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Figure 1. Example subject crops from ACC-MM1

Abstract

In this paper we present a new dataset to fuel multimodal
research in uncooperative and surveillance scenarios. Ac-
centure Multimodality 1 (ACC-MM1) is a large-scale mul-
timodal biometric recognition dataset composed of imagery
and video. The dataset includes challenges such as long
ranges, high pitch angles, varied atmospheric conditions,
and mixed image quality levels. Ultimately, a dataset con-
taining 227 unique subjects, 303 hours of video, and 12,344
still images was captured in indoor and outdoor condi-
tions. In addition to traditional modalities (face, gait, etc.),
data for a novel biometric modality, activity gait, was col-
lected. Covariates included appearance changes, walking
with weighted loads, and body distortions. Furthermore, to
enable standardized performance testing of ACC-MM1, an
evaluation protocol was created. Baseline performance of
popular and novel recognition algorithms is reported to en-
courage research in the challenging conditions present in
ACC-MM1.

1. Introduction
Biometric datasets typically focus on a particular modal-

ity such as face (CelebA [1], CASIA-WebFace [2], etc.) or
gait (OUMVLP [3], CASIA-B [4] , etc.), but do not nec-
essarily consider multiple modalities simultaneously. Ad-

ditionally, many common evaluation datasets are limited
to constrained captures, few camera viewpoints, and lack
environmental diversity. Focusing on this narrow set of
scenarios has produced performance saturated benchmarks
( [5], [6], [7]). To counter these shortcomings, we propose
the Accenture Multimodality 1 (ACC-MM1) dataset. Note,
our use of “multimodal” refers to biometric modalities, and
not imagery types (RGB, thermal, etc.).

ACC-MM1 consists of four modalities captured across
the same set of subjects. These modalities include face
recognition (FR), gait recognition (GR), whole-body recog-
nition (WBR), and activity gait recognition (AGR). FR and
GR are well-established modalities and are, respectively,
the recognition of an individual based on their face and
walking gait. WBR is recognition via features such as body
shape or other anthropometrics. WBR differs from GR in
that it performs on both stationary and moving individuals.
AGR is a novel modality and is the recognition of an indi-
vidual based on how they perform daily activities, such as
walking on staircases, opening doors, or texting on a mo-
bile phone. AGR expands GR beyond walking, and enables
recognition in scenarios where the subject may be perform-
ing distinct motions that are viable for biometric differenti-
ation.

Including multiple modalities allows for testing and eval-
uation of algorithms which can leverage numerous comple-
mentary biometric signals. This encourages development
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Condition Description
Long Range (LR) Captures from cameras positioned ≥150m from the subject

Aerial Captures from unmanned aerial vehicle (UAV) mounted cameras
Elevated Captures from elevated (>3m) or high pitch (≥30°) angle ground cameras

Atmopsheric Captures in distortion-inducing weather and atmospheric conditions
Quality Captures of mixed quality (resolution, compression, etc.)

Table 1. Description of challenging capture conditions

of more robust, and therefore more practical, recognition
algorithms. In addition to considering multiple modalities,
ACC-MM1 seeks to address a variety of challenging cap-
ture conditions, as specified in Table 1.

2. Background
Research in biometrics has traditionally been driven by

the availability of datasets which can accurately capture a
target problem space. For example, until pose-varied, ‘in
the wild’-style datasets became available, high performing
facial recognition algorithms were limited to front-facing,
passport-style photos [15]. The emergence of datasets like
LFW and the IJB series ( [16], [17], [18], [19]) helped drive
the creation of algorithms capable of performing in more
unconstrained scenarios. However, recognition in some of
the most challenging conditions, as detailed in Table 1, has
yet to be adequately solved, due in part to a lack of repre-
sentative datasets. Improved recognition algorithm perfor-
mance under these conditions enhances public safety and
national security use cases.

2.1. Related Work

Biometric datasets have existed for decades as a means
of training and evaluating biometric recognition algo-
rithms [20]. However, most datasets typically only consider
a subset of the modalities and conditions present in ACC-
MM1. More recently, efforts have been made to add mul-
tiple modalities and challenging conditions. A summary of
recent biometric datasets is detailed in Table 2.

UCCS and LRFID both target a limited set of modal-
ities and do not consider aerial data. The IJB-S dataset
focuses on FR and lacks atmospheric condition covariates.
P-DESTRE and PRAI-1581 do not consider FR and GR,
and lack LR, elevated, as well as atmospheric conditions.

D4FLY only includes FR and does not consider challeng-
ing capture conditions. The BRIAR and MEVID datasets
contain several of the modalities and conditions present in
ACC-MM1. However, one key differentiator of ACC-MM1
is the inclusion of probe activity data to support AGR, as
well as adding novel covariates, such as full body distortion
(achieved by having the subject wear a disposable poncho).

2.2. Ethical Considerations

When creating datasets to support advanced biometric
technology, the highest of ethical standards must be main-
tained during dataset collection and distribution. Two con-
siderations are the importance of protecting subject safety
and privacy. To meet these requirements, Human Subject
Research (HSR) guidelines were strictly adhered to. All
subjects signed an IRB-approved consent form and were
compensated for their participation. Additionally, all sub-
jects whose likeness appears in this paper have signed a
separate consent form to appear in publications related to
the collection. To ensure ethical downstream use, access to
the dataset requires IRB review. Before access is granted,
appropriate action must be taken to safeguard the data.

3. ACC-MM1 Data Collection
Data was collected in Indiana, U.S.A. over 26 days in

July and August 2022. The dataset contains 227 unique
subjects captured in a variety of different covariates, includ-
ing an appearance change, a weighted load carry, and a full
body distortion. In total, 303 hours of footage were cap-
tured, yielding a dataset 5.4TB in size.

Capture Station # Cameras # Media # Covariates
Still Enrollment 2 12,344 Stills 3

Video Enrollment 4 4,003 Videos 4
Video Probe 11 6,455 Videos 4

Video Activity Probe 3 1,463 Videos 3

Table 3. Data Collection Overview

Each subject completed 4 capture stations throughout the
collection, as shown in Table 3. A still is a standalone im-
age capture, whereas a frame is an individual frame sourced
from a video composed of many frames. Each of these sta-

Dataset Year # Subjects # Media Modalities LR Aerial Elevated Atmos. Quality Group
UCCS [8] 2017 4,362 75,738 FR, GR ✓ ✓ ✓

IJB-S 2018 202 6,208 FR ✓ ✓ ✓ ✓ ✓
LRFID [9] 2019 100 10,962 FR ✓ ✓ ✓

P-DESTRE [10] 2021 253 105,518 WBR ✓ ✓ ✓
D4FLY [11] 2021 31 62 FR

PRAI-1581 [12] 2021 1,581 39,461 WBR ✓ ✓
BRIAR [13] 2023 1,231 551,451 FR, GR, WBR ✓ ✓ ✓ ✓ ✓
MEVID [14] 2023 158 ∼17,700 FR, GR, WBR ✓ ✓ ✓ ✓ ✓ ✓

ACC-MM1 (Ours) 2023 227 24,265 FR, GR, WBR, AGR ✓ ✓ ✓ ✓ ✓ ✓

Table 2. Datasets related to ACC-MM1. Only RGB/visible spectrum data is considered in this table. The requirements to meet the LR,
aerial, elevated, atmospheric, and quality conditions are as listed in Table 1. The group requirement means that some portion of probe
videos contain more than one person.
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tions served a different purpose. The still and video enroll-
ment stations were designed to capture high quality data of
the subject for the purpose of enrolling them into biometric
galleries. The video probe and video activity probe captures
sought to simulate challenging, real-world recognition sce-
narios across multiple biometric modalities.

Additionally, captured data was annotated and curated
to enable training and evaluation of recognition algorithms.
Body and face bounding box annotations were produced us-
ing a suite of automated and manual annotation tools. Af-
ter data was annotated, videos, which were typically 1-2
minutes in length, were split into multiple short 1-7 second
tracks. These tracks were then used to create evaluation
subsets that allow for targeted performance assessments.

3.1. Still Enrollment Capture

The objective of the still enrollment capture was to ob-
tain indoor imagery for FR and WBR algorithm enrollment.
Imagery was captured with two digital single-lens reflex
cameras positioned at a range of 4.85m from the subject.
The camera properties and configuration are shown in Ta-
ble 4 and Figure 2, respectively.

# Range Pitch Yaw Camera HxW(px)
1 4.85m 0° 0° Canon EOS Rebel T8i 6000x4000
2 4.85m 45° 0° Canon EOS Rebel T8i 6000x4000

Table 4. Still enrollment camera properties. Range is relative to
the center of the capture area.

Figure 2. Still enrollment camera configuration

Upon starting the station, subjects were directed to face
forward and keep their arms at their sides for each capture.
Subjects were instructed to rotate through yaw angles in the
range [0°, 360°] in 45° increments using an asterisk-shaped
guide adhered to the floor. After each 45° rotation, both
cameras captured a still. Subjects completed 3 trials with
the following respective conditions for each trial; neutral
pose, eyes closed, and appearance change. Example im-
agery is shown in Figure 3.

Trials were designed to capture covariates that have been
known to challenge FR (pose [21], sensitivity to perioc-
ular region [22], etc.) and WBR algorithms (appearance
changes [23] ). The station yields 48 stills per subject.

3.2. Video Enrollment Capture

To capture enrollment data for video-based recognition
algorithms, a multi-camera indoor walking course was es-

Figure 3. Enrollment stills taken from different angles and trials

tablished. Four 10m lengths were each offset by 45°, and all
intersected with one another in the center to form an asterisk
shape. This configuration allowed for multiple yaw angles
to be captured. Four cameras (detailed in Table 5) were po-
sitioned about the structured walking course as shown in
Figure 4.

# Range Pitch Yaw Camera HxW(px)
1 10m 24° 90° GoPro HERO9 Black 1520x2704
2 10m 0° 90° FLIR BFS-PGE-50S5C-C 1080x2448
3 10m 24° 180° GoPro HERO9 Black 1520x2704
4 10m 0° 180° FLIR BFS-PGE-50S5C-C 1080x2448

Table 5. Video enrollment cameras. Yaw is relative to position
“A” set as 0° and camera range measurements are relative to the
center of the walking course.

Figure 4. Video enrollment camera configuration

In reference to Figure 4, subjects were instructed to walk
on a flat cement floor along the 10m lengths in the order
A-B-A-C-D-C-E-F-E-G-H-G. In some cases, due to time
limitations, subjects only walked the lengths A-B-A-E-F-
E. Subjects faced forward and paused for ∼1 second at the
end of each 10m length. Subjects completed 4 trials of the
walking course with changes made for each trial. The con-
ditions for the four walking trials were baseline, carrying
of a 2-4kg backpack, a shoe change, and an appearance
change. Covariates were selected to introduce variations
that have historically impacted GR performance (footwear,
load, etc. [24]). In total, the video enrollment station yields
16 videos per subject.

3.3. Video Probe Capture

The video probe capture collected outdoor video data in
unconstrained conditions known to disrupt biometric recog-
nition algorithms. These conditions included LR [25],
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aerial captures, high surveillance-style pitch angles [26], at-
mospheric conditions [27], and data quality [28]. The LR,
aerial, and pitch angle conditions are achieved by the cam-
era configuration described later in this section. The atmo-
spheric conditions were captured by performing the collec-
tion in an area which experiences warm summer months.
This reliably introduced atmospheric turbulence into the
captured imagery. To add conditions related to quality,
mixed compression levels were used and cameras were
selected to obtain in-frame subject heights which varied
widely between 25 and 400 pixels.

Subjects were instructed to complete a structured walk-
ing course like that described in Section 3.2. However, the
environment and terrain changed from an indoor cement
floor to an outdoor graveled environment. This change sim-
ulated a real-world recognition setup, where the subject is
unlikely to be walking on the same surface or in the same
conditions during both enrollment and probe captures.

Table 6 details the cameras used in this station, and Fig-
ure 5 shows the camera configuration. The combination of
cameras varied throughout the collection, and not all sub-
jects were filmed with every camera. The camera configu-
ration includes ground level cameras, elevated surveillance
cameras, camcorders, and cameras mounted on both a fixed-
wing (Camera #4) and multirotor (Camera #5) UAV. The
fixed-wing UAV circled the capture area, while all other
cameras remained stationary during capture.

# Range Pitch Yaw Camera HxW(px)
1 10m 0° 90° Vivotek IZ9361-EH 1080x1920
2 10m 30° 90° FLIR BFS-PGE-50S5C-C 1080x2448
3 10m 30° 90° Axis P1455-LE 1080x1920
4 15m 34° N/A FlightWave Edge 720x1280
5 15m 34° 180° Anafi Parrot 1080x1920
6 100m 0° 225° FLIR BFS-PGE-50S5C-C 1080x2448
7 100m 0° 225° Vivotek IZ9361-EH 1080x1920
8 300m 0° 270° FLIR BFS-PGE-50S5C-C 1080x2448
9 300m 0° 270° Canon EOS R5 2160x4096

10 300m 0° 270° Canon XF400 1080x1920
11 500m 0° 315° Canon EOS R5 2160x4096

Table 6. Probe video camera properties. Yaw is relative to position
“A” set as 0°, and camera range is relative to the center of the
walking course.

Figure 5. Probe video camera configuration

Subjects completed 4 trials of the course, with modi-
fications being made for each trial. These trials included
a baseline walk, appearance change, simultaneous appear-
ance change and carrying of a 2-4kg backpack, and finally a
body distortion using a poncho and foot booties. A notable
modification from the covariates used during video enroll-
ment (Section 3.2), was the addition of body distorting ac-
cessories (such as ponchos and foot booties). This covariate
was designed to disrupt recognition algorithms which con-
sider body shape as a biometric feature. Example probe
video imagery is shown in Figure 6.

Figure 6. Crops from the probe video capture. Camera numbers
correspond to Table 6.

3.4. Video Activity Probe Capture

To support the AGR modality, an activity course was
constructed to capture probe videos of subjects performing
common activities. The activities are described in Table 7.
Subjects were instructed to navigate the course by walk-
ing to an assigned area, pausing for ∼1 second, and then
performing the designated activity. The cameras that were
utilized are detailed in Table 8. An overview of the course
and camera configuration is shown in Figure 7. Subjects
completed 3 trials. These included a baseline course navi-
gation, navigation with body distortion via a poncho, and a
group navigation consisting of multiple subjects completing
the activity course simultaneously.

3.5. Annotations

ACC-MM1 was annotated with bounding boxes using a
combination of automated and semi-automated annotation
tools. For indoor enrollment captures, YOLOX [29] was
used for body detection, and MogFace [30] was used for
face detection. Imagery was first passed through YOLOX
to identify the body region. Thereafter, if YOLOX returned
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Activity # Description
Walk Walking on flat ground

Enter Car Entering a car
Exit Car Exiting a car

Stairs (Up) Walking up a 6-stair staircase
Stairs (Down) Walking down a 6-stair staircase

Pull Door Pulling a door open and entering a building
Push Door Pushing a door open and exiting a building

Text Texting while walking

Table 7. Activity Descriptions

# Range Pitch Yaw Camera HxW(px)
1 15m 22° 45° Axis P1455-LE 1080x1920
2 25m 0° 0° FLIR BFS-PGE-50S5C-C 1080x2448
3 100m 0° 315° FLIR BFS-PGE-50S5C-C 1080x2448

Table 8. Activity probe video camera properties

Figure 7. Activity course, camera configuration, and example im-
agery for the activity probe capture. Subjects performed a series
of common activities. Though not discernable from the figure, all
activities were in the field of view of all cameras.

a person detection, the frame would be cropped, and Mog-
Face would automatically detect the highest-probability
face within the YOLOX detection region.

Probe videos were processed by running YOLOX in the
same manner as the enrollment captures. However, before
running MogFace, body bounding boxes were manually re-
viewed for accuracy with a semi-automated pipeline that
utilized the Computer Vision Annotation Tool (CVAT) [31].
Among other annotation capabilities, the CVAT interface
allows manual annotators to create and modify bounding
boxes for video data. CVAT was preloaded with the au-
tomated annotations from YOLOX, and annotators were
tasked with (1) drawing bounding boxes in cases where
YOLOX failed to detect the subject, (2) deleting false pos-
itive bounding boxes, and (3) adjusting bounding boxes to
better localize the subject. These manual review steps were

taken due to the lower quality of the probe data. CVAT was
also used to produce activity annotations for the probe activ-
ity videos. Annotators were shown full videos and marked
the start and end frame of each predefined activity.

The high volume of probe videos collected in Section 3.3
necessitated an automated activity labeling approach. To
accomplish this, segments of the video probe capture were
labeled as either “standing” or “walking” using bounding
box information and known capture conditions. Since sub-
jects were instructed to stand during the beginning and end
of videos, standing tracks were obtained from those por-
tions of the recording. Walking tracks were labeled such
that they ideally contained one unidirectional segment of
the subject’s walk. Put another way, each walking track
should contain the subject walking no more than 10 me-
ters in one direction. Identifying walking automatically was
challenging, as the subject’s structured walk required them
to change direction multiple times as they walked through
different yaw angles relative to the camera. However, by
considering temporal bounding box information, it is pos-
sible to extract unidirectional walking tracks. As a subject
reaches the end of a length, their bounding box location in
the horizontal direction typically reaches a local minimum
or maximum before they change direction. The horizon-
tal direction, rather than the vertical direction, was utilized
since it is a less noisy signal. The noise in the vertical direc-
tion is caused by the subject’s natural tendency to oscillate
vertically [32] as they walk.

To produce walking tracks using bounding box informa-
tion, peak and valley detection [33] was run on the sig-
nal produced by the subject’s X-coordinate position through
time. The peaks and valleys represent the points in the video
when the subject changes direction. Candidate walking
tracks were then identified by selecting frames which fell
between two direction changes. Candidate walking tracks
were further filtered based on a minimum (4 second) and
maximum (7 second) duration. Figure 8 shows a plot of a
subject’s movement in the X-direction labeled with events
of interest. One limitation of this automated approach is
that in cases where the subject is walking directly at the
camera (resulting in little movement in the horizontal di-
rection), it can be difficult to accurately segment the uni-
directional walking track. This approach is also limited to
stationary cameras, which resulted in the need to manually
label walking tracks from the circling, fixed-wing UAV.

In addition to bounding box and activity annotations,
subject demographic information, environmental condi-
tions, and camera conditions are provided to allow for tar-
geted training or evaluation.

3.6. Evaluation Datasets

Establishing standardized evaluation datasets ensures
fair comparison of recognition algorithms. It also allows
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Figure 8. Plot of a subject’s X-coordinate versus time. This video
was trimmed into 2 standing and 8 walking tracks.

for especially challenging conditions to be targeted for re-
search. To create evaluation datasets, probe videos were
broken into multiple, 1-7 second tracks, depending on the
activity the subject was performing. Generating activity-
specific tracks ensures that each probe track contains lim-
ited information. This processing mimics challenging real-
world recognition scenarios where, for a given video, a per-
son of interest may appear only briefly. Enrollment, how-
ever, is treated as being controlled and cooperative. As
such, enrollment stills and videos are available in their en-
tirety for gallery creation.

The probe tracks were then sub-selected based on the
conditions and activities present in their source videos to
create three targeted evaluation subsets (1) ACC-MM1-
Standard, (2) ACC-MM1-Challenge, and (3) ACC-MM1-
Activity. From here onward, they will be referred to as
Standard, Challenge, and Activity. The tracks in the Stan-
dard and Challenge subsets were sourced from videos cap-
tured in Section 3.3. The Standard subset included tracks
from videos which were captured at <150m, and from low
pitch angles (<30°). The Challenge subset is composed
of footage captured from ≥150m, as well as elevated and
UAV cameras yielding pitch angles ≥30°. Activity includes
tracks taken from the videos described in Section 3.4. Activ-
ity omits the group walk trial to focus the evaluation scope.

4. Baseline Evaluation
A series of recognition algorithms were evaluated

against the Standard, Challenge, and Activity subsets. This
testing was conducted to provide baseline performance
against the evaluation subsets and gain an understanding of
how different modalities perform in the conditions broadly
present in ACC-MM1. Algorithms are detailed in Table 9.

The selection of algorithms gives an overview of recog-
nition performance across recent algorithmic approaches.
GR-MVIT2 and WB-SWINB were created for the purposes
of this evaluation and utilize popular modern backbones

Algorithm Year Modality Preprocessing Backbone Speed (ms/frame)
ArcFace [34] 2019 FR SCRFD [35] ResNet-50 [36] 320.5
GaitSet [37] 2019 GR Mask2Former [38] GaitSet 90.5
GaitPart [39] 2020 GR Mask2Former GaitPart 91.2

PartialFC [40] 2021 FR MTCNN [41] iResNet-100 [42] 75.8
OSNet [43] 2021 WBR - OSNet 80.0
GaitGL [44] 2021 GR Mask2Former GaitGL 91.0

Centroids-ReID [45] 2021 WBR - ResNet-50 65.0
AGW-Body [46] 2022 WBR - ResNet50-NL [47] 69.0

AdaFace [48] 2022 FR MTCNN ResNet-101 65.1
CFSM [49] 2022 FR MTCNN iResNet-50 53.6

GaitBase [50] 2022 GR Mask2Former ResNet-9 90.7
GR-MVIT2 2023 GR - MViTv2 [51] 8.4
WB-SWINB 2023 WBR - Swin-B [52] 86.4

Table 9. Baseline algorithms. Speed is reported as the average
per-frame inference time on 1080x1920 (HxW) RGB videos us-
ing an NVIDIA V100 GPU. To initially localize the subject, all
algorithms utilized YOLOX running at ∼5.6 ms/frame.

trained on the BRIAR dataset. All subjects in the ACC-
MM1 dataset were considered viable for testing, as no al-
gorithm had been trained on ACC-MM1.

4.1. Aggregation and Scoring

The recognition algorithms in Table 9 operate by pro-
ducing template representations for each identity of interest.
Ideally, when compared, templates produced by media con-
taining the same individual will be similar, and templates
produced by media of different individuals will be dissimi-
lar. In some cases, the algorithms shown in Table 9 expect
multiple frames as input, producing a template for a batch
of frames. Others, however, produce a single template for
each still or frame. The evaluation protocol requires each
probe track to be compared against gallery subjects, each
of whom is represented by multiple enrollment videos and
still media. Therefore, for practical computation purposes,
a template aggregation method was utilized to avoid a com-
binatorial explosion during template similarity comparison.
Template aggregation was performed as a multi-step mean
aggregation across all media templates belonging to a given
probe track or enrollment subject, as shown in Figure 9.

Figure 9. Baseline template aggregation method. Probe track tem-
plates are averaged across the video. Enrollment still templates
are obtained on a per-still basis. Enrollment video templates are
first averaged across videos, before being broadly averaged with
the enrollment still templates to create the enrollment template.

Enrollment templates for each subject are stored to cre-
ate the gallery. Cosine similarity was used to calculate
the similarity of probe track templates to each enroll-
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ment template in the gallery. The aggregation and scoring
methodology described above can be performed a myriad
of ways [53], and the approach in Figure 9 only represents
a naı̈ve implementation for baseline evaluation purposes.

4.2. Baseline Results

Algorithms were first evaluated on the Standard and
Challenge subsets. Performance is reported on biometric
verification, which is the task of verifying whether an input
probe subject is the gallery subject they claim to be. For
evaluation, receiver operator characteristic (ROC) curves
are plotted to show the tradeoff between true positives and
false positives across a sweep of thresholds. Here, true
positives are represented by the True Accept Rate (TAR),
and false positives are represented by the False Accept Rate
(FAR). The ROC curves for the top performing algorithms
are shown in Figure 10. Results for all algorithms are shown
in Table 10.
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Figure 10. ROC curves for the top performing algorithms of each
modality on the Standard (S) and Challenge (C) subsets. The
abrupt horizontal lines on the righthand side of the plots indicate
that the algorithm failed to enroll (FTE) a subset of probe tracks.
This is typically caused by missed face or body detections.

Considering TAR@FAR=10−2, the top performing al-
gorithms on Challenge were GR-MVIT2, ArcFace, and
WB-SWINB. Most algorithms failed to perform above 0.1
TAR@FAR=10−2 on Challenge, demonstrating its diffi-
culty. The results also show that among top performing
algorithms FR and GR outperformed WBR. This is unex-
pected since all tracks include the whole body, but not all
tracks include visible faces or walking sequences. Lower
WBR performance may be attributable to the nascency of
WBR research relative to FR and GR.

Another task is closed-set ranked retrieval (CSRR). For
CSRR, a probe subject is known to exist in the gallery.

Algorithm Modality TAR@FAR=10−3 TAR@FAR=10−2 TAR@FAR=10−1

ArcFace FR 0.374 | 0.111 0.501 | 0.206 0.671 | 0.370
GaitSet GR 0.048 | 0.031 0.169 | 0.099 0.411 | 0.285
GaitPart GR 0.040 | 0.019 0.139 | 0.075 0.367 | 0.266

PartialFC FR 0.192 | 0.037 0.318 | 0.086 0.510 | 0.205
OSNet WBR 0.014 | 0.010 0.053 | 0.049 0.231 | 0.204
GaitGL GR 0.019 | 0.011 0.061 | 0.042 0.207 | 0.172

Centroids-ReID WBR 0.031 | 0.025 0.133 | 0.099 0.435 | 0.342
AGW-Body WBR 0.039 | 0.038 0.147 | 0.114 0.418 | 0.335

AdaFace FR 0.177 | 0.038 0.295 | 0.081 0.477 | 0.192
CFSM FR 0.149 | 0.024 0.262 | 0.067 0.451 | 0.185

GaitBase GR 0.050 | 0.034 0.178 | 0.114 0.471 | 0.328
GR-MVIT2 GR 0.285 | 0.169 0.550 | 0.362 0.852 | 0.574
WB-SWINB WBR 0.050 | 0.033 0.190 | 0.122 0.554 | 0.412

Table 10. Algorithm results at key FAR values. Results for each
data subset are shown as Standard | Challenge. In this table, and
all following results tables, top performing algorithms at each rate
are bolded, second-best algorithms are bolded and italicized, and
third-best algorithms are italicized.

At runtime, the probe is scored against all gallery sub-
jects and a ranked list of the gallery subjects is returned
sorted by descending similarity to the probe. To measure
CSRR performance across many probes, identification rate
(IDR) is plotted at increasing rank values. For example, if
the IDR@Rank=5 is 0.6, it would indicate that for 60% of
probe tracks, the probe identity appears in the top 5 most
similar identities returned by the query. CSRR results are
shown in Figure 11 (top performing) and Table 11 (all).
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Figure 11. CSRR of top performing algorithms from each modal-
ity on Standard (S) and Challenge (C) subsets.

For the CSRR task, GR-MVIT2, AGW-Body, and Arc-
Face were the top performing algorithms for each modal-
ity based on IDR@Rank=5 on Challenge. On this met-
ric, the top WBR algorithm outperformed the top FR algo-
rithm. However, most algorithms failed to achieve results
above 0.5 IDR@Rank=5 on either the Standard or Chal-
lenge datasets, which potentially limits their use in many
real-world applications.
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Algorithm Modality IDR@Rank=1 IDR@Rank=5 IDR@Rank=20
ArcFace FR 0.441 | 0.137 0.556 | 0.231 0.659 | 0.348
GaitSet GR 0.196 | 0.103 0.379 | 0.222 0.561 | 0.369
GaitPart GR 0.182 | 0.089 0.355 | 0.198 0.548 | 0.349

PartialFC FR 0.272 | 0.051 0.373 | 0.101 0.482 | 0.192
OSNet WBR 0.078 | 0.051 0.180 | 0.144 0.360 | 0.300
GaitGL GR 0.088 | 0.049 0.193 | 0.113 0.380 | 0.244

Centroids-ReID WBR 0.173 | 0.108 0.372 | 0.266 0.601 | 0.446
AGW-Body WBR 0.265 | 0.171 0.499 | 0.350 0.712 | 0.528

AdaFace FR 0.248 | 0.049 0.344 | 0.095 0.457 | 0.180
CFSM FR 0.225 | 0.039 0.313 | 0.083 0.430 | 0.172

GaitBase GR 0.242 | 0.134 0.430 | 0.270 0.620 | 0.410
GR-MVIT2 GR 0.515 | 0.303 0.739 | 0.461 0.881 | 0.595
WB-SWINB WBR 0.134 | 0.076 0.329 | 0.204 0.595 | 0.404

Table 11. All algorithm results shown as Standard | Challenge

Lastly, results are shown for the Activity subset, de-
signed for AGR algorithms. Since AGR is a novel modality,
no baseline algorithms for this approach were available. In-
stead, the baseline algorithms from Table 9 were run against
the Activity subset. As shown in Table 12 the top perform-
ing algorithm across all activities at key metric values was
GR-MVIT2. The high performance of this GR algorithm
may be due to elements of walking being present in many
of the activities. These results show that research is needed
to improve AGR performance in unconstrained conditions.
Additionally, the top two algorithms, GR-MVIT2 and Ar-
cFace, were designed for GR and FR, respectively. This
indicates that research into multimodal fusion is likely to
boost performance.

Results show that for verification and CSRR tasks, the
Challenge subset provides a significant level of difficulty
for state-of-the-art recognition algorithms. Improving per-
formance on the conditions present in the Challenge sub-
set may be possible by training algorithms on data which
incorporates many of the conditions found in ACC-MM1.
Improvement on the Activity subset could be realized by
targeted training or enrollment of specific activities. Al-
though the ACC-MM1 evaluation subsets are challenging,
future algorithms which take advantage of multiple gallery
media, more intelligently aggregate templates across clips
and frames, use novel distance metrics, or fuse modalities
may improve performance and real-world viability.

5. Conclusion
This paper introduced the ACC-MM1 dataset and evalu-

ation subsets to fuel multimodality biometric research under
unconstrained and challenging conditions. ACC-MM1 in-
cludes multiple modalities and targets challenging capture
conditions, which are not typically present in most large-
scale video recognition datasets. By providing an evalu-
ation protocol, researchers can compare recognition algo-
rithms in a standardized manner.

Areas of improvement for ACC-MM1 are increasing
variation in environments, subject demographics, camera
models, and the addition of other capture covariates. Fur-
ther, the dataset could better mimic challenging capture
conditions with the addition of occlusions and less con-
strained walking patterns. Future collections in the ACC-
MM series will expand upon these areas to create a more
comprehensive recognition dataset. Ultimately, this com-
prehensiveness will ensure real-world generalizability of
the models trained and evaluated on the ACC-MM series.
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Algorithm Activity
Walk Enter Car Exit Car Stairs (Up) Stairs (Down) Pull Door Push Door Text

ArcFace 0.377 | 0.448 0.178 | 0.201 0.270 | 0.344 0.274 | 0.324 0.280 | 0.315 0.062 | 0.055 0.268 | 0.342 0.290 | 0.353
GaitSet 0.181 | 0.459 0.071 | 0.223 0.082 | 0.202 0.116 | 0.278 0.093 | 0.294 0.087 | 0.178 0.037 | 0.164 0.147 | 0.403
GaitPart 0.128 | 0.349 0.045 | 0.164 0.060 | 0.145 0.066 | 0.270 0.073 | 0.263 0.076 | 0.175 0.056 | 0.138 0.100 | 0.393

PartialFC 0.125 | 0.189 0.093 | 0.108 0.131 | 0.156 0.104 | 0.147 0.100 | 0.163 0.004 | 0.011 0.086 | 0.100 0.130 | 0.200
OSNet 0.064 | 0.174 0.037 | 0.152 0.039 | 0.121 0.039 | 0.135 0.042 | 0.159 0.029 | 0.105 0.022 | 0.104 0.057 | 0.203
GaitGL 0.096 | 0.221 0.037 | 0.134 0.028 | 0.138 0.046 | 0.189 0.024 | 0.121 0.025 | 0.127 0.052 | 0.100 0.047 | 0.173

Centroids-ReID 0.096 | 0.335 0.033 | 0.294 0.060 | 0.277 0.069 | 0.293 0.087 | 0.291 0.055 | 0.189 0.056 | 0.212 0.107 | 0.350
AGW-Body 0.149 | 0.541 0.089 | 0.442 0.064 | 0.390 0.069 | 0.371 0.087 | 0.436 0.044 | 0.298 0.048 | 0.249 0.147 | 0.520

AdaFace 0.139 | 0.196 0.100 | 0.130 0.113 | 0.170 0.108 | 0.151 0.100 | 0.135 0.007 | 0.015 0.071 | 0.071 0.123 | 0.173
CFSM 0.085 | 0.174 0.071 | 0.115 0.103 | 0.156 0.066 | 0.112 0.093 | 0.125 0.000 | 0.007 0.078 | 0.078 0.063 | 0.157

GaitBase 0.231 | 0.505 0.048 | 0.201 0.067 | 0.227 0.108 | 0.355 0.090 | 0.349 0.098 | 0.229 0.071 | 0.186 0.133 | 0.477
GR-MVIT2 0.548 | 0.762 0.431 | 0.587 0.390 | 0.518 0.390 | 0.587 0.422 | 0.561 0.371 | 0.502 0.368 | 0.483 0.547 | 0.730
WB-SWINB 0.181 | 0.352 0.112 | 0.223 0.135 | 0.230 0.124 | 0.232 0.149 | 0.266 0.087 | 0.160 0.086 | 0.201 0.143 | 0.273

Table 12. Algorithm results on the Activity subset. Results are shown as TAR@FAR=10−2 | IDR@Rank=5.
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