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Abstract

In recent years, Transformer models have revolutionized
machine learning. While this has resulted in impressive re-
sults in the field of Natural Language Processing, Computer
Vision quickly stumbled upon computation and memory
problems due to the high resolution and dimensionality of
the input data. This is particularly true for video, where the
number of tokens increases cubically relative to the frame
and temporal resolutions. A first approach to solve this was
Vision Transformers, which introduce a partitioning of the
input into embedded grid cells, lowering the effective reso-
lution. More recently, Swin Transformers introduced a hi-
erarchical scheme that brought the concepts of pooling and
locality to transformers in exchange for much lower com-
putational and memory costs. This work proposes a refor-
mulation of the latter that views Swin Transformers as reg-
ular Transformers applied over a quadtree representation
of the input, intrinsically providing a wider range of de-
sign choices for the attentional mechanism. Compared to
similar approaches such as Swin and MaxViT, our method
works on the full range of scales while using a single atten-
tional mechanism, allowing us to simultaneously take into
account both dense short range and sparse long range de-
pendencies with low computational overhead and without
introducing additional sequential operations, thus making
full use of GPU parallelism.

1. Introduction
Swin Transformers [9] are a type of neural topology

based on transformer networks [17]. Contrary to conven-
tional transformers and their Computer Vision counterpart,
Vision Transformers (ViT) [4], Swin employs a hierarchi-
cal partitioning of the image in order to define local regions
upon which the attention mechanism is applied. The image
resolution is successively halved after a specific number of

transformer blocks, which increases reach of the attention
mechanism without actually increasing the size of the indi-
vidual attention matrices. The main problem with such an
approach is that long range dependencies are taken into con-
sideration in an indirect fashion. It is only thanks to its win-
dow shifting mechanism that, through the use of multiple
Swin Transformer blocks, information can slowly diffuse to
distant regions of the image.

In this work we propose a reformulation of the method,
exposing it as a sequential computation over an quadtree
representation of the input images. We then propose a new
flavor of Swin transformers that naturally emerges from said
reformulation, which we refer to as Swin on Axes (Swinax).
Compared to the first, Swinax can jointly consider token
relationships at multiple scales, the dilation factor of the at-
tentional mechanism increasing along with said scale. It can
thus achieve the same degree of sparsity and computation of
long range dependencies Swin achieves over multiple lay-
ers, but it does so in a single transformer block, with the
computations being performed in parallel.

2. Previous work
Transformers [17] were first introduced in 2017 as an

attentional mechanism that allows for the passing of infor-
mation between a collection of tokens X = {x(1); ..; x(p)}
in language models. The attentional mechanism in question
extracts a series of keys KX =

[
fK(x(1)); ..; fK(x(p)))

]
,

queries QX =
[
fQ(x

(1)); ..; fQ(x
(p)))

]
and values VX =[

fV (x
(1)); ..; fV (x

(p)))
]
, then proceeding to apply the at-

tentional mechanism shown below for a given attention
head j:

Att(j) (X) = Smx

(
1√
dK

K
(j)
X Q

(j)
X

T
+B(j)

)
V

(j)
X (1)

Here, dK is the dimensionality of keys K
(j)
X , B(j) cor-

responds to the relative position biases and Smx(·) is the
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Softmax activation function. A given attentional layer has
h attention heads, with the final output of the layer being a
linear combination of the latter:

Y =
[
Att(1) (·) , .., Att(h) (·)

]
WO (2)

Where WO is the output weights matrix. Apart from the
attentional mechanism, a transformer block is typically fol-
lowed by a two-layer fully connected network updating the
token representations, with layer normalization after both
the multi-head attention and fully connected sub-network.
The original work proposed an encoder-decoder architec-
ture, where a series of transformer blocks are stacked to
produce an encoder processing an input token sequence, and
similar set of such layers produces a decoder. Contrary to
the encoder, the decoder consists of two attention mecha-
nisms: the first one is the regular self-attention block, where
the attentional mechanism looks at other tokens within the
same sequence. The second one updates the token represen-
tations of the decoder based on those of the encoder in what
is commonly known as cross-attention.

Latter variations introduced encoder-only [3] and
decoder-only [11] models. The former model either the re-
lationship between elements in a sequence by reconstruct-
ing masked input tokens, or directly predict a target la-
bel based on the input sequence. The latter, on the other
hand, are trained in an auto-regressive fashion by masking
the self-attention mechanism, ensuring that each token will
have access only to itself and the previous tokens. tt The
first significant success when applying transformer mod-
els to computer vision were Vision Transformers (ViT) [4].
Here, the authors proposed an encoder-only topology where
an input image is broken down into non-overlapping cells,
typically using a 16 × 16 grid. Each of the cells is linearly
projected into a feature vector representing a token, with an
additional classification token added to the sequence. This
token sequence is then fed to the encoder-only transformer,
with the final output of the classification token being used
as overall model output.

While this type of model proposes a robust tokenization
approach, it still runs into the problem of a high memory
usage in the order of O

(
p2
)
, where p = 162 is the num-

ber of tokens, and the corresponding high computational
cost required to generate the attention matrix. While this
would still correspond to a relatively small attentional ma-
trix when compared to some language models, a large batch
size is usually required in order to stabilize the training of
computer vision models. A common way to solve this prob-
lem is to apply restrictions on the considered tokens when
computing the attentional mechanism.

Local attention enforces locality during the computa-
tion of the attentional mechanism, with Swin transformers
[9] being the most well known example. In Swin, the grid of
tokens is partitioned into non-overlapping W×W windows,

where typically W = 7. The attentional mechanism is ap-
plied to each window, with the window being displaced by
50% of its width at alternating layers. This allows the model
to limit the size of the attentional matrices while still allow-
ing the tokens falling near the edges to diffuse throughout
the image. This reduces the memory usage from O

(
p2
)

to O
(
pW 2

)
. Swin also introduces a linear down-sampling

function where, after a set of d transformer blocks, neigh-
boring tokens in a non-overlapping grid of 2×2 cells are lin-
early combined together. This further reduces the memory
and computational costs by lowering the number of tokens
fed to subsequent transformer blocks, while also indirectly
increasing the receptive field of the attention mechanism.

Neighborhood Attention (NA) [7] considers a local to-
ken neighborhood for each of the target tokens during at-
tention computation, resulting in a model equivalent to the
marking of all elements outside the first k diagonals in the
attention matrix. In order to efficiently implement it, the
authors provide low level kernels to perform the attention
computation, bypassing the otherwise prohibitive memory
and computational cost restrictions that would result from
implementing is as a series of linear algebra operators. The
advantage of this approach is its intrinsic ability to diffuse
information across the whole image, due to its lack of hard
region boundaries between image segments. Similarly to
Swin, a linear down-sampling step is introduced after every
few attentional blocks.

A more recent work proposes Dilated Neighborhood At-
tention (DiNA) [6], introducing dilation to NA. Similar to
the approach it is based on, this is achieved through a low
level CUDA kernel implementation. The dilation factor
then becomes a per layer model hyper-parameter.

Sparse attention aims to combine sparse global atten-
tion patterns with denser local ones by introducing strate-
gies that reduce the memory and computational costs.
Sparse Transformers [2] was the first work to introduce such
an approach. The authors noted that ViT first learned local-
ity patterns, factorizing across the vertical and horizontal
axes on latter layers. Based on that, they implemented hand
crafted factorizations of the attentional mechanism, weav-
ing these insights into the architecture.

Longformers [1] use a combination of sliding window at-
tention, optionally with dilation, and global attention. They
do so by considering a select subset of tokens as globally
connected, serving as shortcuts for the diffusion of informa-
tion across the token sequence. Routing Transformers [12]
use a learned attention connectivity instead. To do so, a
series of k centroids are learned and used during k-means
clustering to group the queries and keys of the attention
mechanism. This restricts the attention matrix to mappings
between queries and keys belonging to the same cluster.
Note that nothing prevents a given token from having its
query and key belong to different clusters, potentially giv-
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ing the attention matrix a single component graph connec-
tivity.

MaxViT [16], an approach based on Swin transformers,
proposes decomposing a token grid X ∈ R<H×W×C> into
a batched form X ∈ R<H

N ×W
N ×N×N×C>. In this form,

applying an attention mechanism over axes N × N corre-
sponds to the local windowed attention commonly seen in
Swin. Applying it over axes H

N×
W
N instead corresponds to a

dilated attention over the whole picture, where the dilation
factor is N . By applying two successive attention blocks,
one over the local windows and the other dilated over the
whole input, the approach considers both dense local and
sparse global attention.

QuadTree [15] uses a quad-tree based attentional mech-
anism, where keys, queries and values are iteratively down-
sampled to create a pyramid of features at different resolu-
tions. The attentional matrix is first computed on the coars-
est level and used to decide the top-K tokens to consider
when computing the attentional matrix for the next, finer
level of the pyramid. Messages are passed from all levels of
the pyramid to eack key token. While this approach offers
great flexibility both in terms of granularity and distribu-
tion of the selected tokens, this is achieved through a large
increase in the number of sequential operations, reducing
model parallelism.

Our work falls on the family of sparse attention methods,
proposing an attentional mechanism where the attention
pattern gradually sparsifies as the distance between token
pairs increases. It shares some similarities with MaxViT
[16], but using a more general, principled approach that
lends it a higher degree of flexibility.

3. Method
Our aim is to provide a computationally efficient atten-

tional mechanism capable of adapting to the image reso-
lution by automatically adjusting the sparsity based on the
distance between tokens. This is particularly important for
tasks requiring both a detailed local understanding of im-
age elements (eg. object recognition), while also requiring
a more general understanding (eg. image composition, in-
stance interaction). As seen in Sec. 2, previous approaches
rely either on a manual selection of shortcut tokens [1, 12],
a two-stage local/global attentional mechanism [16] or the
iterative, sequential refinement of the attention matrix [15].
These approaches either do not scale well with the image
resolution, introduce additional sequential operations that
hamper parallelism, or both.

To tackle these issues, we propose a reformulation of
Swin transformers, where the segmentation of the input
into local attentional regions and linear pooling of tokens
are seen as regular attention and dimensionality reduction
operations applied to a quadtree representation of the in-
put image. As we show in this section, this allows for

Figure 1. Attention matrices of a Swin transformer at different
resolutions. Each grid cell represents a token, while colored re-
gions correspond to the attention regions. The number of attention
regions is reduced as cell grids are linearly combined during pool-
ing. The size of attention regions remains constant.

an equivalent, more straightforward application of the ap-
proach, as well as allowing for other attentional operations
such as attention dilation (Sec. 3.3) and multi-scale atten-
tion (Sec. 3.4). An implementation of the approach is made
publicly available. 1

3.1. Hierarchical structure of Swin

Swin defines a window of constant size W ×W which is
applied over the input token grid in a tiled, non-overlapping
fashion, as shown in Fig. 1. This window is used to decide
which cells of the grid will interact with each other during
the computation of the attention mechanism, creating a lo-
cal connectivity pattern within a given transformer block.

After successively applying a series of such layers, the
resolution of the grid is reduced to half its original size
by linearly projecting the features in each 2 × 2 non-
overlapping neighborhood into a single output feature vec-
tor. This reduces the overall number of cells by 75%. Fur-
ther transformer blocks are applied after that. While these
maintain the same window size and thus the number of cells
considered and size of the attention matrix, the receptive
field effectively doubles in size due to the down-scaling of
the grid.

3.2. Quadtree representation

An intuitive way of representing the data input to a Swin
transformer block is to define X ∈ R<B×NW×W×W×C>,
where B is the batch size, NW is the number of non-
overlapping attention neighborhoods, W × W represents
the spatial resolution of said neighborhoods and C cor-
responds to the feature length of a token. During pool-
ing, we would need to transpose and reshape the matrix to
R<B×NW /4×W×W×4C> before applying the linear trans-
form to each token.

Here we propose a different approach where the input
data is structured as a quadtree [5], a hierarchical struc-
ture that is perfectly suited to our purposes. Similarly to its
higher dimensional variant, the octree [10], it splits a two-
dimensional space into four quadrants, all elements being

1Code: Will be made publicly available on publication.
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Figure 2. Left: Coordinates of cells and subcells for the quadtree
representation of the input cell grid. Right: Checkerboard pattern
of the dilated attention mechanism, obtained by shifting the se-
lected axes for the attention window once to the left (x2 dilation).
Each color denotes the group of tokens included in a single atten-
tion window, for a total of 16 windows.

distributed among them based on their spatial coordinates.
Each of the quadrants is further subdivided, the process it-
eratively repeating itself until we either have a sufficiently
small number of elements on the leaf partitions, or a single
element remains. For highly regular lattice structures such
as images, the distribution of elements among quadrants is
homogeneous. This allows us to encode the structure as a
high dimensional tensor whose dimensions consist of four
elements, each corresponding to a quadrant. To do so, we
first expand the height and width dimensions of the input
images into a series of size 2 axes, then reshuffle and re-
shape:

R<B×H×W×C> reshap.−−−−−→ R<B×h1×..×hn×w1×..×wn×C>

transp.−−−−−→ R<B×h1×w1×..×hn×wn×C>

reshap.−−−−−→ R<B×a1×..×an×C>

(3)
For 2d images, this results in a series of axes {a1, .., an}

of size 4, where ai results from vectorizing dimensions
hi × wi. Note that the above transform can just as eas-
ily be applied to three-dimensional data, such as video or
volumes. There, each dimension ai would be of size 8,
the resulting tensor encoding an octree. Under this rep-
resentation, axis ai partitions an input 2d image into four
equally sized chunks corresponding to the four quadrants
of a quadtree, while the successive dimensions each parti-
tion the previous quadrants into four more segments. This
is illustrated by the leftmost image in Fig. 2.

Under this representation, the attention computation and
linear down-sampling performed by Swin become straight-
forward. Below, an example is shown for a cell grid of size
64 (d = 6 total axes), where the attention window is of size
W = 8 (w = 3 axes).

X = R<B×a1×a2×a3×a4×a5×a6×C> (4)

Here, the dimensions colored in blue correspond to the
attention window, while those colored in red are the fea-
tures. The other dimensions correspond to the batch size.
After applying k transformer blocks on the data, Swin per-
forms a linear transform on non-overlapping neighborhoods
of size 2x2, resulting in a reduction of the image size. In our
representation, this corresponds to shifting the selected axes
for the attention window to the left:

X = R<B×a1×a2×a3×a4×a5×a6×C> (5)

The feature dimensions, marked in red, can then be lin-
early transformed and replaced by a single output feature
dimension.

3.3. Dilated attention

A direct extension to Swin comes from considering what
would happen if we shifted the selection of attention win-
dow axes without subsuming the rightmost axis into the fea-
ture representation. That is, if we consider the following
assignment of axes:

X = R<B×a1×a2×a3×a4×a5×a6×C> (6)

Here, B and axes a1, a2 and a6 jointly define the batch
size, while axes a3, a4, and a5 define the attention window.
Applying a transformer block over the above representation
is equivalent to doubling the size of the attention window
while maintaining the number of tokens, which is achieved
through an implicit 2x dilation of the attention regions. This
is illustrated by the rightmost image in Fig. 2. Displacing
the selection of window axes further to the left would equate
to a 4x dilation of the attention mechanism.

With this approach, we can compute larger attention re-
gions without having to sub-sample the image nor increase
the computational and memory costs. This allows us to con-
sider both local and global attention before sub-sampling
the grid cells, increasing the flexibility of Swin. The shift-
ing of the attention windows, as performed on Swin at al-
ternate attention blocks, also becomes unnecessary. This is
due to subsequent dilated layers already allowing communi-
cation across attentional window boundaries by increasing
the receptive field.

3.4. Multi-scale attention

We can further exploit the quadtree representation by ap-
plying the attention mechanism to multiple axes simultane-
ously. The simplest approach is to consider each axis in-
dependently, resulting in d attention matrices of size 4× 4.
The resulting attention mechanism shares information more
densely among tokens that are closed in the quadtree repre-
sentation, with the dilation factor increasing for tokens that
are further away. This is shown in the middle diagram of
Fig. 3. A more general option is to apply the same approach
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Figure 3. Attentional neighborhood of a token. Each color repre-
sents a different attention scale. Left: Simple attention with an x2
dilation factor. Middle: Multi-scale attention applied over each
axis of the quadtree representation. Right: Multi-scale attention
applied over the quadtree axes using a sliding window of size 2.

over a sliding window moving across the axes, resulting in
larger individual attention matrices. The former approach
would then correspond to using a sliding window of size
1. For a sliding window of size 2, we would use each el-
ement of the set A = {(a1, a2), (a2, a3), .., (an−1, an)}
as the attention window. This is illustrated on the rightmost
diagram of Fig. 3.

The keys K
(j)
X , queries Q

(j)
X and values V

(j)
X are com-

puted once for all tokens and shared among the different
attention windows. A single set of relative biases is also
learned using the same approach as in [9]. The final value
for any given attention head is obtained by multiplying the
attention tensors Ã(j,k) with the values tensor V

(j)
X , then

adding the resulting matrices together. This corresponds
to independently applying the attentional mechanism over
multiple dilation factors, instead of applying it to multiple
scales separately. We jointly compute the Softmax activa-
tion over the different attention tensors:

A
(j,k)

=
eÂ

(j,k)

Z(j)

Z
(j)
abcd = 1abcd ⊗

(
d−w+1∑
i=1

eÂ
(j,i)

)
abcduv

(7)

Where d is the dimensionality of the quadtree represen-
tation, Â(j,k) are the the attention matrices before applying
Softmax and ⊗ denotes the Einstein summation operator,
with the subscripts for both its terms corresponding to the
pairings between axes. The resulting algorithm for the com-
putation of a multi-scale attention head j is shown in Alg. 1.

4. Complexity
Lets define p as the number of tokens, typically p = 22d

for an image size restricted to being a power of 2 in both
height and width, and W as the attentional window size.
The total number of scales NS over which the attentional
mechanism is applied is given by:

NS = 1 + log2

(√
p

W

)
(8)

The number of tokens each one is paired with is then
given by NP = W 2NS . Note that each scale past the first
has a 25% overlap in terms of tokens relative to the previ-
ous (smaller) one. When efficiently implementing the atten-
tional mechanism through a custom kernel, we can discard
these redundant tokens from the computation. This results
in the following number of pairings per token:

NT = W 2

(
1 +

3

4
log2

(√
p

W

))
(9)

The proposed attentional mechanism is slightly more
costly when compared to Swin. Whereas MSA incurs a
quadratic cost relative to the number of tokens p, and the
Windowed MSA introduced by Swin incurs a linear cost,
our proposed Multi-Scale MSA has a slightly above linear
cost:

Ω(MSA) = 4pC2 + 2p2C

Ω(W-MSA) = 4pC2 + 2W 2pC

Ω(MS-MSA) = 4pC2 + 2W 2

(
1 +

3

4
log2

√
p

W

)
pC

(10)

Here C is the feature length of a token. Of note is that
while the cost is higher than Swin, the window size W can
be smaller for our model and still obtain comparable per-
formance, the parameter acting as a trade-off between local
dense and global sparse attention. As discussed in the ex-
perimental section, our approach would in fact be slightly
less computationally expensive than Swin when using the
same architecture and input sizes.

5. Experiments
In order to evaluate our approach, we have chosen Swin

as a baseline, replacing the attentional mechanism by our
sparse multi-scale formulation. Two datasets are chosen,
evaluating our performance on both a localized task like ob-
ject recognition, as well as another where our approach is
expected to show significant improvements due to the long
range relationships displayed on the dataset. We have cho-
sen Scene Recognition for such a purpose.

5.1. Architecture

We have based our model on the Swin Tiny (Swin-T) [9]
architecture, using the same layers, attentional heads, and
feature size. This corresponds to 12 attentional layers, each
consisting of an attentional mechanism followed by a fully
connected network with a single hidden layer. These are
grouped in a sequence of 2 − 2 − 6 − 2, with a 2 × 2 lin-
ear pooling doubling the number of features per token in-
between each attentional block. Each block also doubles
the number of attentional heads, with the first one consist-
ing of 3 heads per layer. The input image is divided into
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Algorithm 1 Multi-scale attention mechanism

Require: K
(j)
X , Q

(j)
X , V

(j)
X

Require: A = {(a1, a2), .., (an−1, an)}
for k, (u, v) ∈ enum(A) do

Â
(j,k)
..uv..ûv̂ ← (K

(j)
X )..uv..z ⊗ (Q

(j)
X )..ûv̂..z

Â(j,k) ← 1√
dK

Â(j,k) +B(j,k)

end for[
Z(j,1), .., Z(j,k)

]
← Smx

([
Â(j,1), .., Â(j,k)

])
Att(j) ← 0
for (u, v) ∈ A do

T..uv..z ← Att(j) +A
(j,k)
..uv..ûv̂ ⊗ (V

(j)
X )..ûv̂..z

Att(j) ← Att(j) + T
end for

tokens of size 4 × 4, which are then linearly projected into
feature vectors of size 96. GELU activations are used for the
fully connected layers, as well as layer normalization both
after the attentional mechanism itself and after the fully con-
nected layers, with residual connections in both cases. An
average pooling is performed on the output of the last atten-
tional block, followed by a Softmax classification layer.

The modifications to said architecture are two-fold.
Firstly, a new layer is added at the very beginning, before
tokenization, which brings the input image into a quad-tree
representation as per Eq. (3). Secondly, the windowed at-
tention is removed, along with the window shifting, and
replaced by our multi-scale attention mechanism, as ex-
plained in Sec. 3.4. We use a sliding window of size 2,
resulting in 4× 4 attentional windows on each scale.

5.2. Datasets

We have chosen two datasets for our experiments, one
for validating the accuracy of our approach on tasks that
do not depend on sparse, long range relationships, and an-
other one that does. This allows us to evaluate the main
contribution of our approach, with the first dataset serving
as a baseline to determine whether said contribution nega-
tively impacts its applicability to other domains. For both
datasets, we follow the same data augmentation approach
as [9] uses for Imagenet-1K.

Imagenet-1K is an object recognition dataset consisting
of 1000 classes. It is split into 1.28M train, 50K validation
and 100K test images, with the labels for the latter not be-
ing publicly available. Similarly to [9], we train our model
on training partition and report our results on the validation
set. This task requires the recognition of a single object lo-
cated somewhere within the image, a task that can be solved
through the extraction of successively more complex fea-
tures in a localized fashion. As such, it serves as a baseline
to determine whether our multi-scale approach negatively
impacts the performance of the model on datasets where

long range sparse attention is not required.
Places365-Standard is a scene recognition dataset con-

sisting of 365 classes, displaying indoors as well as both
urban and nature outdoors scenes. It is split into 1.8M train,
36.5K validation and 328.5K test images, with the labels for
the latter not being publicly available. We follow the same
approach as with Imagenet-1K, training on the training par-
tition and reporting our results on the validation set. For
many scene categories, the category a given image belongs
to depends on both the presence of a variety of elements
spread across the scene as well as their overall composition,
making it a good evaluation benchmark for our approach.
This is the case, instance, when distinguishing between an
art gallery and museum, a bookstore and library, or the dif-
ferent types of gardens.

5.3. Results

From the results in Tab. 1, we first note the number of
parameters and computational cost of our model. Using
the same architecture as Swin-T, our attentional mechanism
does not add to the number of parameters, keeping our ap-
proach one of the smallest in the State-of-the-Art. While
there is a 22% increase in the computational cost, this still
leaves the approach as one of the fastest, surpassed only
by the baseline. This is despite the input image being 30%
larger in terms of area, our method thus being more efficient
than the baseline when taking into account the input size.

This improvement in computational efficiency is ex-
plained by the size of the attention window. While Swin
applies a 7× 7 window at a single scale, our approach uses
4 × 4 windows applied to all scales of the quad-tree rep-
resentation. For Swin, this means each token pairs with 49
others. In the case of Swinax, the number of pairs varies de-
pending on the token grid resolution: For the first two lay-
ers, with a grid size of 64 × 64, there are 5 possible scales,
resulting in each token being paired with 64 others. This
number quickly drops due to the pooling mechanism: The
next two pair each token with 52 others, the following six
only with 40, and 28 on the last two. Since the number of at-
tentional heads and features per token are doubled after each
pooling, the computational cost is substantially reduced as
we progress further along the architecture.

As shown in Tab. 1, the accuracy on Imagenet-1K expe-
riences a slight drop of 0.1% when compared to Swin-T. We
attribute this to two main reasons. Firstly, the dataset does
not depend much on long range relationships: Being an ob-
ject recognition dataset, a classical approach based on itera-
tive local feature extraction and pooling, as is the case with
Swin, suffices in order to correctly categorize an image.
Secondly, the same contributions allowing for long range
dependencies also imply a lower local token density: Only
a 4× 4 dense token region is considered, the sparsity expo-
nentially increasing as the attention window moves through

198



Model Pre-training Resolution Accuracy FLOPs Params
Pre. Fine. IN-1k Places (G) (M)

Direct Training
iSQRT-Conv [18] - - 224 77.9% 56.32% 6.3 56.9

WaveMix [8] - - 256 − 56.45% − 45.0
WaveMix [8] - - 224 74.9% - − 28.9
Swin-T [9] - - 224 81.3% 57.20% 4.5 29.0

Swinax (ours) - - 256 81.2% 58.41% 5.5 29.0
Supervised pre-training

Swinax (ours) IN-1k 256 256 81.2% 58.7% 5.5 29.0
ViT-B [4] IN-1k 224 224 82.3% 57.9% 18.0 86.9
ViT-L [4] IN-1k 224 224 82.6% 59.4% 62.0 307.0

Hiera-B [13] IN-1k 224 224 84.5% 58.9% 9.0 52.0
Hiera-L [13] IN-1k 224 224 86.1% 59.6% 40.0 214.0

EffNet-B6 [19] IN-1k 528 528 84.8% 58.5% 19.5 43.0
EffNet-B7 [19] IN-1k 600 600 85.2% 58.7% 38.4 66.3
EffNet-B8 [19] IN-1k 672 672 85.5% 58.6% 63.7 87.4

ViT-B [4] IN-21k 224 384 84.0% 58.2% 55.6 86.9
ViT-L [4] IN-21k 224 384 85.2% 59.0% 191.5 307.0

EffNet-B6 [20] JFT 300M 528 528 86.4% 58.8% 19.5 43.0
EffNet-B7 [20] JFT 300M 600 600 86.9% 59.2% 38.4 66.3
EffNet-L2 [20] JFT 300M 475 475 88.2% 59.4% 172.6 480.3

Table 1. Comparison of different State-of-the-Art approaches on Places365-Standard (Places), both for directly trained models as well
as models pre-trained on other datasets. Results on Imagenet-1K (IN-1k) are provided for comparison against the Swin-T baseline. Pre:
Image resolution during pre-training. Fine: Image resolution during fine-tuning.

the various scales. This can be counter-productive when the
sparser long range information obtained in exchange does
not contribute much to solving the task, especially when
the input image resolution is slightly larger (256 × 256 for
Swinax, as opposed to 224 × 224 for Swin), making the
effective dense window even smaller.

One could ask instead why the drop in accuracy is so
small despite that. This is because it is still possible for the
model to consider a larger window of dense tokens, albeit
in a roundabout way. Information can be passed sparsely
on an 8 × 8 window, each token receiving information on
only 25% of the tokens, but with the set of tokens in any of
the quadrants jointly encoding information on all of them.
The next layer can then propagate said information among
all tokens within the quadrant at a denser scale. The reverse
is also true: Information can be propagated densely first,
and at a sparser scale afterwards. So long as there is more
than one attentional layer between poolings, larger dense re-
gions can be considered through compositing of said layers.
This is not unlike how the receptive field of a convolutional
network increases with the number of layers, but with the
increase being exponential instead of linear. We consider
the results obtained on Imagenet-1K to show that, despite
the method being designed with sparse long range depen-
dencies in mind, it still performs competitively otherwise.

For Places365-Standard, our approach obtains outstand-

ing results, as shown in Tab. 1. We surpass the State-of-the-
Art for direct supervised training by almost 2%, going from
the 56.45% accuracy of the previous best reported approach
to 58.41% for our method, and doing so with both a smaller
model and lower computational cost. When compared to
the Swin-T baseline, we obtain a 1.21% increase in accu-
racy. Furthermore, our accuracy is comparable to that of
other models trained using supervised pre-training on other
datasets, even surpassing ViT-B, despite not performing any
pre-training ourselves. If we consider that said pre-trained
methods all consider higher input resolutions, bigger mod-
els and higher computational costs, it becomes clear that our
method is much better at scene recognition: We require both
less data and computational resources to perform compara-
bly. A third family of methods utilizing weakly supervised
pre-training exists [14], achieving accuracies in the range
of 59-61% on Places365. That said, those are trained on
massive datasets with billions of images.

When pre-training on Imagenet1K, the accuracy further
increases to 58.7%, surpassing or matching a majority of
models despite the much smaller number of trainable pa-
rameters and computational cost. From among the models
pre-trained on Imagenet1K, only Hiera-B/L and ViT-L ob-
tain better accuracies, the smallest of which having 80%
more parameters.
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0.35 Skyscraper
0.47 Downtown

0.51 Trench
0.47 Arch. site

0.56 Forest path
0.54 Brdl. forest

0.44 Roof garden
0.32 Veg. garden

0.42 Physics lab
0.48 Chem. lab

0.37 Sci. museum
0.62 N.H. museum

0.35 Ski slope
0.57 Snowfield

0.37 Und. ocean
0.72 Aquarium

0.45 Skyscraper
0.44 Downtown

0.68 Trench
0.46 Arch. site

0.60 Forest path
0.58 Brdl. forest

0.75 Roof garden
0.44 Veg. garden

0.26 Physics lab
0.84 Chem. lab

0.57 Sci. museum
0.52 N.H. museum

0.37 Ski slope
0.39 Snowfield

0.45 Und. ocean
0.60 Aquarium

Figure 4. Sample predictions on the Places365 validation set for both Swin-T and Swinax illustrating common classification errors suc-
cessfully addressed by our approach. Samples are randomly drawn from among the off-diagonal entries of the confusion matrix where
Swinax reports the steepest decline in misclassification.

5.4. Qualitative analysis

In 4 we show common mistakes made by Swin-T on the
places365 dataset that are successfully addressed by our ap-
proach. The downtown, archaeological site and snowfield
categories, in particular, clearly display the main advan-
tage of our approach: the improved ability to consider a
sparse, global context. For the Downtown category, Swin-T
tends to misclassify images as belonging to the skyscraper
category due to the presence of multiple such buildings.
Swinax, on the other hand, considers the general context,
taking into account the large variety of buildings present.
For archaeological sites, Swin seems to be have trouble
picking up sparse, individually irrelevant clues necessary to
distinguish a dig site from a regular trench, such as marker
flags, delimiting strings and spot markers. This is also the
case when distinguishing between a tilted snowfield and an
actual ski slope, the difference being on the boundary and
circuit markers.

When distinguishing between the underwater ocean and
an aquarium, Swin seems to focus on the presence of a wide
array of elements, such as schools of fish, rocks, underwater
flora and divers, but fails on the more subtle clues generally
spread across the full image, such as glass reflections and a
view of the water surface. Similarly, distinguishing between
roof gardens and vegetable gardens can be a difficult task,
many of the elements being shared between both classes.
The clues to disambiguate between both are often large and
spread across the image, such as the presence of background
walls and floor types indicating the image does not belong
to a rooftop.

6. Conclusions and future work
We have introduced Swinax, a new multi-scale atten-

tional mechanism based on a quad-tree representation of the

input images, obtaining State-of-the-Art results for scene
recognition while being computationally efficient. Our ap-
proach has shown that, despite being designed for datasets
displaying sparse long range dependencies, it remains com-
petitive for other tasks not requiring it, thus serving as
a multi-purpose machine learning algorithm. Compared
to similar approaches such as Swin, we have shown our
method to be computationally more efficient given an equiv-
alent input size, and to allow for a scale-agnostic pipeline,
breaking the relationship between the sizes of the input im-
age and attentional window.

It would be interesting to study the applicability of
Swinax to tasks such as semantic segmentation, instance
segmentation and depth estimation. Said tasks all involve
long range relationships between elements, while also de-
pending on dense local features in order to generate high
quality output maps. Swinax is ideally suited for such
tasks, its multi-scale attentional mechanism allowing for
both dense local and sparse long range attention. It also al-
lows for compact, computationally efficient attention while
still maintaining a high resolution token grid. Another po-
tential improvement to the approach is factorizing the input
images into factors other than 2, allowing for more flexi-
bility regarding the input image sizes. While there is noth-
ing in principle preventing said extension, this would result
in uneven dilation factors at different scales, the impact of
which requires further experiments to determine.
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