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Abstract

Video-based Cloth-Changing Person Re-ID (VCCRe-ID)
refers to a real-world Re-ID problem where texture infor-
mation like appearance or clothing becomes unreliable in
long-term, limiting the applicability of traditional Re-ID
methods. VCCRe-ID has not been well studied primarily
due to (1) limited public datasets and (2) challenges re-
lated to extracting identity-related clothes-invariant cues
from videos. Few existing works have heavily focused on
gait-based features, which are severely affected under view-
point changes and occlusions. In this work, we propose
“Temporal 3D ShapE Modeling for VCCRe-ID” (SEMI),
a lightweight end-to-end framework that addresses these
issues by learning human 3D shape representations. The
SEMI framework comprises of a Temporal 3D Shape Mod-
eling branch, which extracts discriminative frame-wise 3D
shape features using a temporal encoder, and an identity-
aware 3D regressor. This is followed by a novel Attention-
based Shape Aggregation (ASA) module that effectively ag-
gregates frame-wise shape features for a fine-grained video-
wise shape embedding. ASA leverages an attention mech-
anism to amplify the contribution of the most important
frames while reducing redundancy during the aggregation
process. Experiments on two VCCRe-ID datasets demon-
strate that our proposed framework outperforms state-of-
the-art methods by 10.7% in rank-1 accuracy and 7.4% in
mAP in cloth-changing setting.

1. Introduction

Video-based Person Re-Identification (Re-ID) has be-
come increasingly important in various applications, in-
cluding video surveillance and forensic analysis. It aims
to match individuals across different camera views. Tra-
ditional Re-ID methods [14, 22, 39] have primarily relied
on Convolutional Neural Networks (CNNs) to extract tex-
ture information for Re-ID. Later works [19, 41, 44] have
leveraged Graph Convolutional Networks (GCNs) to cap-

Figure 1. Visualization of (1): 2D skeleton-based shape under
different viewpoints (same identity), and (2): 3D shapes generated
from the image on the right by our proposed framework. While
viewpoint changes result in highly dissimilar 2D shapes, 3D shape
is more stable in long-term and invariant to viewpoints.

ture high-level spatio-temporal features for person represen-
tations. However, these approaches are unreliable in long-
term scenarios as they heavily rely on appearance or visual
similarities of body parts, which suffers severe degrada-
tion in performance under texture-confusing situations like
clothing changes. Such shortcomings necessitate a robust
long-term approach for the real-world Video-based Cloth-
Changing Person Re-ID (VCCRe-ID) problem.

To address challenges of the general CCRe-ID problem,
texture-based methods [8, 13] have proposed to attend to
clothes-irrelevant features like face and hairstyle, which are
likely to fail under occlusions where these cues are unob-
servable. 2D human geometric modalities such as 2D shape
[3, 25, 34], sketches [6, 45], silhouettes [17], or gait [46, 47]
have also been explored. However, as illustrated in Figure
1, viewpoint changes significantly limit the discriminative
power of these 2D features for Re-ID.

In this work, we overcome the limitations of texture-
based and 2D-based methods by utilizing human 3D geo-
metric cues for VCCRe-ID. The motivations are two-fold.
First, 3D geometric cues focus on the underlying structure
of the person, which tends to remain stable in long-term,
making them more invariant to clothing changes. Second,
depth information in 3D space not only enhances robust-
ness of features to viewpoint changes (Figure 1) but also
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captures with high fidelity the spatio-temporal relationships
between body parts, leading to a more discriminative person
representation [40].

Some pioneering works has resulted in the collection of
3D-based source data from kinect cameras [40] or radio sig-
nals [11]. Nonetheless, such sensing is costly and not feasi-
ble in real-world environments. Later methods [4, 6, 38, 51]
have leveraged off-the-shelf 3D human estimation models
to extract human 3D structure from video data. However,
these off-the-shelf 3D models [18, 21] are designed to pro-
vide a rough estimate of the overall human body based
on parametric models without identity-aware regularization,
which fails to capture fine-grained details unique to individ-
uals for Re-ID. Han et al. [15] proposed 3STA framework,
in which the first stage learns a frame-wise 3D shape gen-
erator using a 3D human dataset for regularization while in
the second stage, shape features are extracted and then ag-
gregated. This framework is multi-stage and requires auxil-
iary large-scale datasets, resulting in complicated training.

To this end, we propose “Temporal 3D ShapE Modeling
for VCCRe-ID” (SEMI) framework. To the best of our
knowledge, we are the first to address VCCRe-ID using hu-
man 3D shape cues in an end-to-end manner. The overview
of our framework is shown in Figure 2. To learn 3D shape
representations under clothing changes, SEMI comprises of
the Temporal 3D Shape Modeling (TSM) branch. TSM
first captures the temporal dynamics of persons across video
frames using a temporal encoder built on Gated Recurrent
Units (GRUs). Then, the 3D regressor estimates frame-wise
3D shape parameters based on the Skinned Multi-person
Linear (SMPL) model [28] using iterative regularization. To
mitigate the tendency of generating neutral 3D shape, the
regressor is guided to enhance the discriminability of 3D
shape of different persons using an identification loss. To
aggregate frame-wise shape features for a robust video-wise
shape embedding, a novel Attention-based Shape Aggrega-
tion (ASA) module is introduced. ASA leverages GRUs
and an attention mechanism to emphasize the most impor-
tant frames and reduce the influence of noisy frames. ASA
also minimizes redundancy of information brought by sim-
ilar consecutive frames. Shape features are finally coupled
with appearance features for the final person representation.

The key contributions of our work can be summarized as
follows: (1) we propose a novel end-to-end framework that
integrates identity-aware temporal 3D shape representation
learning for VCCRe-ID; (2) we introduce an Attention-
based Shape Aggregation module that effectively aggre-
gates shape information to obtain robust shape embeddings
for Re-ID from video; and (3) we report results on two
large-scale VCCRe-ID datasets, demonstrating the superi-
ority of our proposed SEMI framework over state-of-the-art
methods by a significant margin in all evaluation settings
which mimic real-world scenarios for person Re-ID.

Dataset #IDs #Videos #Suits/ID Public

Motion-ReID [46] 30 240 - ✗

CVID-reID [47] 90 2980 - ✗

SCCVRe-ID [38] 333 9620 2 ∼ 37 ✗

RCCVRe-ID [38] 34 6948 2 ∼ 10 ✗

CCVID [13] 226 2856 2 ∼ 5 ✓

VCCR† [15] 392 4384 2 ∼ 10 ✓

Table 1. A summary of existing Video-based Cloth-Changing Per-
son Re-ID datasets. † means the dataset contains distractor identi-
ties who do not change clothes.

2. Related Works

2.1. Person Re-ID

Early methods for image-based person Re-ID involved
feature representation learning [31, 37] and distance metric
learning [26, 30], while more recent methods have adopted
deep learning [29, 36]. For video-based person Re-ID,
spatio-temporal information has been exploited by using
3D-CNN [14, 22], RNN-LSTM [43, 52] or attention mech-
anisms [12, 48]. Graph Convolutional Networks (GCNs)
have also been applied [41, 42, 44] to promote video-wise
person representations. These methods have achieved no-
table results on standard image-based [24, 50] and video-
based [23, 49] Re-ID benchmarks. However, their applica-
bility in real-world scenarios can be limiting for two rea-
sons: (1) the standard benchmarks datasets have been col-
lected over short-term, thus presenting an impractical con-
sistency in clothing that would not hold true for longer dura-
tion Re-ID; and (2) these models rely heavily on appearance
features to identify the persons, which is also unreliable in
long-term scenarios.

2.2. Image-based Cloth-Changing Person Re-ID

Thanks to recently published datasets [34, 45], several
approaches have been proposed to address Image-based
Cloth-Changing Person Re-ID. For texture-based meth-
ods, Gu et al. [13] proposed CAL, which extracts clothes-
irrelevant features like face and hairstyle by using clothes-
based adversarial loss. Cui et al. [8] disentangled clothes-
irrelevant features based on the reconstruction of human
component regions. For shape-based methods, Qian et al.
[34] proposed to extract 2D shape using a cloth-elimination
shape-distillation module. Li et al. [25] leveraged adver-
sarial learning to capture shape from RGB images and aug-
mented gray images. Since 2D shape is severely affected by
viewpoint changes and occlusions, recent works have uti-
lized human 3D geometric cues. Chen et al. [5] proposed
a framework built on HMR [18] to estimate and regularize
3D shape parameters. Zheng et al. [51] leveraged 3D mesh
to construct a KNN graph, and then used graph convolution
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Figure 2. Overview of our SEMI framework. A video sequence of T frames is passed through a CNN backbone to obtain global feature
set F . Given F , TSM branch outputs a video-wise shape feature vector fs, while texture branch outputs a video-wise appearance feature
vector fa. fs and fa are then concatenated for final person representation.

to exploit shape features. These methods lack the model-
ing of temporal dynamics of persons over video sequences,
thus limiting the information that can be extracted to assist
VCCRe-ID.

2.3. Video-based Cloth-Changing Person Re-ID

Video-based Cloth-Changing Person Re-ID (VCCRe-
ID) has received little research attention with few pub-
lic datasets. We report a summary of existing VCCRe-
ID datasets in Table 1. Zhang et al. [46] used trajectory-
aligned feature descriptors to encode motion features based
on the assumption that persons keep constant walking pat-
terns. SpTSkM is proposed in [47] to learn skeleton-based
gait cues from using GCNs. Wang et al. [38] enhanced
gait learning by proposing a confidence-guided re-ranking
strategy. These works attempt to extract motion patterns
as features for Re-ID. However, viewpoints changes limit
the capturing of walking patterns and occlusions can hinder
the modeling of body parts movement, making gait-based
features ambiguous for Re-ID. Han et al. [15] proposed a
multi-stage framework in which the first stage generates 3D
shape using an auxiliary 3D human dataset for regulariza-
tion, which requires heavy training. In this paper, we pro-
pose an end-to-end framework that effectively learns and
aggregates 3D shape features over video sequences, produc-
ing robust person representations for Re-ID.

3. The Proposed Framework
3.1. Overview

The overview of our proposed SEMI framework is
shown in Figure 2. Given a video sequence of T frames

X = {Ii}Ti=1, a CNN backbone F(·) : RC×H×W → Rdf

first extracts global frame-wise feature set F = {fi}Ti=1.
Then, for Temporal 3D Shape Modeling (TSM) branch, a
temporal encoder G(·) takes F as input and outputs latent
frame-wise feature set G = {gi}Ti=1. We then apply resid-
ual connection, where H = {fi + gi}Ti=1 is used as input to
a 3D regressor R(·) to yield frame-wise 3D shape param-
eters set β = {βi}Ti=1. Attention-based Shape Aggrega-
tion module then aggregates β to obtain a video-wise shape
representation fs. Meanwhile, texture branch summarizes
appearance information over frames from F and outputs a
video-wise appearance representation fa. We finally con-
catenate fs and fa for the final person representation.

3.2. Temporal 3D Shape Modeling branch

3D human body can be encoded as a function of pose and
shape. In this work, we only leverage shape since pose may
not necessarily be unique to individuals and thus not dis-
criminative for Re-ID. Given global feature set F , we learn
robust video-wise 3D shape representation of a person us-
ing the Temporal 3D Shape Modeling (TSM) branch, which
comprises a temporal encoder, a 3D regressor and a shape
aggregation module as illustrated in Figure 2.

Temporal Encoder. The global frame-wise feature set F
only provides visual representations of each frame and lacks
temporal information. The temporal evolution of a person
over time is crucial for VCCRe-ID since informative frames
can compliment the ambiguity of appearance and shape in
other frames where the body is partially occluded or af-
fected by viewpoint changes. Therefore, we use a temporal
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encoder to capture the temporal dynamics present in the in-
put video sequence. Instead of using traditional Recurrent
Neural Networks, the temporal encoder G : Rdf → Rdg

consists of several Gated Recurrent Units [7] layers that can
selectively capture longer-term dependencies across frames.
Given global feature vector fi of frame Ii, G yields latent
feature vector gi = G(fi), gi ∈ Rdg based on the informa-
tion from previous frames {I1, .., Ii−1}.

3D Human Parametric Modeling. In this work, we es-
timate 3D human body shape based on the Skinned Multi-
Person Linear (SMPL) [28] model. SMPL is first assigned
to a mean shape in the standard zero pose, which serves
as a template to capture shape through the variations in
height, weight, and body proportions. Then, SMPL rep-
resents shape by formulating the shape displacements from
the template shape via a linear combination of K coeffi-
cients of a PCA shape space:

BS(βi) =

K∑
k=1

βk
i S (1)

where βi =
[
β1
i , . . . , β

K
i

]
are the shape parameters esti-

mated from frame Ii of input sequence, BS(·) denotes the
blending shape function, S ∈ R3V denotes the orthonormal
principal components of shape offsets, V is the number of
vertices on the mesh. Following [33], in this work, K is set
to 10, which sufficiently represents body shape. Each shape
parameter βk, k = 1, ..., 10 controls certain aspect of body
shape such as body length, hip size, etc.

Identity-aware 3D Regressor. The goal of the regressor
R(·) : Rdg → R10 is to output frame-wise 3D shape pa-
rameters βi = [β1

i , . . . , β
10
i ] from image encodings. We

apply a residual connection, where we sum up latent en-
coding gi with the global feature fi as hi = fi + gi to be
input to the regressor, i.e. βi = R(hi). By doing this, we
enable the regressor to preserve important high-level infor-
mation from the input features while leveraging the tem-
poral dynamics. The regressor comprises of several fully
connected layers with dropout in between every two layers.
The final layer is responsible for decomposing shape param-
eters from high-dimensional body encoding. Note that we
need to ensure the validity of generated shape parameters
so they can represent true body shape. Therefore, to pro-
vide the regressor with prior knowledge about the neutral
human body shape, we assign the mean shape parameters β
from SMPL [28] model to the regressor. Then, the regressor
is biased towards generating realistic human body shape by
aligning estimated shape with the average shape using MSE
loss Ls

val formulated as:

LS
val =

N∑(
1

T

T∑
i=1

(
βi − βi

)2)
(2)

where T is the sequence length and N is the batch size.
Direct estimation only yields coarse-grained shape pa-

rameters with limited discriminability. To facilitate the Re-
ID, we need to ensure a small intra-class gap and large inter-
class gap of shape parameters in the latent space. Therefore,
we further supervise the regressor using an identification
loss LS

ID, which is a cross-entropy-based classification loss
given the number of classes (i.e. identities) in the training
set. By optimizing the TSM branch with LS = LS

val+LS
ID,

we force the framework to satisfy the validity and enhance
the discriminative power of estimated shape parameters for
more accurate re-identification.

Figure 3. Architecture of ASA module, which comprises GRUs
layers and self-attention layers to output video-wise shape repre-
sentation fs from frame-wise shape parameters β.

Attention-based Shape Aggregation module. To aggre-
gate frame-wise shape parameter set β = {βi}Ti=1 for a
video-wise shape embedding fs, using traditional aggrega-
tion methods such as max or average pooling suffers from
two limitations: (1) temporal relationships between consec-
utive frames are ignored since each frame is treated inde-
pendently; and (2) all frames are treated equally, leading
to potential loss of discriminative power in the aggregated
shape representation since not every frame is equally infor-
mative due to viewpoint changes or occlusions.

In this work, we propose the Attention-based Shape Ag-
gregation (ASA) module illustrated in Figure 3. To address
(1), we first feed β ∈ RT×10 into a multi-layer GRUs,
which estimates a latent code β̂i at each time step i (i.e.
frame ith in the sequence). The GRU layers help capture
the fine-grained variations in shape across frames. Then, we
address (2) by using an attention mechanism [2] to consider
the importance of each frame to the video-wise shape rep-
resentation. Specifically, a sequence of self-attention layers
are used to aggregate hidden states

[
β̂1, ..., β̂T

]
. Formally:

fs =

T∑
i=1

λiβ̂i, (3)
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where λi is the weight assigned to β̂i. We adopt a MLP
layer φ(·) to learn θi, i = 1, ..., T , which is then normalized
using softmax to obtain λi, i = 1, ..., T , given as:

θi = φ
(
β̂i

)
, λi =

eθi∑T
j=1 e

θj
. (4)

By doing this, ASA module is able to amplify the contri-
bution of most important frames to the aggregated shape
representation while reducing the influence of noisy frames
caused by occlusions or viewpoint changes. Moreover,
ASA module reduces information redundancy brought by
sequences of consecutive frames, making the model more
lightweight and robust.

3.3. Texture branch

Appearance remains a competitive cue for Re-ID in the
cases of slight clothing change. Thus, we couple 3D shape
with appearance for a more discriminative global person
representation. Given frame-wise feature set F = {fi}Ti=1,
following [14], we first use spatial max pooling and then
temporal average pooling to obtain the video-wise appear-
ance embedding fa (Figure 2). We then simply concatenate
appearance and shape embeddings to obtain the final video-
wise person representation:

f = [fa, fs]. (5)

Finally, we feed f into a cross-entropy loss Lce and a triplet
loss Ltri, giving the total loss for training our framework,
given as:

Ltotal = LS + Lce + Ltri. (6)

4. Experimental setup
4.1. Datasets and Evaluation Protocols

Datasets. Two public VCCRe-ID datasets, VCCR [15]
and CCVID [13] are used for experiments. VCCR contains
4, 384 tracklets with 392 identities. Each identity wears
2 ∼ 10 different suits (with an average of 3.3). 2, 873
tracklets of 150 cloth-changing identities make up the train-
ing set. The query set contains 496 tracklets of 82 cloth-
changing identities, and the gallery set contains the remain-
ing 718 tracklets of these 82 identities along with 297 track-
lets of 160 distractors. CCVID contains 2, 856 tracklets
with 226 identities. Each identity has 2 ∼ 5 different suits.
No distractors are present in CCVID. The training set con-
tains 968 tracklets of 75 identities, while 834 tracklets are
used as query set, and the remaining 1074 tracklets build
the gallery set. In Figure 4, we report a relative compari-
son in challenges for Re-ID posed by the two datasets by
showing samples randomly selected and viewpoint varia-
tions. It can be seen that CCVID mimics unrealistic Re-ID

(a) Samples from VCCR (top) and CCVID (bottom). For VCCR, we
randomly collect 3 tracklets from the same identity under different
clothing. For CCVID, we randomly choose 2 identities, each comes
with 2 tracklets under different clothing.

(b) Comparison in viewpoint variations.

Figure 4. Comparison between VCCR and CCVID. VCCR poses
realistic challenges for Re-ID like clothing changes, viewpoint
variations, and occlusions, while CCVID contains only frontal im-
ages, showing no occlusion and slight clothing changes. (Best
viewed in color).

scenarios such as frontal viewpoints, clearly visible faces,
or no occlusion, while VCCR poses real-world challenges
for Re-ID. Therefore, in this work, we focus on validating
the effectiveness of our framework on VCCR.

Evaluation protocols. Rank-k accuracy and mean aver-
age precision (mAP) are used to evaluate the performance of
our method. We compute testing accuracy in three settings:
(1) Cloth-Changing (CC), i.e. the test sets contains only
cloth-changing ground truth samples; (2) Standard, i.e. the
test sets contain both cloth-changing and cloth-consistent
ground truth samples; and (3) Same-clothes (SC), i.e. the
test sets contain only cloth-consistent ground truth samples.

4.2. Implementation details

Architecture. We adopted Resnet-50 [16] pretrained on
ImageNet [9] as the CNN backbone F , which outputs fi ∈
R2048 for each frame Ii. For the Temporal Shape Estima-
tion module, the temporal encoder G consists of 2 GRUs
layers with 1024 neurons each, followed by a linear pro-
jection layer, which produces gi ∈ R2048. The 3D regres-
sor R consists of two 1024 fully-connected layers with a
dropout layer in between, followed by a final layer that out-
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Method Method type Modalities CC Standard SC
R-1 R-5 mAP R-1 R-5 mAP R-1 R-5 mAP

PCB [36] Image-based RGB 18.8 38.6 15.6 55.6 75.2 36.6 - - -
AP3D [14] Video-based RGB 35.9 55.8 31.6 78.0 88.4 52.1 - - -
GRL [27] Video-based RGB 35.7 55.3 31.8 76.9 88.2 51.4 - - -
SPS [35] Image-based CC RGB 34.5 54.1 30.5 76.5 85.5 50.6 - - -
CAL [13] Video-based CC RGB 36.6 56.1 31.9 78.9 89.2 52.9 79.1 89.8 63.8
3STA [15] Video-based CC RGB + 3D shape 40.7 58.7 36.2 80.5 90.2 54.3 - - -

SEMI (Ours) Video-based CC RGB + 3D shape 51.4 71.5 43.6 86.2 92.2 65.2 90.6 96.0 81.8

Table 2. Comparison of quantitative results on VCCR. SEMI outperforms SOTAs by a significant margin in all evaluation settings.

puts shape features βi ∈ R10. R it is initialized with pre-
trained weights from SPIN [21]. For the Attention-based
Shape Aggregation module, to output video-wise shape em-
bedding fs ∈ R10, we first employ 2-layer GRUs of size
1024, followed by a self-attention mechanism with 2 MLP
layers of size 1024. Texture branch performs 2 steps of spa-
tial max pooling and temporal average pooling to output
video-wise appearance embedding fa ∈ R2048. Embed-
dings fs and fa are concatenated for final person represen-
tation fi ∈ R2058.

Training and Testing. To form input clips for training,
8 frames are randomly sampled from each original track-
let with a stride of 2 for VCCR and 4 for CCVID. We first
resized each image in the clip to 256 × 128, then applied
horizontal flipping for data augmentation following [14].
The batch size is set to 16 due to GPU memory limit. We
randomly select 4 identities and 4 clips per identity for
each batch. The model was trained for 120 epochs using
Adam [20] optimizer. Learning rate is initialized to 5e−3

and reduced by a factor of 0.1 after every 40 epochs. We
trained SEMI in an end-to-end manner on a single NVIDIA
GeForce GTX 1080 16GB RAM GPU, which took around
6 hours. In testing stage, we applied the same sampling
strategy on both datasets to form 8-frame input clips. The
input clip is passed to the trained CNN backbone only, then
the output frame-wise feature set is averaged as the video-
wise person representation, which is then used to compute
pair-wise similarities for matching stage. Implementation is
done in PyTorch [32].

5. Results
5.1. Quantitative results on VCCR

We report the quantitative results on VCCR [15] dataset
in Table 2. We compare our SEMI framework with current
state-of-the-art approaches (SOTAs) categorized by method
types, including image-based short-term Re-ID (i.e. PCB
[36]), video-based short-term Re-ID (i.e. AP3D [14] and
GRL [27], image-based CCRe-ID (i.e. SPS [35]) and video-
based CCRe-ID (i.e. CAL [13] and 3STA [15]). Overall,
SEMI outperforms previous methods on VCCR in all evalu-

Method CC Standard
R-1 mAP R-1 mAP

InsightFace [10] 73.5 - 95.3 -
CAL [13] 81.7 79.6 82.6 81.3

ReFace (CAL + Face) [1] 90.5 - 89.2 -
DCR-ReID [8] 83.6 81.4 84.7 82.7
SEMI (Ours) 82.5 81.9 83.1 81.8

Table 3. Comparison of quantitative results on CCVID.

ation settings. Specifically, in cloth-changing setting, SEMI
achieves a remarkable improvement of 10.7% in rank-1,
12.8% in rank-5 and 7.4% in mAP compared to 3STA [15],
which is the closest approach to ours. The multi-stage 3STA
framework requires heavy and complicated training pro-
cesses, shown by the number of training epochs for the first
stage to be 250 and training epochs for the second stage to
be 30000 as reported in [15]. Our framework instead can be
trained in an end-to-end manner with only 120 epochs.

Compared to texture-based approach, CAL [13], SEMI
outperforms CAL in cloth-changing and standard settings
without the need for an additional clothes classifier and
clothes-based losses as CAL. This shows the effectiveness
of coupling 3D shape with appearance for VCCRe-ID. In
same-clothes setting, which mimics a short-term Re-ID
dataset, SEMI performs clearly better than CAL. The rea-
son lies in the occlusion and viewpoint changes posed by
VCCR, which hinders the ability of CAL to capture fea-
tures from face or hairstyle. Results on VCCR demonstrate
the robustness of SEMI in real-world scenarios.

5.2. Quantitative results on CCVID

Quantitative results on CCVID [13] dataset are reported
in Table 3, where we compare our framework with Insight-
Face [10], CAL [13], ReFace [1] and DCR-ReID [8]. The
face model InsightFace [10] achieved the highest rank-1 ac-
curacy in standard setting, while in cloth-changing setting,
ReFace [1], that simultaneously extracts face and clothes-
irrelevant features outperformed other methods. This is
due to the nature of CCVID which represents unrealis-
tic situations in Re-ID such as frontal viewpoint, clearly
visible faces, no occlusion, slight clothing changes, and
high-quality cropped bounding boxes as shown in Figure
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Method
VCCR CCVID

CC Standard CC Standard
R-1 mAP R-1 mAP R-1 mAP R-1 mAP

Appearance (Resnet50 [16]) 32.8 29.3 74.3 46.7 78.5 75.3 79.7 76.9
Shape (by HMR [18]) 20.4 19.5 59.1 36.6 69.1 64.4 67.2 61.3
Shape (by 3STA [15]) 21.3 20.6 62.8 39.2 - - - -

Shape (by proposed TSM) 24.7 22.3 65.2 40.7 69.6 65.2 68.1 61.7
Joint (Shape by HMR [18]) 39.5 35.1 79.1 52.6 78.7 75.4 80.1 76.9

Joint (3STA [15]) 40.7 36.2 80.5 54.3 - - - -
Joint (SEMI) w/o. LS

ID 50.1 42.3 84.0 63.6 80.6 79.8 81.1 79.9
Joint (SEMI) w/. LS

ID 51.4 43.6 86.2 65.2 82.5 81.9 83.1 81.8

Table 4. Ablation study on the effectiveness of 3D shape features produced by our Temporal 3D Shape Modeling (TSM) branch with
and without identity-guidance loss LS

ID compared to HMR [18] and 3STA [15] on VCCR and CCVID. Our 3D shape modeling method
outperforms the SOTAs by a large margin.

4. While these settings lend to limited challenges, we see
that our framework still achieves comparable results to CAL
[13], showing that coupling our estimated 3D shape with
global texture information is more competitive and robust
for Re-ID than solely relying on clothes-irrelevant features
like face and hairstyle.

6. Ablation study
We perform an ablation study for the proposed frame-

work to validate the effectiveness of: (1) coupling 3D shape
with appearance for Re-ID, (2) the Temporal 3D Shape
Modeling (TSM) branch, (3) the Attention-based Shape Ag-
gregation module, and (4) concatenation of representations
for appearance and shape fusion.

Appearance vs Shape vs Joint. In Table 4, we report
experimental results that we carried out with three model
settings: appearance, shape and joint representations. The
model in appearance setting only comprises the texture
branch with Resnet-50 [16] backbone. In shape setting,
only shape features are used as person representations. It
can be observed that shape models perform worse than
appearance model on both VCCR and CCVID. The rea-
sons can be two-fold. First, 3D shape features are only
10-dimensional, which limits the ability to model a global
person representation. Second, when the identities do not
change or slightly change clothes, exploiting visual simi-
larities from appearance remains more competitive than 3D
shape features. The large performance gap on VCCR be-
tween the joint models and the individual representation
models demonstrate the effectiveness of 3D shape when
coupled with appearance in real-world scenarios. Appear-
ance and shape can bring richer information by comple-
menting each other. This facilitates the Re-ID model in both
cloth-consistent and cloth-changing environment.

Temporal 3D Shape Modeling (TSM) branch. The ef-
fectiveness of 3D shape features produced by our proposed

Figure 5. t-SNE visualization of distribution on latent space of
frame-wise 3D shape features estimated by HMR [18], 3STA [15],
and our proposed TSM. We randomly sample 3 clips of 3 different
identities from VCCR, each clip is 10-frame long.

TSM branch is compared with the off-the-self 3D human es-
timation model HMR [18] and 3STA framework [15] in Ta-
ble 4. Due to the presence of a broader range of challenges
being represented in the VCCR dataset, we focus on com-
paring the methods on VCCR. TSM outperforms HMR and
3STA in both shape and joint model settings. For example,
the rank-1 accuracy in cloth-changing/standard setting, the
shape model with TSM achieves 4.3%/6.1% higher than
the shape model with HMR, while our joint SEMI frame-
work achieves 10.7%/5.7% higher than the joint 3STA
framework. Note that same as our SEMI framework, 3STA
also couples shape with appearance features extracted using
Resnet-50 [16] backbone. For HMR, it roughly estimates
3D shape for each frame without modeling the temporal in-
formation and identity-aware regularization. For 3STA, the
second shape extraction stage relies heavily on the quality
of generated pseudo shape labels in the first stage, which
needs auxiliary datasets for regularization. We also enhance
the discriminative power of shape features using the identi-
fication loss LS

ID, shown by higher Re-ID accuracy on both
datasets. Besides quantitative comparison, in Figure 5, we
visualize the distribution on latent space of 3D shape fea-
tures estimated by the three methods from 3 videos of 3
identities sampled from VCCR. It can be seen that frame-
wise shape features produced by our proposed TSM are
more separable. This further demonstrates the validity and
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Method CC Standard
R-1 mAP R-1 mAP

TSM w/ Average Agg 40.1 33.6 78.4 51.7
TSM w/ DSA [15] 47.1 39.2 83.5 61.1

TSM w/ ASA (Ours) 51.4 43.6 86.2 65.2

Table 5. Ablation study of the ASA module on VCCR.

Figure 6. Visualization of contributions of frame-wise shape fea-
tures to the video-wise shape embedding, represented by attention
scores λi, i = 1, ..., 8 learnt by our proposed ASA module. In-
formative frames are emphasized, while the influence of occluded
frames 4 and 5 is effectively reduced.

effectiveness of our proposed identity-guidance 3D shape
modeling method.

Attention-based Shape Aggregation module. To val-
idate the effectiveness of our proposed Attention-based
Shape Aggregation (ASA) module, in Table 5, we report the
results on VCCR of our SEMI framework using three differ-
ent aggregation methods: traditional averaging, Difference-
aware Shape Aggregation (DSA) [15], and ASA, respec-
tively. It can be seen that ASA makes a significant improve-
ment in both evaluation settings compared to averaging and
DSA. This is because unlike our ASA module with GRUs,
averaging and DSA lack the implicit capturing of temporal
dependencies in frame-wise shape sequences. Moreover,
ASA is able to produce discriminative shape embeddings
by amplifying the contribution of the most important frames
using an attention mechanism. As shown in Figure 6, ASA
attends to the most informative frames by assigning high at-
tention scores, while noisy frames caused by occlusion re-
ceive little attention, which helps to minimize their impact
on the aggregated video-wise shape representation.

Appearance and Shape Fusion. To fuse appearance and
shape embeddings for final person representation, in this
work, we simply apply concatenation, and compare it with
the Weight Prediction Fusion (WPF) proposed in [15]. As
shown in Table 6, SEMI with concatenation outperforms
WPF by 2% in mAP in both evaluation settings on VCCR.
For WPF, the embeddings fa ∈ R2048 and fs ∈ R10

Method CC Standard
R-1 mAP R-1 mAP

SEMI w/ WFP [15] 49.5 40.8 84.3 62.0
SEMI w/ concat (Ours) 51.4 43.6 86.2 65.2

Table 6. Comparison in appearance and shape fusion methods on
VCCR: concatenation and Weight Prediction Fusion [15].

are scaled to 512-dimensional vectors, then summed up
with weights predicted by a convolutional layer, resulting
in f ∈ R512. However, as each value fs

i , i = 1, ..., 10 in fs

represents a certain aspect of shape like hip size and shoul-
der length, upscaling fs to a high-dimensional vector po-
tentially causes information loss of the body shape. There-
fore, we apply concatenation to preserve the discriminative
power of the shape embedding.

7. Conclusion
In this paper, we address the challenging problem of

VCCRe-ID, where texture-based methods are limiting due
to changes in clothing. We propose “Temporal 3D Shape
Modeling for VCCRe-ID” (SEMI), a novel end-to-end
framework that leverages human 3D shape to overcome the
limitations of previous works. A temporal encoder first
captures the temporal dynamics from the video sequences,
then an identity-aware 3D regressor estimates frame-wise
shape parameters. We introduce the Attention-based Shape
Aggregation (ASA) module, which aggregates frame-wise
shape features using GRUs and an attention mechanism.
ASA allows for the amplification of the most informative
frames, resulting in a robust and discriminative video-wise
shape representation. Experimental results on two large-
scale VCCRe-ID datasets demonstrate the superiority of
our SEMI framework over state-of-the-art methods in real-
world scenarios, achieving a significant improvement in all
evaluation settings.
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Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library, 2019.
6

[33] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3D hands, face,
and body from a single image. In CVPR, pages 10975–
10985, 2019. 4

[34] Xuelin Qian, Wenxuan Wang, Li Zhang, Fangrui Zhu,
Yanwei Fu, Tao Xiang, Yu-Gang Jiang, and Xiangyang
Xue. Long-term cloth-changing person re-identification. In
ACCV, pages 71–88, 2021. 1, 2

[35] Xiujun Shu, Ge Li, Xiao Wang, Weijian Ruan, and Qi Tian.
Semantic-guided pixel sampling for cloth-changing person
re-identification. IEEE Signal Processing Letters, 28:1365–
1369, 2021. 6

181



[36] Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin
Wang. Beyond part models: Person retrieval with refined
part pooling (and a strong convolutional baseline). In ECCV,
2018. 2, 6

[37] Guanshuo Wang, Yufeng Yuan, Xiong Chen, Jiwei Li, and Xi
Zhou. Learning discriminative features with multiple gran-
ularities for person re-identification. In ACM MM. ACM,
2018. 2

[38] Likai Wang, Xiangqun Zhang, Ruize Han, Jialin Yang, Xi-
aoyu Li, Wei Feng, and Song Wang. A benchmark of
video-based clothes-changing person re-identification. arXiv
preprint arXiv:2211.11165, 2022. 2, 3

[39] Yingquan Wang, Pingping Zhang, Shang Gao, Xia Geng,
Hu Lu, and Dong Wang. Pyramid spatial-temporal aggrega-
tion for video-based person re-identification. In ICCV, pages
12006–12015, 2021. 1

[40] Ancong Wu, Wei-Shi Zheng, and Jian-Huang Lai. Ro-
bust depth-based person re-identification. IEEE TIP,
26(6):2588–2603, 2017. 2

[41] Yiming Wu, Omar El Farouk Bourahla, Xi Li, Fei Wu, Qi
Tian, and Xue Zhou. Adaptive graph representation learning
for video person re-identification. IEEE TIP, 29:8821–8830,
2020. 1, 2

[42] Yuqiao Xian, Jinrui Yang, Fufu Yu, Jun Zhang, and Xing
Sun. Graph-based self-learning for robust person re-
identification. In WACV, pages 4789–4798, 2023. 2

[43] Yichao Yan, Bingbing Ni, Zhichao Song, Chao Ma, Yan Yan,
and Xiaokang Yang. Person re-identification via recurrent
feature aggregation. In ECCV, pages 701–716, 2016. 2

[44] Jinrui Yang, Wei-Shi Zheng, Qize Yang, Ying-Cong Chen,
and Qi Tian. Spatial-temporal graph convolutional network
for video-based person re-identification. In CVPR, pages
3289–3299, 2020. 1, 2

[45] Qize Yang, Ancong Wu, and Wei-Shi Zheng. Person re-
identification by contour sketch under moderate clothing
change. IEEE TPAMI, 43(6):2029–2046, 2021. 1, 2

[46] Peng Zhang, Qiang Wu, Jingsong Xu, and Jian Zhang. Long-
term person re-identification using true motion from videos.
In WACV, pages 494–502, 2018. 1, 2, 3

[47] Peng Zhang, Jingsong Xu, Qiang Wu, Yan Huang, and Xi-
anye Ben. Learning spatial-temporal representations over
walking tracklet for long-term person re-identification in the
wild. IEEE TMM, 23:3562–3576, 2021. 1, 2, 3

[48] Zhizheng Zhang, Cuiling Lan, Wenjun Zeng, and Zhibo
Chen. Multi-granularity reference-aided attentive feature ag-
gregation for video-based person re-identification. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10407–10416, 2020. 2

[49] Liang Zheng, Zhi Bie, Yifan Sun, Jingdong Wang, Chi Su,
Shengjin Wang, and Qi Tian. Mars: A video benchmark for
large-scale person re-identification. In ECCV, 2016. 2

[50] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-
dong Wang, and Qi Tian. Scalable person re-identification:
A benchmark. In ICCV, pages 1116–1124, 2015. 2

[51] Zhedong Zheng, Xiaohan Wang, Nenggan Zheng, and Yi
Yang. Parameter-efficient person re-identification in the 3d
space. IEEE Transactions on Neural Networks and Learning
Systems, pages 1–14, 2022. 2

[52] Zhen Zhou, Yan Huang, Wei Wang, Liang Wang, and Tie-
niu Tan. See the forest for the trees: Joint spatial and tem-
poral recurrent neural networks for video-based person re-
identification. In CVPR, pages 6776–6785, 2017. 2

182


