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Abstract

To detect unmanned aerial vehicles (UAVs) in real-time,
computer vision and deep learning approaches are evolv-
ing research areas. Interest in this problem has grown due
to concerns regarding the possible hazards and misuse of
employing UAVs in many applications. These include po-
tential privacy violations. To address the concerns, vision-
based object detection methods have been developed for
UAV detection. However, UAV detection in images with
complex backgrounds and weather artifacts like rain has
yet to be reasonably studied. Hence, for this purpose, we
prepared two training datasets. The first dataset has the
sky as its background and is called the Sky Background
Dataset (SBD). The second training dataset has more com-
plex scenes (with diverse backgrounds) and is named the
Complex Background Dataset (CBD). Additionally, two test
sets were prepared: one containing clear images and the
other with images with three rain artifacts, named the Rainy
Test Set (RTS). This work also focuses on benchmarking
state-of-the-art object detection models, and to the best of
our knowledge, it is the first to investigate the performance
of recent and popular vision-based object detection meth-
ods for UAV detection under challenging conditions such
as complex backgrounds, varying UAV sizes, and low-to-
heavy rainy conditions. The findings presented in the paper
shall help provide insights concerning the performance of
the selected models for UAV detection under challenging
conditions and pave the way to develop more robust UAV
detection methods. The codes and datasets are available at:
https://github.com/AdnanMunir294/UAVD-
CBRA.

1. Introduction

UAVs have been gaining increasing popularity in recent
years for a variety of uses, including aerial photography, de-

Figure 1. Rain artifacts degrade the performance of a state-of-the-
art model for UAV detection; bottom-row shows the missed UAVs
and low-confidence detections of the model due to rain artifacts.
These vividly highlight the adverse effects of weather and complex
backgrounds on UAV detection accuracy, highlighting the impli-
cations of rain-induced distortions and artifacts for detection and
localization models in real-world surveillance.

livery services, and surveillance. However, the proliferation
of drones has generated privacy, security, and safety issues.
Drones can be employed for harmful objectives, such as
carrying illegal goods or performing uninvited monitoring.
There is an increasing demand for effective drone detection
and identification technologies to address these security and
privacy concerns.

Vision-based analysis (of images and videos), which
uses computer vision algorithms to detect and track drones
in real-time, is one of the most promising drone detection
approaches. Such vision-based systems have advantages
over other approaches (e.g., radar-based), including im-
proved accuracy, cheaper costs, and the potential to gather
visual evidence for prosecution [1]. Several vision-based
UAV/drone detection methods have been presented in the
literature based on object detection methods, motion analy-
sis, and machine learning-based algorithms. Object detec-
tion methods recognize the UAVs/drones as objects of inter-
est in photos or videos, whereas motion analysis techniques
detect the drones’ movement patterns. Machine learning-
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Figure 2. Sample images from the proposed Sky Background Dataset (SBD) and Complex Background Dataset (CBD) are shown. The red
bounding boxes show the original location of the UAV in each image.

based algorithms use methods such as convolutional neural
networks (CNNs) to train the system to detect the visual as-
pects of the drone [2].

The methods used to detect, identify, and locate un-
manned aerial vehicles (UAVs) in specific airspace are re-
ferred to as UAV or drone detection methods. To detect
and track drones, several sensors such as radar, electro-
optical/infrared (EO/IR) cameras, and acoustic sensors can
be used. Radar systems detect drones by detecting radio
wave reflections, whereas acoustic sensors detect the spe-
cific sound signature of UAVs. Drones may be detected us-
ing EO/IR cameras that recognize visual features such as
form, size, and color [3]. Furthermore, some drone de-
tection systems analyze communication data and discover
patterns related to drone activity using artificial intelligence
and machine learning algorithms. These different sensing
modalities present their respective pros and cons. This work
focuses on vision-based UAV detection methods.

The UAV detection methods in the literature have not
been well investigated for multi-scale UAV detection, espe-
cially under the effect of weather conditions such as rain.
This motivates us to study how cutting-edge object detec-
tion methods would perform for detecting UAVs of varying
scales in varying complex backgrounds, especially under
the effect of rain.

Contributions: This paper makes the following contribu-
tions:

• Two types of datasets with UAVs and Birds are col-
lected and curated in this study: one with only a sky
background and the other with diverse, complex envi-
ronments such as urban, semi-urban, indoor, outdoor,
mountains, sunny, and cloudy, each with various light-
ing conditions.

• To the best of our knowledge, this is the first work
to investigate the performance of one-stage and two-

stage object detectors for UAV detection on the pro-
posed datasets.

• In addition, for the first time to the best of our knowl-
edge, this work investigates and analyses the impact of
three types of rain artifacts on the UAV detection per-
formance of object detectors on a novel test set. The
datasets will be publicly released for reproducibility
and further research.

2. Related Work

This work focuses on vision-based UAV detection; hence,
this section reviews relevant related works.

In [4], the authors investigated the recognition of small
drones in videos using deep learning techniques. Au-
thors experimented with CNN models such as ResNet-101,
Inception with Faster RCNN, and Single Shot Detector
(SSD) [5]. The tests that combined the ResNet-101 basic ar-
chitecture with Faster-RCNN produced the best results. The
authors trained the network with transfer learning from pub-
licly accessible pre-trained COCO models to hasten conver-
gence using the Drone vs Bird dataset [6] in their work. The
Faster RCNN with ResNet101 achieves better mean average
precision (mAP) than InceptionV2 [7] and SSD. As they are
comparing the different algorithms, the execution time and
statistical testing of each model are not performed.

The work of [8] proposed a drone detection system based
on the Birds vs Drone dataset [6]. The model is then eval-
uated using their custom-collected dataset from two dif-
ferent drone videos. YOLOv4 [9] model is fine-tuned on
the custom dataset. By using transfer learning, they made
the Darknet [10] framework compatible with their own pro-
posed system. The last three YOLO and convolutional lay-
ers were fine-tuned on the two classes. The custom dataset
used in their study is collected from different drone videos
with additional sunlight and background conditions. The
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achieved video detection frame per second (FPS) is 20.5.
Only a custom dataset is used to tune the neural network.
Their work is only limited to YOLOv4 [9], and no other
object detector is examined.

In [11], with the help of 241 videos containing 331,486
images, the authors applied and tested four detection and
three tracking algorithms. The detection algorithm achieves
an overall reasonable mAP, while the tracking algorithm ob-
tains a good Multi-Object Tracking Accuracy (MOTA). The
authors considered the Faster-RCNN [12], YOLOv3 [13],
SSD [5], and DETR [14] methods for object detection.
The SORT [15] and DeepSORT [16] algorithms are uti-
lized for object tracking. This study combined the MAV-
VID [17], Anti-UAV [18], and Drones-vs-Bird datasets for
training and testing. However, none of the used datasets in-
cluded adverse weather conditions. Although Faster RCNN
is reported to achieve the highest mAP for recognizing tiny
UAVs, YOLOv3 [19] had the highest overall mAP. DETR
[14] works effectively with cross-modal videos as a detec-
tion backbone for tracking systems for microscopic objects.

A multi-featured and advanced UAV detection network
for SafeSpace is proposed by [20], based on an improved
version of the YOLOv5 [21] detection method. For accu-
rate and fast detection of small objects, authors changed
the backbone and neck of the YOLOv5 network to develop
MFNet. To increase the sensitivity and scalability of fea-
ture extraction in the YOLOv5s model, the authors changed
the kernel size (KS) in the backbone and neck, resulting in
changes to the size of the extracted feature maps. Three ver-
sions of MFNet were proposed: MFNet-S, MFNet-M, and
MFNet-L, based on their small, medium, and large kernel
and feature map sizes. Authors collected over 5105 images
of UAVs and birds from the publicly accessible open-source
datasets on the Roboflow [22] to train the proposed MFNet
architecture.

Compared to the YOLOv5s model, the MFNet-M model
achieved a better average precision, average recall, mAP,
and IoU, which also gets substantial benefits for other
MFNet models. MFNet-M obtained the best precision on
the Birds class; however, for UAVs, the maximum preci-
sion is also reasonable and better than other versions of
MFNet. However, their work only considered birds and one
type of drone, which makes their developed models suffer
in cases of varying drone types. For example, kites in the
background were also detected as drones by their method.

3. Proposed Datasets
As a part of this work, several datasets were reviewed

and acquired from various publicly accessible or pub-
lished sources. Following the review, several datasets were
merged to build custom and more challenging datasets with
two distinct categories for training and one for testing.

The first category, named Sky Background Dataset
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Figure 3. Sample images from the proposed Complex Background
Test Set (CBTS) and Rainy Test Set (RTS). Three types of rain
artifacts applied are drizzle, heavy and torrential. The top row
shows the original clean image (before applying artifacts).

(SBD), comprises 3888 images, which exclusively feature
a sky background, as illustrated in Fig. 2 (top-row). The
second category with 12,492 images, named Complex Back-
ground Dataset (CBD), includes diverse backgrounds such
as urban, semi-urban, indoor, outdoor, mountains, sunny,
and cloudy, each with different lighting conditions, as de-
picted in Fig. 2 (bottom-row). The third dataset, named
the Rainy Test Set (RTS), is composed of images with three
types of rainy artifacts (see Fig. 3). A summary for all the
datasets introduced in this article is presented in Table 1.
Sky Background Dataset (SBD): The SBD is formed by

merging three different datasets (selecting images with the
only sky as background), namely: Det-Fly [23], Wosdec
challenge [24], and a real-world object detection dataset de-
signed for quadcopters [25].

Complex Background dataset (CBD): While reviewing
other datasets, some limitations were observed. For ex-
ample, the MIDGARD [26], Det-Fly [23], and Anti-UAV
datasets did not include the birds in their datasets. Some of
the datasets only contain a single UAV model. The CBD
is a combination of seven datasets (selecting only images
with complex backgrounds), including Det-Fly [23], Wos-
dec challenge [24], real-world object detection dataset for
quadcopters [25], MIDGARD [26], Real-Time Drone De-
tection and Tracking [27], and Vision-based Anti-UAV [28].
Annotations from various formats were transformed into
YOLO and JSON formats. To make the datasets more chal-
lenging and to investigate the ability of detectors to differen-
tiate between UAVs and birds, images of birds flying were
added to the dataset.
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Table 1. A summary of all the novel datasets used for training,
validation and testing.

Rainy Test Set
Datasets SBD CBD Drizzle Heavy Torrential
Training 3456 9725 - - -
Validation 432 2767 - - -
Testing - - 2528 2528 2528

Rainy Test Set (RTS): Many of the prior works on vision-
based UAV detection focused on clear images, e.g., in the
Anti-UAV [28] dataset, rainy images were not considered.
In this work, RTS is built based on the Anti-UAV [28] test
set, hereby referred to as the Test Set (TS), which is not
included in the training/validation data of SBD and CBD
datasets.

Rainy conditions could cause performance degradation
of the UAV detection methods, a matter not studied in prior
works to the best of our knowledge. Rain is composed of
innumerable drops of various sizes and complicated forms,
and it spreads very randomly and at varying rates when it
falls on streets, pavement, automobiles, pedestrians, and
UAVs in the scene. Raindrops can cause changes in the
pixel values of images and video frames. This is because
the drops block some of the reflected light from the objects
in the scene. Additionally, rain streaks can make the visual
data appear less contrasting and more white. To consider
these challenging conditions, rain streaks were synthetically
added to the test images of the Anti-UAV [28] dataset to
build the Rainy Test Set (RTS) proposed in this work. The
clean images of RTS are utilized to obtain baseline perfor-
mance of selected models, while the rainy images of RTS
are used to analyze the impact of rainy artifacts.

Three types of rain effects (drizzle, heavy, and torren-
tial) were added to the TS dataset images and generated
rainy test set drizzle (RTSdrizzle), rainy test set heavy
(RTSheavy), and rainy test set torrential (RTStor). A pop-
ular tool employed to generate synthetic (yet realistic) rain
effects on images is the automold library of [29] as used in
the literature of other domains [30–32]. It is worth mention-
ing that the rain effects are added only to the test set images
(and not to the training sets) to study the performance of the
selected models under investigation. While one may argue
that including rain effects in training images could enhance
a model’s accuracy on rainy test images, this paper chooses
to train the selected models only on clean (no rain) data to
facilitate a better understanding of the strengths and weak-
nesses of the preferred models in unforeseen rainy condi-
tions.

4. Methods for Benchmarking

This work seeks to investigate the impact of complex
backgrounds and rainy weather conditions on the perfor-
mance of UAV detection methods and examine the advan-
tages or disadvantages of the selected methods. To this end,
a custom test dataset is curated (i.e., the RTS described in
the previous section), considering challenging conditions
such as varying UAV scales, background variety, and rain
effects. The object detection methods selected to be investi-
gated in this work include critical one-stage detectors such
as YOLOv5 [21], YOLOv8 [33], RetineNet [34], and a pop-
ular two-stage detector called Faster-RCNN [35]. In the fol-
lowing subsections, a brief overview and description of the
selected object detectors are provided.

YOLOv5 [21]: model consists of four main components:
input, Darknet-53 [13] backbone network, PANet [36] neck
network, and output. The basic structures of YOLOv5 are
CBS and CSPn. CBS is a basic convolution module that
includes a batch normalization operation and a SiLU ac-
tivation function [37] to prevent gradient disappearance.
CSPn consists of two branches; the first is a series of n
Bottleneck modules, while the second is a CBS convolu-
tion block. These two branches are stacked to increase the
network depth and enhance feature extraction capabilities.
The input terminal is responsible for improving data and
adapting anchor boxes. The backbone network comprises
2 CSP1 and 2 CSP3 structures for extracting features. By
using multiple down-samplings and up-samplings, the neck
network combines features of the different levels. The out-
put head performs bounding box regression and NMS (Non-
Maximal suppression) [38] post-processing to achieve pre-
cise target detection.

YOLOv8 [33]: is an enhanced version of YOLOv5 pro-
duced by [39]. The Ultralytics YOLOv8 is the most re-
cent variant of the YOLO-based models used for object
detection and image segmentation. This advanced model
improves on its predecessors by adding new features and
enhancements that boost its performance, adaptability, and
effectiveness [39]. The YOLOv8 model surpasses its ear-
lier versions by integrating a novel backbone network, an
anchor-free split head, and updated loss functions. These
upgrades in YOLOv8 were reported to produce superior
outcomes. The anchor-free approach aims to predict the
center of an object of interest directly rather than the offsets
from a known anchor box. The NMS [38] is accelerated
by anchor-free detection since it minimizes the number of
box predictions. In YOLOv8, the first 6×6 convolution in
the backbone is replaced with a 3×3 convolution block, and
two of the convolutions (No.10 and No.14 ) were removed
from the YOLOv5 setup.

RetinaNet [34]: is an object detection network that includes
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Table 2. An overview of the performance of various object detection models for UAV detection on the Sky Background Dataset’s (SBD)
Validation Set. The boldface numbers show the best performance.

Model Backbone mAP50 mAP50−95 Inference Time (ms)
YOLOv5m Darknet53 87.7 71.7 6.2
YOLOv8m Darknet53 88.3 72 7.5
Faster-RCNN ResNet-101 + FPN 86.53 68.1 41.3
RetinaNet ResNet-101 + FPN 84.04 63.3 29.2

a Feature Pyramid Network (FPN) [40], a backbone net-
work, and two classification and regression subnetworks.
The backbone network is in charge of extracting features
from the input images, and it employs ResNet [41] to gen-
erate four feature maps with varying resolutions. The FPN
then combines these feature maps to form a pyramid of
multi-scale feature maps, which are utilized to identify ob-
jects of varied sizes. RetinaNet is intended to manage un-
balanced data and objects of various sizes, which it does
through its unique architecture and usage of the Focal Loss
function [42]. It is a one-stage object detection model [34].
RetinaNet addresses the difficulties of unbalanced data and
objects of various sizes through a special design that uses
the Focal Loss function and the Feature Pyramid Network
(FPN) [40].

Faster-RCNN [12]: Fast R-CNN [43] is a two-stage object
detection network that overcomes various shortcomings of
the prior R-CNN network [44] by increasing speed. The
ROI Pooling layer in Fast R-CNN gathers feature vectors
of the same length from each Region of Interest (ROI) in-
side an image. Faster R-CNN goes one step further by em-
ploying a single-stage network rather than R-CNN’s three-
stage method. It computes convolutional layer calculations
once and then distributes them across all suggestions (such
as ROIs). Faster R-CNN outperformed R-CNN in terms of
accuracy [35].

5. Experiments and Results
The performance of selected UAV detection methods will
be investigated in the following settings: (i) on SBD im-
ages (no complex backgrounds, no rain), (ii) on CBD im-
ages (with complex backgrounds but no rain), and (iii) on
Rainy Test Set (RTS) images.

Evaluation Metrics: The performance will be evaluated
based on the mean average precision (mAP50), mean av-
erage precision (mAP50−95), which are mostly cited and
adopted by the Computer Vision Society for comparing the
performance of object detection models. Moreover, we pro-
vide insights via GradCAM into the models’ performance.
The experimental results in this paper present the compar-
ative evaluation and analysis of well-known one-stage and
two-stage object detectors for the proposed custom dataset.

The SBD and CBD datasets are each divided into training
and validation sets with a ratio of 80% and 20%, respec-
tively. The TS dataset is utilized for testing the models. The
Google Colab [45] is employed for training the models us-
ing NVIDIA A100 [46] GPUs for 100 epochs. The Faster-
RCNN and RetinaNet are trained using Detectron2 [47] li-
brary. Faster-RCNN and RetinaNet have Resnet101 as a
backbone with a Feature pyramid network (FPN), while
YOLOv8 and YOLOv5 [21] utilized Darknet-53 to extract
features from images.

UAV Detection in Sky Images (SBD): The SBD is used to
train and validate one-stage object detectors such as Yolov5,
Yolov8, RetinaNet, and two-stage object detectors Faster-
RCNN. The mAP results are presented in Table 2. The
results indicate a better performance of Yolov8 than Yolov5
and other models. The Yolov8 can perform with high speed
in a real-time environment. The Yolov8 has higher train-
ing parameters than Yolov5, so it takes longer to train than
Yolov5. The AP of models may be improved by increasing
the number of images in SBD.

UAV Detection in Complex Backgrounds (CBD): This
section describes the validation and testing results of the
models studied in this work, including YOLOv8, YOLOv5,
Faster-RCNN, and RetinaNet. Table 3 presents the dif-
ferent models’ performance on CBD. The YOLOv5 per-
forms the best on the testing set in terms of both mAP50

and mAP50−95. RetinaNet showed a bit improved perfor-
mance than Faster-RCNN. However, Faster-RCNN’s mAP
could have improved with an increased number of epochs
(> 100); regardless, in this study, we seek to examine and
compare the different models’ performance, each restricted
to 100 training epochs. UAV detection outputs of the se-
lected models on the TS images are shown in Fig. 4.

UAV Detection in Rainy Conditions: To study the effect
of rain on the UAV detection performance, the rainy test
sets: drizzle (RTSdrizzle), heavy (RTSheavy), and torren-
tial (RTStor) are used. The evident degradation in mAP
and IoU scores is observed in the rainy images.
Fig. 5 shows four sample images with and without rain ef-
fects. In Fig. 5(a), and Fig. 5(d), RetinaNet and Faster-
RCNN are able to detect the UAV in the original test image
and with rain artifacts but with lower confidence. Similarly,
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Table 3. The performance comparison of various object detection models for UAV detection on the CBD’s Validation Set and on the Test
Set (TS) for testing. YOLOv5m shows the best performance among others.

Validation Test
Model Backbone mAP50 mAP50−95 mAP50 mAP50−95

YOLOv5m Darknet-53 95.6 57.5 94.6 59
YOLOv8m Darknet-53 91.3 58.1 91.8 51
Faster-RCNN ResNet-101 + FPN 78.04 41.34 82 46
RetinaNet ResNet-101 + FPN 80.85 44.39 84.39 46.75
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Figure 4. Sample UAV detection outputs of the selected models on TS images with complex backgrounds. False Positives of RetinaNet
and of Faster-RCNN are shown on (a) and (c), respectively, which demonstrate the low performance of these models compared to that of
YOLOv5 (best viewed in color, zoomed in).

in Fig. 5(b), and Fig. 5(c), the YOLOV5 and YOLOv8 are
able to detect UAV in original images with higher confi-
dence; however, they fail to detect in the image with rain
artifacts. We evaluate the selected models on the three rainy
test sets. Table 4 shows the mAP on rainy test images and
the inference speed of each model. The overall performance
degrades due to rain artifacts in the test images. The per-
formance degradation of YOLOv5m, YOLOv8m, Faster-
RCNN, and RetinaNet is 50.62, 53.23, 56.25, and 58.40
percentage points, respectively. The YOLOv5 model per-
formance degradation is shown in Fig. 1. The RetinaNet
shows the worst percentage of performance decline in mAP.
Table 4 shows that the degradation in mAP increases with
the amount of rain.

Performance Analysis: To develop an effective detection
system, the GradCAM (Gradient-weighted Class Activation

Mapping) [48] is often employed by researchers to scruti-
nize a model’s focus areas and understand its outputs. To
get more insights into each model’s outputs, we integrate
GradCAM with all four models. The GradCAM highlights
the region that influences the model’s prediction. We chose
images from the heavy-rain test dataset to apply GradCAM
to assess the performance of the four mentioned models for
UAV detection. For example, the GradCAM outputs on a
sample image with and without rain effects are shown in
Fig. 6. The top row shows the respective model’s attention
towards the UAV, and all four models detected the UAV in
the image.

Observing the bottom row of Fig. 6 (with rain artifacts),
the Faster-RCNN and the YOLOv5 model’s attention is to-
wards the UAV, which explains why the UAV’s presence is
detected in the image. On the contrary, the GradCAM maps
for RetinaNet and YOLOv8 on the rainy image (bottom-
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Figure 5. Comparisons on clean TS images and rainy RTS images. RetinaNet and Faster-RCNN detect the UAV in the rainy image with
lower confidence; however, YOLOv5 and YOLOv8 do not detect the UAV in the rainy image (best viewed on screen when zoomed-in).

Table 4. Summary of the performance of various object detection models for UAV detection on the three Rainy Test Sets (RTS):
RTSdrizzle, RTSheavy and RTStor vs. the performance on clean TS images (no rain).

mAP50

Model Backbone no rain (%) drizzle (%) heavy (%) torrential (%) Inference
time (ms) (%)

YOLOv5m Darknet-53 95.6 66.8 65.1 47.2 6.2
YOLOv8m Darknet-53 91.3 65.7 60.2 42.7 7.5
Faster-RCNN Resnet-101 + FPN 85.5 50.35 45.25 37.40 41.3
RetinaNet Resnet-101 + FPN 82.5 46.33 43.69 35.57 29.2
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Figure 6. Sample GradCAM results are shown with and without rain artifacts. The Faster RCNN and YOLOv5 show high scores for the
UAV class, while RetinaNet and YOLOv8 show lower class scores.

row) show that the models are attending to a region with no
UAV, which misled the models and caused a miss detection.
In fact, the GradCAM maps explain how the affected model
focuses on regions scattered around that do not have any
UAVs.

These observations demonstrate how Faster-RCNN and
YOLOv5 can detect the UAVs in the image despite the rainy
conditions. However, the RetinaNet and YOLOv8 strug-
gled to detect the UAV in the rainy image and demonstrated
lower robustness. The relatively robust performance of
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Faster-RCNN RetinaNet YOLOv5 YOLOV8

Figure 7. Sample detection outputs: Faster-RCNN, Yolov8, and YOLOv5 detect the UAV; however, RetinaNet fails to detect the UAV.

Figure 8. YOLOv5 and YOLOV8 detect the UAV with high con-
fidence; YOLOv8 fails to detect bird (best viewed zoomed in).

Faster-RCNN despite the rainy artifacts could be attributed
to the two-stage architecture of Faster-RCNN, which has a
dedicated region proposal network to keep the model fo-
cused on the regions of interest.

Failures Detection: Missed detections may arise due to
various factors, including low image quality, object occlu-
sion, insufficient model training, or insufficient data. In ap-
plications related to anti-UAV, missed detection could lead
to security threats. Fig. 7 shows the detection outputs of
the selected models for a sample image from the CBD. The
Faster-RCNN and YOLOv5 detect the UAV with high con-
fidence. RetinaNet and YOLOv8 fail to detect the UAV in
the same image. Faster-RCNN fails to detect the UAV after
applying rain effects on the same image, as shown in Fig. 7
(d). The missed detection rate on the TS is found to be 2%,
5%, 3%, and 1% for FasterRCNN, RetinaNet, YOLOv8,
and YOLOv5, respectively.

Detection of UAVs vs Birds: Distinguishing between birds
and UAVs is one of the difficult challenges for real-world
UAV detection methods. The complex dataset is curated
with many bird samples in its training set. The WOS-
DETC [24] ”Birds vs Drone” dataset is included in our
CBD. For the test set, images are taken from the inter-
net [49]. YOLOv5 and YOLOv8 are trained on the CBD,
which included bird images. However, the YOLOv8 model
failed to detect the bird in the test image shown in Fig. 8.
While YOLOv5 detects both birds and drones with a higher
confidence score. Table 5 presents the average precision
(AP50−95) of each model for UAV and Bird categories.
Specifically, for the Bird class, Faster-RCNN shows poor
performance as compared to the other three models. On the
other hand, RetinaNet gets low AP for UAV class.

Table 5. UAV vs Bird detection performance of selected models.

Model APUAV (%) APBird (%)
YOLOv5 69.3 48.6
YOLOv8 67.2 48.5
Faster-RCNN 59.2 29.3
Retina-Net 57.7 35.9

6. Conclusion

In this paper, comprehensive evaluation experiments
were conducted to investigate the performance of selected
popular object detection models for UAV detection under
challenging real-world surveillance conditions such as com-
plex backgrounds and rainy conditions. We added Rain ef-
fects synthetically to test set images only at three different
amounts (drizzle, heavy and torrential). In our framework,
we have generated custom datasets covering various types
of drones against a variety of environmental conditions: Sky
Background Dataset (SBD), Complex Background Dataset
(CBD), and Rainy Test Set (RTS). The datasets also include
images of birds. The initial findings demonstrated favorable
accuracy levels on the proposed datasets, particularly for the
YOLOv5 and YOLOv8. However, YOLOv8 showed better
results for the SBD, while YOLOv5 outperformed YOLOv8
on the CBD. Faster-RCNN could perform better with a
higher number of epochs during training. However, this
work is interested in examining and comparing the mod-
els’ performance restricted to the same number of training
epochs. The YOLOv5 achieved the highest mAP50 among
all the used models on the clean test set. However, with the
rain artifacts, the YOLOv5, YOLOv8, Faster-RCNN, and
RetinaNet performance degraded. The image scale varia-
tion is still an issue for YOLOv8 and YOLOv5, but Faster-
RCNN with backbone Resnet-101 and FPN performs better
at different scales. The results and findings of this work
are expected to inspire further research in more robust UAV
detection, e.g., to build more challenging datasets.
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