoding to extract features. From these features, the closest latent vector in the codebook is then retrieved and used to predict
the optimized 3D pose. These consecutive processes for 3D pose estimation increase the generalization performance for unseen or highly
occulded data, allowing accurate predictions of 3D human poses for top-to-bottom viewpoint images.

ing the target from the top viewpoint is not common, 3D
pose estimation for such images using conventional meth-
ods [10] (HMR) is challenging, as shown in Fig. 1, where
AirPose [28] uses multi-view UAV images for 3D pose es-
timation. However, this method has a strong restriction of
multi-view and, in practical situations, it is common to use
only one UAV. Therefore, we restrict ourselves to accurately
predicting the 3D pose from a top-to-bottom view of the tar-
get, from images captured by a single UAV.

Images taken from the top-to-bottom view often have
more occlusion than normal, similar to egocentric images.
Thus, several efforts have been made to address the prob-
lem in 3D pose estimation from the top-to-bottom view im-
ages. Xu et al. [41], predicted the 3D pose by predicting
the depth of each joint based on the heatmap of the 2D
joints predicted from the input image. Tome et al. [34] pre-
dicted the 3D pose by regressing the location of 3D joints
on a heatmap. However, these methods have the limitation
that the 3D pose determined by self-occlusion is not accu-
rate. Wang et al. [37] proposed a method in which 3D poses
are estimated against existing methods [34, 41]. Then they
trained a 3D pose optimizer using a structure of Variational
AutoEncoder (VAE) pre-trained on a large-scale human 3D
pose dataset (i.e., AMASS [17]) to produce an accurate 3D
pose from the top-to-bottom viewpoint.

Despite these efforts, arm or leg joint positions are often
incorrectly predicted by 3D human pose estimation meth-
ods. In order to overcome these problems, we employed
Vector Quantized-Variational AutoEncoder (VQ-VAE) to

predict and optimize human position from photographs cap-
tured from aerial viewpoints. Here, we introduce a novel
pipeline for pose estimation and optimization using the
codebook by learning image features and pose features from
aerial-view images with VQ-VAE. The utilization of the
vector quantizer in VQ-VAE has been proposed as a method
to enhance the generalization capabilities of 3D pose esti-
mation when dealing with top-to-bottom viewpoint images.
Our method shows a significant performance gain for 3D
pose estimation thanks to the vector quantizer of VQ-VAEs.
An example of pose estimation comparisons between the
proposed and current state-of-the-art methods from aerial
viewpoint image is illustrated in Fig. 1. We used an im-
age in AirPose [28] synthetic data, where human images
with the corresponding poses are constructed from the view
of an unmanned aerial vehicle (UAV). The outperformed
performance demonstrates the generalization ability in 3D
pose estimation over current state-of-the-art pose estimation
methods.

2. Related work
2.1. 3D Human Pose Estimation

Markerless human pose estimation is a well-established
and extensively studied field within the domain of com-
puter vision. Among the various approaches for 3D human
pose estimation, two prominent methods are those utilizing
multi-view cameras and those employing monocular cam-
eras. Methods that employ multi-view cameras [5,6,39,42]
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use calibrated information from cameras to transform the
2D human pose, predicted from images captured by each
camera, into a 3D pose using bundle adjustment [35]. In re-
cent years, there has been significant progress in the field of
predicting 3D pose using features extracted from multiple
multi-view images. In particular, the methods in [39, 44]
have conducted research on this topic, employing deep
learning techniques, such as transformers. These studies
have demonstrated the effectiveness of utilizing deep learn-
ing methods for predicting 3D pose based on multi-view
image features.

Furthermore, research has been conducted on the de-
velopment of techniques utilizing monocular cameras to
progress from merely predicting a 2D pose on a 2D image
to predicting a 3D pose, aligning with the advancements
in deep learning. Methods for predicting the 3D pose di-
rectly from an image have been extensively investigated in
two main directions. The first direction involves predict-
ing the depth of a predicted 2D human pose [21, 41, 45].
The second direction focuses on predicting the 3D pose
of an image through regression [18, 31, 34]. An alterna-
tive methodology involves the extraction of a 2D pose from
an image, followed by lifting the 2D pose to a 3D pose
through the utilization of a new neural network. These ap-
proaches have used fully connected networks [4, 19], tem-
poral convolutional networks [2, 26], graph convolutional
networks [1, 3, 38], and transformer networks [13, 30]. Fi-
nally, a method has been developed to accurately align a
human parametric mesh with a 2D image by utilizing the
SMPL model [16] . This approach enables the estimation of
a human’s 3D pose and mesh [10]. To tackle the challenge
of achieving human 3D pose estimation in challenging sce-
narios, such as capturing a target from an aerial viewpoint
in a top-to-bottom view, we employed the following meth-
ods [34, 37, 41], as comparison methods, which focus on
egocentric view 3D human pose estimation, have the most
similar domain to the top-to-bottom view. We conducted a
comparative analysis of our method with AirPose [28] as
a reference method, as well as HMR [10], which serves as
the baseline of that method, although it does not use a single
view image for effective comparisons.

2.2. Flying Motion Capture Systems

As the utilization of aerial robots continues to gain pop-
ularity, the graphics community has recently put forth a
range of tools and algorithms aimed at planning physically
realistic quadrotor camera trajectories for aerial videogra-
phy. These tools facilitate the strategic design of aerial
shots within a 3D virtual environment, employing offline
optimization techniques to consider both aesthetic objec-
tives and constraints related to robot modeling. The meth-
ods presented in [9] and [7] generate quadrotor trajectories
based on user-defined space-time keyframes. On the other

hand, the method proposed in [27] takes a physically in-
feasible trajectories by adjusting the velocity according to
a non-linear quadrotor model, resulting in the computation
of the closest feasible trajectory. The work in [7] examines
the various factors that influence the recognition of aerial
images and presents an optimization scheme derived from
the findings. All of the aforementioned methods are offline
in nature, rendering them incapable of generating control
inputs suitable for application in a dynamic environment.
Utilizing model predictive control (MPC) formulations, the
work in [22] optimizes cinematic constraints, such as visi-
bility and position on the screen, considering the robot con-
straints for a single quadrotor. The work of [22] extends this
work to multiple drones to facilitate actor-centric tracking
along geometric paths. In the field of robotics, researchers
have proposed various methods for reconstructing 3D tra-
jectories of individuals in motion using a camera mounted
on a micro-automated vehicle (MAV) while simultaneously
mapping the surrounding environment [12, 14]. In contrast,
the objective of this paper is to reconstruct the full 3D body
pose of a subject in motion, while simultaneously planning
the trajectory of the MAV in such a way that markers be-
come visible. To successfully complete this task, it is neces-
sary to employ multiple quadrotors and accurately estimate
their positions, as well as the positions of the skeletal joints.

Recently, researchers have been utilizing a single UAV
equipped with a camera to develop two novel technologies:
Flycons [23] and Drocap [46]. Flycon necessitates the uti-
lization of LED markers on subjects, which employ the ad-
vanced infrared-based MoCap algorithm. The Drawcap is
a markerless approach that employs a low-latency fitting-
based method to calculate the 3D skeleton of the subject.
Additionally, the UAV remains in a fixed position through-
out the entire sequence. Flycap [40] uses RGB-D cam-
eras mounted on multiple UAVs within an indoor setting
to generate a sequence of 3D point clouds for reconstruc-
tion purposes over a period of time. AirCap [32] proposed
a method for autonomous UAV formation to capture multi-
view imagery and optimize 3D poses and geometry for of-
fline [29] using onboard GPS-based self-localization for ac-
curate positioning. In the present study, we introduce a
novel methodology for accurately estimating 3D poses us-
ing a single aerial view image.

3. Method

3.1. Architecture

The schematic representation of the proposed method-
ology for human 3D pose estimation is illustrated in Fig.
2. Our methodology endeavors to accurately predict human
3D pose of humans from an aerial view image captured by
a UAV mounted camera. To achieve our objective, our ap-
proach involves utilizing a pose estimator that predicts a 3D
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Figure 3. 3D human pose estimation results on AirPose real data.
Our method shows accurate 3D pose estimation performance even
in situations where some parts of the target’s body are partially
occluded.

pose from an input aerial image. Additionally, we employ
a pose optimizer to generate a 3D pose that closely resem-
bles the one predicted by the pose estimator as input. The
pose estimator is trained by utilizing a dataset consisting
of aerial images and corresponding human 3D pose pairs,
while the pose optimizer is trained on a varied and com-
prehensive collection of human 3D poses. The estimator
and optimizer employ the VQ-VAE framework to learn a
codebook that captures the overall distribution of features
derived from aerial viewpoint images and human 3D poses.
Our methodology enables the prediction and optimization
of the pose for a new image or pose by utilizing the latent
code that is most similar to it. Thus, this approach effec-
tively provides valuable insight into the distribution of the
dataset through the codebook.

3.1.1 Pose Estimator Architecture

The pose estimator estimates a human 3D pose from an
aerial image. The initial stage of the pose estimator in-
volves the utilization of a variation of ResNet [8] to predict
the heatmap. Additionally, a convolutional neural network
(CNN) and fully connected layers (FC) are used to extract
the features of the aerial image, with the predicted heatmap
serves as input. In the intermediate stage, the convolutional
neural network (CNN) and fully connected layers (FC) are
used to extract features from aerial images. These fea-
tures are then utilized to train a codebook for aerial image
features using the Vector Quantization Variational Autoen-
coder (VQ-VAE) method. Subsequently, the latent code that

closely resembles the features extracted from the codebook
is retrieved. In the final stage, the human 3D pose is pre-
dicted by regressing it on the most closely related latent
code from the VQ-VAE. We adopt the network architec-
tures proposed in [34] for pose estimation and one in [36]
for VQ-VAE.

3.1.2 Pose Optimizer Architecture

The pose optimizer is employed to address the issue of in-
accuracies arising from monocular aerial images and self-
occluded regions. The pose optimizer utilizes a process to
extract the features of the estimated human 3D pose. These
features are then transferred to the pose latent space, where
the optimizer retrieves the most similar latent code from the
codebook to recover the human 3D pose. Here, the VQ-
VAE utilized by the pose optimizer is not trained on an
aerial image dataset, but rather on a comprehensive real-
world human 3D pose dataset. This enables the model to
learn the codebook for various human motions. The pro-
posed method facilitates the restoration of a natural pose
based on a 3D human pose in the real world. Instead of di-
rectly using the locations of the 3D joints as input, we used
positional encoding (PE) [33] to enhance the channel of the
location. We adopt the architectural framework of the pose
optimizer as described in [36].

3.2. Losses

Our method uses two loss functions for pose estimation
[34] and pose optimization [43].

3.2.1 Pose Estimation Loss

First, the pose estimator is trained using the following loss
function as

Lpose = L2D + λAELAE + λvqLvq (1)

whereL2D is the 2D pose detection loss, LAE is the autoen-
coding loss, and Lvq is the vector quantization loss [36].
The objective of the 2D pose detection loss L2D is to fa-
cilitate the training of the ResNet component responsible
for predicting the heatmap of the aerial image. The autoen-
coding loss LAE helps the pose estimator by aiding in the
prediction of the pose from the heatmap.

3.2.2 Pose Optimizer Loss

We use the vector quantization loss Lvq in (1) for pose esti-
mation. In other words, we use the vector quantization loss
Lvq in (2) only in the training process of the pose estimator.
In detail, the vector quantization loss Lvq is composed of
three loss terms as

Lvq = Lre + λembedLembed + λcommitLcommit (2)
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Figure 4. 3D human pose estimation results on real-world im-
age. Our method predicts accurate 3D poses from a variety of
real-world images. This demonstrates the high generalization per-
formance of our proposed method. c© Martin Sanchez (left col-
umn) and Red Zeppelin (right column) uploaded in Unsplash.

where Lre is the reconstruction loss, Lembed is the embed-
ding loss, and Lcommit is the commitment loss. The re-
construction loss Lre optimizes the VQ-VAE encoder and
decoder of the VQ-VAE model, aiming to minimize the dis-
crepancy between input and output. The embedding loss
Lembed makes the learning of feature vector values ex-
tracted by the encoder within the codebook’s latent code.
The commitment loss Lcommit ensures that the features ex-
tracted by the encoder closely align with the latent code in
the codebook.

4. Experiments

4.1. Datasets

We used the AirPose dataset [28] and the AMASS
dataset [17] for the pose estimator and pose optimizer, re-
spectively. The AirPose dataset [28] was constructed for
multi-view aerial 3D human pose estimation and consists
of synthetic and real-world datasets. The synthetic dataset
was generated using Unreal Engine (UE) to render realis-
tic human scans [25] from the viewpoints of two UAVs.
The synthetic dataset consists of a total of 60,000 images
(30,000 images per UAV) and is accompanied by SMPL-X
fittings for the scans, from which 3D poses can be gener-
ated. The real-world dataset consists of two real data se-
quences acquired by two DJI Mavic UAVs equipped with
RGB cameras. One of the UAVs hovers in place, and the
other one is manually flown around the target. We used the

AirPose synthetic dataset for training.
The AMASS dataset [17] is a comprehensive collection

that integrates 15 distinct motion capture datasets. In the
AMASS dataset, a thorough manual inspection was carried
out to correct and integrate all data, specifically focusing on
identifying and rectifying any instances of swapped or mis-
labeled joint markers in human 3D poses. The dataset com-
prises a total of 344 subjects, encompassing 11,265 motions
and spanning a duration of 40 hours of recordings.

4.2. Implementation Details

We used 15 of the 23 SMPL joints for our experiments,
excluding hands, collars, spines, and pelvis for simplicity.
This simplification helps to obtain more results from self-
occluded images.

Similarly to AirPose [28], the original was not used di-
rectly for the input image, but the bounding box of the target
human was cropped and the image was resized to 224×224
to ensure that the proportions of the human did not change.
AirPose uses the SMPL parameters predicted by HMR [10]
with the corresponding images as initial input. Still, our
method first uses only human images as input to predict the
heatmap for the 2D joint location. Thus, we generated the
2D joint heatmap from the dataloader for training. Simi-
larly, our method directly predicts 3D human pose, and thus,
unlike AirPose, it extracts and uses 3D joint locations from
SMPL parameters.

4.3. Evaluation Metrics

Similar to previous studies [37], we conducted a compar-
ative analysis of the performance of our method using two
different metrics: Procrustes Analysis-Mean Per Joint Po-
sition Error (PA-MPJPE) and Bone length Aligned-Mean
Per Joint Position Error (BA-MPJPE). PA-MPJPE aligns
the estimated pose and the ground truth pose using Pro-
crustes analysis [11] and subsequently computes the aver-
age error between the joint positions. BA-MPJPE calculates
the average discrepancy in joint positions between a resized
estimated pose and a ground truth pose. This alignment
is achieved through the Procrustes analysis, which scales
the poses to match the bone length of a standard skeleton.
Therefore, PA-MPJPE assesses the accuracy of the pose in
its actual form, whereas BA-MPJPE evaluates the normal-
ized accuracy of the pose after removing the body scale.

4.4. Qualitative Results

In Fig. 3 and Fig. 4, it can be seen that our proposed
model accurately predicts the 3D human pose from real
aerial top-to-bottom view images. In particular, Fig. 3
shows the qualitative results for selected frames extracted
from the AirPose real dataset. From this set of results, it can
be seen that the estimated 3D human pose is accurately pre-
dicted for the input human image, even for images not used
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in training. Since our method includes a pose optimizer,
we can see that even in this case of severe occlusion, the
pose is accurately predicted for the unseen parts. Addition-
ally, qualitative results for aerial top-to-bottom view images
obtained from the image-sharing site, Unsplash, are shown
in Fig. 4. In particular, the person wearing yellow in the
second row of captured images has a highly elevated aerial
viewpoint from the ground. These results confirm that our
proposed method accurately predicts even very challeng-
ing poses, such as the human pose of moving forward on
a skateboard. These results confirm that the estimated 3D
human pose is accurately represented for the input human
image, even for images not used in training.

Fig. 5 shows a qualitative comparison of the different
methods trained on the AirPose synthetic dataset. Since
aerial top-to-bottom view images are challenging with a
large self-occluded region similar to egocentric images, we
used Mo2Cap2 [41] and xR-egopose [34] as comparison
methods. We also used the Wang et al. method [37] as com-
parison methods, which added a VAE optimizer to each of
these methods. Since these methods do not predict SMPL
parameters but directly predict 3D human pose, these meth-
ods were trained with approaches described in the imple-
mentation details along with our method. Furthermore, we
also compared the HMR [10] used as a baseline in AirPose.
In addition, we compared AirPose [28] with multi-view im-
ages, which allows us to make a qualitative comparison of
the difference between our method and the method with
multi-view images.

Other methods, except for AirPose [28], use single-view
images as input, so we can see that they are generally not
accurate in predicting the 3D pose in situations with a high
degree of self-occlusion. In particular, it can be seen that
the Wang et al. method [37], which optimizes the pose via
VAE, predicts the pose more accurately than using vanilla
Mo2Cap2 [41] and xR-egopose [34]. However, since the
method of Wang et al. optimizes the previously predicted
3D pose, when the estimated 3D pose used as input is sig-
nificantly different from the ground truth, the 3D pose af-
ter optimization shows a significantly different appearance
from the ground truth. Furthermore, since HMR [10] uses
the method of fitting an SMPL mesh to a 2D image, it can be
seen that the pose prediction of that part is not accurate due
to the lack of information in the part where self-occlusion
occurs. In contrast, our method estimates the pose more
accurately than other methods using the VQ-VAE pose es-
timator and optimizer. Finally, we can see that the perfor-
mance of our method is comparable to the results of Air-
Pose [28], which uses multi-view images as input, when
compared to other methods. This demonstrates that our
method has achieved high generalization performance on
datasets trained with VQ-VAE and that it is robust to self-
occlusion.

Table 1. Experimental results on AirPose synthetic test dataset.
AirPose [28] uses two-view images as input, and the other meth-
ods, including ours, use single-view images as input. The pro-
posed method exhibits the highest level of accuracy compared to
other single-view based methods, thereby highlighting the signifi-
cant advantage of the proposed approach.

PA-MPJPE (↓) BA-MPJPE (↓)

Mo2Cap2 [41] 107.24 80.69
Mo2Cap2+Wang [37] 95.43 71.18
xR-Egopose [34] 102.12 76.49
xR-Egopose+Wang [37] 91.24 68.76
HMR [10] 92.35 69.57
Ours 78.60 62.01

AirPose [28] 75.88 59.61

4.5. Quantitative Results

We used the AirPose synthetic test dataset [28] for quan-
titative results comparison. We extracted joints from the
SMPL parameter provided by the AirPose synthetic test to
compare PA-MPJPE and BA-MPJPE for the 15 joints used
for training. For quantitative comparisons with state-of-the-
art methods, we used the same comparison methods used
in qualitative comparison, as described in Fig. 5. The
results of the quantitative measurements in terms of PA-
MPJPE and BA-MPJPE are summarized in Table 1. Air-
Pose [28] uses multi-view images as input, thus it is listed
separately at the bottom of the Table 1. It can be seen that
the method [37] of Wang et al. with VAE-based pose op-
timizer outperforms Mo2Cap2 [41] and xR-egopose [34]
without pose optimizer for each case. However, despite us-
ing a pose optimizer, the method of Wang et al. performs
similarly to HMR [10]. This is because HMR predicts the
pose based on the SMPL parameters and these parameters
also act as strong constraints on the pose. We can verify
that our method predicts 3D pose most accurately among
single-view methods by the results showing that ourper-
forms better than Wang et al.’s method and HMR. The
results quantitatively show that our method has increased
the accuracy of pose estimation over current state-of-the-
art methods based on the better generalization performance
that is achieved through VQ-VAE. Furthermore, it can be
seen that the MPJPE of AirPose [28] and the MPJPE of our
method are not significantly different, demonstrating that
our method predicts the 3D pose in single-view situations
as accurately as multi-view due to the significant general-
ization performance of VQ-VAE.
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Input Image Mo2Cap2 Mo2Cap2+Wang xR-egopose+WangxR-egopose HMR Ours AirPose

Figure 5. Qualitative comparisons of aerial 3D pose estimation on AirPose synthetic dataset. Predicted 3D poses (red) are overlaid on
the ground truth (blue). Here, AirPose [28] uses two-view images as input, and the other methods, including ours, use the corresponding
single-view input image illustrated in the figure. The proposed method demonstrates superior accuracy in estimating the 3D pose compared
to other single-view pose estimation methods. Additionally, the accuracy of the 3D poses obtained from our methodoloy is on par with that
of the multi-view pose estimation technique.

4.6. Ablation Study

In the ablation study, a comparison was made between
our proposed method and two other approaches: without
VQ-VAE in the pose estimator (referred to as “w/o VQ-
VAE in Estimator”), and without pose optimizer (referred
to as “w/o Pose Optimizer”). The evaluation was performed
on the AirPose test dataset, and the results are presented in
Table 2. w/o VQ-VAE in Estimator has a similar structure to
vanilla xR-egopose [34] but with a VQ-VAE based pose op-
timizer added to the pose estimator. In w/o VQ-VAE in Esti-
mator, the pose optimizer is used, but the performance of 3D
pose prediction is lower than our complete method because
VQ-VAE is removed from the features extracted by the esti-
mator. However, it performs better than the method of Wang
et al. [37] in Table 1, which confirm that the VQ-VAE based
pose optimizer has better optimization performance than the
VAE-based pose optimizer. In w/o Pose Optimizer, the per-
formance of pose estimator alone without pose optimizer is
worse than w/o VQ-VAE in Estimator. However, the w/o
Pose Optimizer shows better performance than the results
of Mo2Cap2 [41] and xR-egopose [34] results in Table

1. Moreover, w/o Pose Optimizer shows higher pose esti-
mation performance than the methods of Wang et al. [37]
and HMR [10], since the VQ-VAE based pose estimator
can predict more accurate 3D pose than other methods even
in single-view with the generalization performance of VQ-
VAE in predicting 3D pose from an image.

Fig. 6 shows the qualitative results of the ablation study.
In the case of w/o Pose Optimizer, it shows the problem
of inaccurate pose of occluded body parts in aerial images
with significant self-occlusion. The reason for this problem
is that the pose optimizer learns the pose prior of the body
joints to compensate for the 3D pose, whereas the pose es-
timator predicts the 3D pose based on the 2D heatmap pre-
dicted from the input image, making it difficult to correct
for an erroneous 3D pose. On the contrary, in the case of
w/o VQ-VAE in Estimator, it can be seen that the VQ-VAE
based pose optimizer corrects the 3D pose predicted by the
vanilla pose estimator well and produces a comparatively
accurate 3D pose.
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Input Image w/o VQ-VAE in Estimator w/o Pose Optimizer Ours

Figure 6. Ablation comparisons of aerial 3D pose estimation on
AirPose synthetic dataset. Predicted 3D poses (red) are overlaid on
the ground truth (blue). Without the pose optimizer, it can be seen
that inaccurate 3D poses are predicted for body joints with strong
self-occlusion, illustrating the effectiveness of the pose optimizer.

Table 2. Quantitative results of ablation study. The results indi-
cate that VQ-VAE and pose estimator play a significant role in im-
proving 3D pose estimation accuracy. It can be seen that the per-
formance of w/o VQ-VAE in Estimator and w/o Pose Optimizer
is comparable, which indicates that it is difficult to optimize the
ground truth pose when an inaccurate 3D pose from the human
pose model is input to the pose estimator.

PA-MPJPE (↓) BA-MPJPE (↓)

w/o VQ-VAE in Estimator 86.27 66.31
w/o Pose Optimizer 88.49 67.04
All 78.60 62.01

4.7. General Discussion

Our proposed method uses regression to predict 3D hu-
man pose based on 2D joints heatmap obtained from input
aerial image in pose estimator. Then, the estimated 3D pose
is corrected by a pose optimizer that has learned a 3D hu-
man pose prior through a large human 3D pose dataset. Our
proposed method has shown significantly more accurate 3D
pose estimation results than other state-of-the-art methods
[10, 34, 37, 41], and comparable results to AirPose using
two-view [28]. This means that the VQ-VAE based pose
estimator predicts an precise 3D pose and the optimizer cor-
rects the pose accurately in the part where self-exclusion oc-
curs, resulting in a comparable performance to the method
using two-view. The results show that our method signif-
icantly improves the generalization performance compared
to the comparison method, which is very robust to 3D pose
detection for unseen images and challenging images from

top-to-down viewpoints, demonstrating the advantages of
our method.

5. Conclusion

This study presents a novel approach for accurately esti-
mating the 3D poses of humans using images obtained from
aerial perspectives, specifically from top-to-bottom angles.
The proposed method has addressed limitations in its capac-
ity to capture dynamic scenarios, mainly attributed to the re-
stricted field of view of a third-person-view camera. When
conducting an aerial observation from top-to-bottom view-
points, it is frequently observed that the lower body appears
to be diminished and obstructed by the upper body. This
phenomenon leads to pose estimation that is characterized
by a high degree of unreliability and inaccuracy. To address
the current constraints, we introduce a structure that incor-
porates VQ-VAE into the pose estimator and pose optimizer
for accurate 3D pose prediction. In particular, we propose
an innovative pipeline for pose estimation and optimization.
Our approach involves using a codebook to learn aerial im-
age features and pose features from extensive human pose
datasets with the aid of VQ-VAE. The proposed method
with the vector quantizer of VQ-VAEs presents a promising
approach to enhance the generalization abilities of 3D pose
estimation from aerial top-to-bottom viewpoints. The per-
formance improvement of the VQ-VAE-based pose estima-
tor and pose optimizer is demonstrated through comparison
experiments with state-of-the-art methods and an ablation
study, which confirms that VQ-VAE has good generaliza-
tion performance in the pose estimation task. Furthermore,
it is shown that the accuracy of 3D pose estimation from
single-view images using VQ-VAE can be improved by us-
ing multi-view images.

The proposed technique is aimed at local 3D human pose
estimation using images from single UAV mounted RGB
camera, or images from top-to-bottom viewpoints, but we
expect that it can be extended to perform global 3D hu-
man pose estimation using non-rigid structure-from-motion
or simultaneous localization and mapping in the future.
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