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Abstract

In this article, we address the problem of spatio-temporal
activity detection which requires classifying as well as lo-
calizing human activities both in space and time from
videos. To this end, we propose a novel single-stage and
end-to-end trainable deep learning framework that can
jointly optimize spatial and temporal localization of ac-
tivities. Leveraging shared spatio-temporal feature maps,
the proposed framework performs actor detection, activity
tube building, as well as temporal localization of activi-
ties, all within a single network. The proposed framework
outperforms the current state-of-the-art methods in spatio-
temporal activity detection on the challenging UCF101-24
benchmark. By utilizing solely RGB input, it achieves a
video-mAP of 60.1%, and further pushes the bar to 61.3%
when incorporating both RGB and FLOW inputs. More-
over, it attains a highly competitive frame-mAP of 74.9%.

1. Introduction

Impressive strides have been made in human activity
recognition in short and trimmed video clips that precisely
surround the activity [3, 6, 7, 32, 38, 44]. However, real-
world videos are often lengthy and contain untrimmed seg-
ments with a significant amount of temporal clutter. Conse-
quently, understanding the contents of these videos requires
the localization of the activities in time, which is known
as temporal activity detection (TAD). While state-of-the-art
(SOTA) TAD methods [1, 4, 12, 15, 16, 24, 45] have greatly
advanced the fine-grain understanding of video contents,
there are applications, such as autonomous driving, video
surveillance, and advanced video search, that require not
only the temporal boundaries of the activities but also the
spatial extents of the actors within individual video frames
to fully comprehend the scene dynamics. This essentially

gives rise to the task called spatio-temporal activity detec-
tion (STAD) which requires classifying the activities while
localizing them both in space and time in the input video.
This paper focuses on tackling the STAD problem, which
poses an even greater challenge compared to TAD, primar-
ily due to the vast search space that needs to be explored in
both spatial and temporal dimensions.

The typical recipe of STAD, as found in the literature, is
mainly based on the object detection and linking pipeline,
where actors are detected on individual video frames which
are then linked via complex heuristics-based methods (e.g.,
dynamic programming, spatial overlap, or temporal sliding
window). However, frame-based methods fail to fully cap-
ture the temporal structure of the activities and, as such,
struggle to disambiguate activities that require the tempo-
ral contexts to comprehend (e.g., sitting down vs. stand-
ing up) [14]. Therefore, recent methods [10, 14] adopt a
multi-frame approach that takes a short sequence of frames
as input and performs localization of activities over short
tubelets. However, due to the lack of direct temporal regres-
sion, these methods still need to rely on complex optimiza-
tion for stitching the tubelets which may not result in op-
timal outputs [46]. Furthermore, the existing SOTA multi-
frame methods [9,35,47] do not incorporate joint optimiza-
tion for both spatial and temporal activity localization, in-
stead relying on separate, disconnected pipelines. This dis-
joint approach incurs heightened computational demands
likely due to redundant processing, increases the likelihood
of sub-optimal outcomes, and most importantly, it impedes
the ability to train these methods in a holistic, end-to-end
fashion [29]. There has been limited research in this direc-
tion, and the few proposed methods, such as STAR [46], fell
short of performance.

In this study, we aim to fill a gap in the existing litera-
ture by optimizing both the spatial and temporal localiza-
tion of activities simultaneously. To achieve this goal, we
introduce an end-to-end trainable single-stage STAD frame-
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work. This framework is built upon a two-stream 3D Con-
volutional Neural Network (3D CNN) that utilizes RGB and
FLOW frames from the input video to create shared spatio-
temporal feature maps.

Using these shared feature maps, we have integrated two
branches within our framework. The first is dedicated to
spatial localization, focusing on actor detection. The sec-
ond branch handles temporal localization, pinpointing the
timing of activities through direct temporal regression. Ad-
ditionally, to enhance its ability to handle activities at vary-
ing spatial and temporal scales, our proposed framework
incorporates a multi-scale architecture for both the spatial
and temporal localization modules.

Contributions: The main contributions of this work are
as follows:

• We propose a novel single-stage and end-to-end train-
able deep learning framework to jointly optimize spa-
tial and temporal localization of activities.

• We directly regress on temporal bounds of activities,
and introduce spatio-temporal Non-maximum Sup-
pression (NMS), a variant of the NMS technique, to
improve the performance of the STAD task.

• We evaluate the effectiveness of our proposed ap-
proach on the challenging UCF101-24 benchmark and
set new SOTA results on this benchmark.

2. Literature Review
The early approaches for STAD (e.g., [13,20]) attempted

to extend the unsupervised 2D region proposal algorithms,
(e.g, Selective search [39], Prime object proposal [19]) to
their 3D counterparts with a view to generating supervox-
els, which are then merged together based on color, texture,
or motion information to form activity tubes. These activity
tubes are then encoded with dense trajectories [40] followed
by classification. Soomro et al. [36], on the other hand, used
video segmentation to generate supervoxels and encoded
them using bag-of-visual-words on improved dense trajec-
tory features [41] before feeding them to classifiers. Nev-
ertheless, supervoxel-based approaches have a drawback in
terms of temporal accuracy, as supervoxels can span very
lengthy time intervals.

Recent approaches address the STAD problem mainly in
two separate stages – first, perform actor detection in in-
dividual video frames, then localize the activities in time
based on the frame-based detections. Along this line, a
number of methods [8, 21, 30, 34, 48, 50] used complex
dynamic optimization to link the frame-level detections.
Weinzaepfl et al. [42] applied temporal sliding stage over
the frame-level detections to realize temporal localization.
However, due to frame-based detections, these methods
fail to fully capture the temporal structure of the activities.

To overcome this issue, later methods [10, 14, 28] intro-
duced clip-level detection on short video snippets. They
aim to regress activity tubelets within these clips and sub-
sequently link them to achieve temporal localization. How-
ever, these methods have limitations, especially when deal-
ing with complex and prolonged activities. Their effective-
ness is hindered by the need for optimizing tubelet linking
and their inability to incorporate long-term temporal con-
texts. In contrast, our proposed method avoids the need
for tubelet linking altogether by directly regressing activity
over time.

Several recent methods have demonstrated superior abil-
ity in modeling longer temporal information, thus achieving
better performance on the STAD task. Among the notable
methods include TACNet [35], which proposed a temporal
context detector to extract long-term contextual information
and a transition-aware classifier to further distinguish the
ambiguous states from real activity sequences. STEP [47],
on the other hand, progressively processes longer sequences
and adaptively extends proposals to follow the action move-
ment. However, none of the above methods perform spa-
tial and temporal regression in an end-to-end fashion, rather
employs separate processing pipelines, thereby incurring
increased and likely redundant computations. Moreover,
the disjoint optimization of the two tasks possibly leads to
sub-optimal results. A very recent work called STAR [46]
addressed this issue by proposing an end-to-end pipeline
for joint optimization of spatial and temporal localization
of activities. However, STAR lacks a multi-scale model for
spatio-temporal localization of activities, and is susceptible
to failure in complex multi-actor scenarios due to it’s re-
liance on a naive tube building heuristic.

Our proposed approach is closely aligned with STAR
[46], as we simultaneously perform spatial and temporal re-
gression of activities end-to-end. However, unlike STAR,
we propose a single-stage pipeline that employs multi-scale
feature hierarchy in an effort to capture actors and activities
at varying scales. Moreover, STAR extracts features from
the whole scene rather than tube–specific scene contexts
during the temporal detection stage. This is likely to lead
poor temporal localization for unrelated activities, mainly
due to the confluence of the features from the whole scene.
Furthermore, the simple heuristic used by STAR to form ac-
tivity tubes may fail in complex multi-actor scenario. In our
proposed approach, we aim to address these limitations.

3. Problem Statement
Given a temporally untrimmed long video sequence I =

{i1, i2, . . . , iT } containing T frames, the goal of the STAD
task is to output a set Ψ = {ψ1, ψ2, . . . , ψN} of pre-
dicted spatio-temporal activity segments such that a pre-
dicted activity segment ψn = (ϕnstart, ϕ

n
end, c

n, pn, Rn =
{rn1 . . . rnM}) has associated with it, the activity (start, end)
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Figure 1. Architecture of the proposed end-to-end STAD framework. Building upon a two-stream 3D CNN called S-3DG [44], we add a
spatial localization branch on top of the ‘Mixed 4f’ block of the RGB stream, employing a multi-scale feature hierarchy on the temporal
slices of ‘Mixed 4f’ to perform actor detection followed by tracking of the actors. The actor tracks are then projected back to the ‘Mixed 4f’
blocks of both RGB and FLOW streams to extract actor tube features, which are then fed to a multi-scale temporal localization branch for
direct temporal regression of activities.

times (ϕnstart, ϕ
n
end), the predicted activity category cn ∈

{1, . . . , C}, the prediction confidence score pn, as well as a
set Rn = {rn1 . . . rnM} consisting of M predicted bounding
boxes corresponding to the actor on each of the M frames
belonging to the video segment between ϕnstart and ϕnend.
Here, C denotes the total number of activity categories.

4. Proposed Approach

The proposed STAD framework is illustrated in Fig. 1,
and comprises five main modules – (i) base network, (ii)
spatial localization branch, (iii) actor tube building, (iv)
temporal localization branch, and (v) sptio-temporal NMS.

4.1. Base Network

The proposed STAD framework leverages a SOTA two-
stream 3D CNN called S-3DG [44] that was originally pro-
posed for video activity recognition. We repurpose this
two-stream 3D CNN for encoding video features by ex-
tracting spatio-temporal feature representation of the in-

put video. As shown in Fig. 1, the RGB stream of S-
3DG is fed with a video segment Irgb ∈ RT×H×W×3

consisting of T number of RGB frames, each with height
H , width W , and channel dimension 3. The FLOW
stream, on the other hand, takes the optical FLOW frames
Iflow ∈ RT×H×W×2 corresponding to the RGB frames
as input, thus having the same temporal and spatial di-
mensions as the RGB input but with channel dimension 2
(i.e., FLOW in X and Y directions). The basic idea be-
hind this two-stream architecture is to capture the appear-
ance information of the video through the RGB stream,
while harvesting the motion information through the FLOW
stream. We extract rich two-stream spatio-temporal fea-
ture representations (Frgb, Fflow) ∈ R

T
4 × H

16×
W
16×832 of the

input video from the Mixed 4f block of S-3DG. We then
exploit (Frgb, Fflow) as base feature maps that are shared
among the other modules, thus allowing these feature maps
to be learned end-to-end with respect to the overall ob-
jective of the STAD task. The base network being fully-
convolutional, the length of the video sequence T can be ar-
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bitrarily long, consequently constrained only by the amount
of physical memory.

4.2. Spatial Localization Branch

The spatial localization branch is responsible for detect-
ing the actors in the video frames. To this end, we feed
the base RGB feature map Frgb as input to this branch, af-
ter having it passed through a 1×1×1 convolution layer as
shown in Fig. 1. We then employ a multi-scale feature hi-
erarchy on top of the temporal slices of Frgb with a view
to capturing actors (i.e., persons) at varying scales. To
this end, we fuse the temporal dimension of Frgb with the
batch dimension before repeatedly applying 1×1 convolu-
tions (with stride 1), followed by 3×3 convolutions (with
stride 2) to generate a feature hierarchy having 3 different
scales.

Leveraging the feature hierarchy, we build a multi-scale
and anchor-based prediction architecture as commonly used
in the single-stage object detection methods (e.g., [17, 25,
26]). Anchor-based object detection employs a set of de-
fault bounding boxes with varying scales and aspect ratios at
each spatial location in a feature map. Each default box has
it’s own default center, width, and height. Predictions about
the activity class confidence scores for each actor along with
the actor widths and heights w.r.t. the default boxes’ widths
and heights are then produced using 3×3 convolutions as
shown on the top-left part in Fig. 1. Finally, the predictions
are post-processed using NMS.

4.3. Actor Tube Building

With the actors detected and localized by the spatial
localization branch, each actor is tracked using an on-
line tracker called DeepSORT [43]. The actor tracks are
then projected back to the two-stream base feature maps
(Frgb, Fflow) to extract spatio-temporal features correspond-
ing to the tubes containing the actors. To this end, for each
actor track, the spatial region corresponding to the actor is
cropped out of the temporal slices of (Frgb, Fflow) in or-
der to create two-stream spatio-temporal tube feature maps
(Jrgb, Jflow) having the same temporal and channel dimen-
sions as (Frgb, Fflow). The spatial region is cropped based
on the minimal square box that covers all detections of the
actor in the track, after having the box slightly expanded to
capture sufficient contexts around the actor.

4.4. Temporal Localization Branch

The purpose of the temporal localization branch is to lo-
cate the activities in time and classify them. To this end,
the tube feature maps (Jrgb, Jflow) of all detected actors are
arranged into a batch after having them resized spatially to
the dimension D×D. These resized feature maps are then
max-pooled using 1×1×2 filter to reduce the temporal di-
mension by half. They are subsequently passed through

the Mixed 5b and Mixed 5c blocks of S-3DG before their
spatial dimension is completely collapsed using global spa-
tial average pooling to produce two-stream temporal-only
feature maps (J

′

rgb, J
′

flow) ∈ R
T
8 ×1024. We then feed

(J
′

rgb, J
′

flow) to a temporal activity detection (TAD) pipeline
proposed in [24] to realize temporal localization and classi-
fication of the activities.

To briefly recap, the TAD pipeline employs a multi-scale
temporal feature hierarchy based on 1D temporal convolu-
tional layers (kernel size 3, strides 2) cascaded on top of
the feature maps (J

′

rgb, J
′

flow) to produce four two-stream
and temporal-only feature maps with decreasing tempo-
ral resolution and increasing scale, namely, (J

′′

rgb, J
′′

flow) ∈
R

T
16×1024 . . . . . . (J

′′′′′

rgb , J
′′′′′

flow) ∈ R
T

128×1024. Analogous to
the spatial localization branch, a set of K default temporal
segments with varying scales are employed at each temporal
location on each feature map in the temporal feature hierar-
chy. Predictions about the activity segments are made on
top of each feature map for both streams separately, using
1D convolutional filters (kernel size 3, stride 1). These pre-
dictions are then combined using element-wise averaging as
shown in bottom-right of Fig. 1

To be specific, at each feature location, the following pre-
dictions are made – i) activity class scores {pj}Cj=1 over C
activity classes, ii) the center offset ∆m and width offset
∆w w.r.t. the default center dm and default width dw of
the default activity segment; and iii) an overlap score pov
indicating the overlap between the default activity segment
and the closest ground-truth segment. pov , after having it
passed through a sigmoid function, is used as a confidence
value for ranking the predictions during inference. Finally,
following [15], the start time ϕstart and end time ϕend of
the predicted activity segment are computed as follows:

ϕm = dm + α1dw∆m and ϕw = dw exp(α2∆w) (1)

ϕstart = ϕm − ϕw
2

and ϕend = ϕm +
ϕw
2

(2)

Here, ϕm and ϕw refer to the actual center and width of
the predicted activity segment, while α1 and α2 are hyper-
parameters used to control the effect of ∆m and ∆w, re-
spectively.

Since the TAD pipeline employs multi-scale temporal
feature hierarchy, our proposed STAD framework is capable
of handling wide variations in activity lengths, a common
phenomenon for activity detection from realistic videos.
Please refer to the original work [24] for additional details
about the TAD pipeline.

4.5. Spatio-Temporal NMS

We introduce spatio-temporal NMS in this work to post-
process the activity predictions generated by the temporal
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Figure 2. Illustration of the spatio-temporal NMS technique. Tem-
poral NMS would remove ‘Actor2 tube’ as it overlaps in time with
the higher confidence and same class prediction ‘Actor1 tube’.
The proposed spatio-temporal NMS would retain both tubes as
they do not overlap both in time and space.

localization branch. Unlike the temporal NMS technique
commonly used in the literature (e.g., [1, 4, 12, 15, 18, 24]),
which cancels out duplicate temporal segments solely based
on temporal overlaps among candidate predictions, the pro-
posed spatio-temporal NMS eliminates duplicates by con-
sidering both spatial and temporal overlaps among the pre-
dicted spatio-temporal segments. This is motivated by the
observation that in an untrimmed and unconstrained video,
activities of the same type may occur concurrently, with the
actors located spatially close to each other (e.g., two per-
sons cycling side-by-side). Under this scenario, the tempo-
ral NMS technique would remove all but the temporal seg-
ment with the highest confidence score, as they overlap in
time and have the same class prediction. On the other hand,
the proposed spatio-temporal NMS technique would be able
to retain all spatio-temporal segments as long as they do not
overlap both in space and time. This is illustrated in Fig. 2.

4.6. Training and Inference:

4.6.1 Loss Function

The proposed STAD framework was trained using a multi-
task loss L having two components – object detection loss
Lobj, and temporal detection loss Ltem. Lobj, in turn, com-
prises object classification loss Lobj

cls , and object localization
loss Lobj

loc (for actor width, height, center-X, and center-Y).
On the other hand, Ltemp consists in temporal classifica-
tion loss Ltem

cls , temporal localization loss Ltem
loc (for activity

start and end times), and temporal overlap loss Ltem
ov . Equa-

tion (3) shows the formulation of the loss function.

L = Lobj + λLtem

= Lobj
cls + Lobj

loc + λ(Ltem
cls + Ltem

loc + Ltem
ov )

(3)

Here, λ is a hyper-parameter used to trade-off between the
two loss components. We used multi-class cross-entropy
loss for Lobj

cls and Ltem
cls , while Smooth-L1 loss was used for

Lobj
loc , Ltem

loc , and Ltem
ov .

4.6.2 Final Predictions

The actor detection from the spatial localization branch is
available at every lth frame, which is dictated by the tem-
poral stride of the input feature map Frgb and the frame
sampling rate. For example, since Frgb has a temporal
stride of 4, l will be 4/8/16 for a frame sampling rate of
1/2/4. Therefore, in order to obtain the detections on the
intermediate frames, we use linear interpolations. Finally,
an spatio-temporal activity prediction instance ψn, as de-
fined in Sec. 3, is made up by combining the actor bound-
ing boxes Rn = {rn1 . . . rnM} with the activity predictions
(ϕnstart, ϕ

n
end, c

n, pn) as output from the spatio-temporal
NMS module, such that ψn = (ϕnstart, ϕ

n
end, c

n, pn, Rn =
{rn1 . . . rnM}).

5. Experimental Setup

5.1. Dataset

To evaluate the proposed STAD framework, we per-
formed experiments on the challenging UCF101-24 [27]
benchmark, which is one of the largest and most diversified
and challenging spatio-temporal action detection datasets
containing temporally untrimmed videos. It is derived from
the UCF101 [37] dataset by providing spatio-temporal an-
notations for 24 classes in the form of bounding box and
tube annotations for the actors. The average number of ac-
tion instances in a video is 1.5, with each action instance
spanning 70% of the video duration on average. However,
certain classes may have instances with an average duration
as low as 30% of the video length. Keeping aligned with the
standard practice on this dataset, and to be able to compare
results with the SOTA methods, we used the revised an-
notations provided by Singh et al. [34] that includes 3,207
videos, with 2,293 for training and 914 for testing.

5.2. Evaluation Metrics

The proposed approach is evaluated using the established
performance metric for the STAD task, which is mean av-
erage precision (mAP), both at the video-level and frame-
level, as documented in existing literature [14, 31, 34, 42].

video-mAP is used to evaluate the performance of the
STAD task at the video-level detections, and involves re-
gressing a series of temporally linked bounding boxes, also
known as “activity tubes”, along with the relevant class la-
bel. It is defined as the mean of the average precision (AP)
over all classes, where AP for a specific class is defined
as the area under the precision-recall curve at a specific
Intersection-over-Union (IoU) threshold. For video-mAP,
the IoU is computed as the product of the temporal IoU
between ground-truth and predicted activity tubes and the
average of the spatial IoUs between the ground-truth and
predicted bounding boxes.

246



frame-mAP is used to evaluate the detection perfor-
mance at the frame-level and involves detecting the instance
bounding boxes in each video frame along with the associ-
ated class label. It is defined analogously as video-mAP
except that the IoU is computed spatially.

5.3. Implementation Details

We set the input sequence length T = 352 frames for the
best model configuration (i.e., sampling every frame). Dur-
ing training, input images first undergo center-cropping to
the desired resolution (e.g., 224x224 for the best model con-
figuration), followed by various data augmentations includ-
ing random consistent horizontal flipping, random crop-
ping with aspect-ratio resizing. In random consistent left-
right flipping, either all or none of the frames belonging to
the input sequence are flipped horizontally. However, no
data augmentation is applied during test. The base net-
work S-3DG is initialized with pre-trained weights from
the Kinetics-600 [2] dataset, while the spatial and tem-
poral localization branches are initialized randomly. The
batch size for the temporal branch is set to 4, thus gen-
erating a batch size of 4 × T for the spatial branch. The
spatial branch employs anchors with 6 different scales lin-
early ranging from 0.2 − 0.95 and 3 different aspect ratios
{0.5, 1, 2}. On the other hand, the number of default tem-
poral segments K for the temporal branch is set to 5 with
scale ratios {0.5, 0.75, 1.0, 1.5, 2.0}. The whole framework
is trained using Adam optimizer with a fixed learning rate
of 0.0005. D for feature cropping in the temporal localiza-
tion branch is set to 10. To generate consistent actor tubes,
DeepSORT [43] is applied on detections having a confi-
dence score above 0.3. The whole framework was imple-
mented based on the TensorFlow Object Detection API [11]
and trained on 2× NVIDIA RTX 3090 GPUs.

6. Results

In this section, we present the results of our proposed ap-
proach on the STAD task based on the UCF101-24 dataset.
We first study different model configurations and perform
ablation studies in order to validate our design choices while
also allowing us to determine the optimal model configura-
tions. We then compare the results with the SOTA methods
based on the optimal model configuration.

6.1. Model Configurations

Different input configurations were explored with a view
to selecting the best model configuration. To be specific,
the effect of spatial resolution, temporal sampling rate, as
well as the impact of FLOW inputs were studied. Table 1
shows the results of the proposed STAD framework based
on the different model configurations. The top and middle
part of the table show results as the spatial resolution and

Table 1. Exploration study on the model configuration w.r.t. spa-
tial and temporal resolution as well as input modalities based on
the UCF101-24 dataset. Both mAP values reported at IoU=0.5.

Input Resolution Sampling
Rate

Frame
mAP (%)

Video
mAP (%)

RGB
160x160 65.7 54.8
192x192 every frame 71.5 58.2
224x224 74.9 60.1

RGB 224x224 every 2nd frame 69.4 57.5
every 4th frame 64.2 53.1

RGB+FLOW 224x224 every frame 74.9 61.3

Table 2. Ablation results on the effect of temporal localization and
spatio-temporal NMS based on RGB input with IoU=0.5.

Ablation Experiment Video
mAP (%)

Temporal Classification 56.4
Temporal Localization 60.1
Temporal NMS 59.7
Spatio-Temporal NMS 60.1

temporal sampling rate of the input video are varied, respec-
tively. Fixing upon the best configurations (i.e., frame res-
olution of 224×224, while sampling every frame), the bot-
tom part of the table shows the impact of optical FLOW for
the STAD task. As revealed from the table, higher spatial
resolution and increased frame rate contributes to superior
spatio-temporal detection of the activities, with the addition
of optical FLOW input further boosting the performance.
The optimal model configuration with RGB and FLOW in-
puts achieves a frame-mAP of 74.9%, while reaching a
video-mAP of 61.3%.

6.2. Ablation Study

6.2.1 Effect of Temporal Localization

In order to validate our design choice of performing end-to-
end temporal localization, we conducted experiments with
and without temporal localization of the discovered actor
tubes. To this end, the best model configuration with RGB
input, as shown in top part of Tab. 1, was used to train
two separate models – one employing temporal localization
and classification of the activities in the discovered actor
tubes, and the other employing only classification of the
actor tubes without performing any temporal localization.
Top part of Tab. 2 shows the results of this exercise which
reveals that temporal localization is important to precisely
localize the start and end times of each activity as it im-
proves the performance of the STAD task by an absolute
3.7% video-mAP.

The impact of temporal localization on the STAD task
would be more pronounced in situations where an actor per-
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forms consecutive sequential activities. For example, in an
autonomous driving scenario, understanding a pedestrian’s
activities around an intersection will involve localizing the
pedestrian in time as it waits to cross the intersection, fol-
lowed by localizing the actual crossing activity in time, both
of which will be performed consecutively by the same actor.
As a result, the inclusion of direct temporal regression to lo-
calize the activities is important for real-world situations.

6.2.2 Effect of Spatio-Temporal NMS

We also performed experiments to tease out the impact of
using spatio-temporal NMS, as opposed to temporal NMS.
To this end, similar to the ablation study of temporal lo-
calization, the best model configuration with RGB input
was evaluated under two different settings – using tempo-
ral NMS, and using spatio-temporal NMS. The bottom part
of Tab. 2 shows the results of the ablation which indicates
that use of spatio-temporal NMS improves the video-mAP
of the proposed STAD framework by 0.4% over using tem-
poral NMS.

6.3. State-of-the-Art Comparison

We perform comparisons of our proposed STAD frame-
work with the SOTA methods on the STAD task based on
the UCF101-24 dataset. Table 3 shows the comparisons in
terms of frame-mAP at the standard IoU threshold of 0.5
and video-mAP at IoU thresholds of 0.2 and 0.5. As obvi-
ous from the table, the multi-frame methods generally per-
form better than the single-frame methods when it comes
to video-mAP, primarily because these methods enjoy bet-
ter temporal localization by leveraging multiple frames as
input.

Our proposed method, which employs end-to-end tem-
poral localization of activities as opposed to localization
and linking of tubelets, outperforms the SOTA methods in
video-mAP while producing competitive results in frame-
mAP. We achieved a video-mAP of 60.1% at IoU=0.5 using
RGB input only; with the addition of FLOW input further
pushing the video-mAP to 61.3%. The proposed method
achieved a frame-mAP of 74.9%, trailing by a mere 1.4%
mAP from the SOTA results. It is noteworthy to mention
that the methods that achieved a higher frame-mAP than
ours either used an external object detector for spatial local-
ization of the actors (e.g., Gu et al. [9]), or relied on much
higher input resolutions (e.g., 400×400 for STEP [47], and
512×682 for 3D-RetinaNet [33]), thus incurring increased
computations.

Table 4 shows class-wise video-mAP for the best model
configuration.

Table 3. Comparison of the SOTA methods for spatio-temporal
activity detection on the UCF101-24 dataset based on frame-mAP
(IoU=0.5) and video-mAP (IoU=0.2 and 0.5). ‘R’ and ‘F’ denote
RGB and FLOW, respectively.

Te
m

po
ra

l
L

oc
al

iz
at

io
n

Frame
mAP (%)

Video
mAP (%)

Method Input 0.5 0.2 0.5

Fr
am

e-
ba

se
d

Peng et al. [22] R+F 39.6 42.3 -
Saha et al. [31] R+F - 66.8 35.9
Weinzaepfel et al. [42] R+F - 58.9 -
AMTnet [28] R+F - 78.5 49.7
Gurkirt et al. [34] R+F - 73.5 46.3
Pramono et al. [23] R+F 73.7 80.4 49.5
Zhao et al. [49] R+F - 78.5 50.3

Tu
be

le
tl

in
ki

ng

Chéron et al. [5] R+F - 76.0 50.1
Gu et al. [9] R+F 76.3 59.9
T-CNN [10] R 41.4 - 47.1
ACT [14] R+F 67.1 77.2 51.4
TACNet [35] R+F 72.1 77.5 52.9
STEP [47] R+F 75.0 76.6 -
3D-RetinaNet [33] R 75.2 82.4 58.2

E
nd

-t
o-

E
nd

STAR [46] R 63.0 77.9 53.0
Ours R 74.9 82.5 60.1
Ours R+F 74.9 83.4 61.3

6.4. Qualitative Results

Figure 3 shows some sample qualitative results of the
proposed framework on two test videos from the UCF101-
24 dataset. Top row shows predictions on a test video from
the ‘Diving’ class with a length of 9.3s, while the bottom
row shows predictions for the ‘TrampolineJumping’ class
over a 8.3s long video. As can be seen, our proposed model
is able to detect the actor tubes while localizing the tempo-
ral bounds of the activities with higher precision. It is also
obvious from these visualizations that the proposed method
is capable of adapting to varying scales of the actors as well
as lengths of the activities, thanks to the multi-scale archi-
tecture incorporated in the spatial and temporal localization
modules of the framework.

6.5. Inference Speed

Since it is devoid of any external object detector, com-
bined with the fact that the spatio-temporal feature maps are
shared among the spatial and temporal localization mod-
ules, our proposed approach runs at a moderately higher
speed, achieving a frame rate of 250 frames per second with
an input size of 224× 224 on NVIDIA RTX 3090 GPU.

7. Conclusion
In this paper, we presented a novel end-to-end STAD

framework that is capable of performing joint optimiza-
tion of spatial and temporal localization of activities from

248



Figure 3. Visualization of spatio-temporal detections generated by the proposed framework on two test videos from the UCF101-24 dataset.
Green and red denote ground-truth and predictions, respectively.

Table 4. Class-wise video-mAP (%) at IoU=0.5 on the UCF101-24 dataset.
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71.1 76.8 56.9 75.2 71.6 85.7 46.3 84.6 76.4 81.1 46.8 78.7 73.5 74.9 35.4 74.5 29.5 30.1 61.3 29.4 56.5 22.1 59.9 77.8

temporally untrimmed videos. Leveraging shared feature
maps, and multi-scale spatial and temporal feature hierar-
chy, the proposed framework achieved new SOTA results
on the highly challenging UCF101-24 benchmark.
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[5] Guilhem Chéron, Jean-Baptiste Alayrac, Ivan Laptev, and
Cordelia Schmid. A flexible model for training action local-
ization with varying levels of supervision. In NeurIPS, 2018.
7

[6] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition.
CoRR, abs/1812.03982, 2018. 1

[7] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic,
and Bryan Russell. Actionvlad: Learning spatio-temporal
aggregation for action classification. In CVPR, 2017. 1

[8] Georgia Gkioxari and Jitendra Malik. Finding action tubes.
In CVPR, pages 759–768. IEEE Computer Society, 2015. 2

[9] Chunhui Gu, Chen Sun, David A. Ross, Carl Von-
drick, Caroline Pantofaru, Yeqing Li, Sudheendra Vijaya-
narasimhan, George Toderici, Susanna Ricco, Rahul Suk-
thankar, Cordelia Schmid, and Jitendra Malik. Ava: A video
dataset of spatio-temporally localized atomic visual actions.
In CVPR, 2018. 1, 7

[10] Rui Hou, Chen Chen, and Mubarak Shah. Tube convolu-
tional neural network (t-cnn) for action detection in videos.
In ICCV, 2017. 1, 2, 7

[11] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A.
Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and
K. Murphy. Speed/accuracy trade-offs for modern convo-
lutional object detectors. In CVPR, 2017. 6

[12] Yupan Huang, Qi Dai, and Yutong Lu. Decoupling localiza-
tion and classification in single shot temporal action detec-
tion. In 2019 IEEE International Conference on Multimedia
and Expo (ICME), 2019. 1, 5

[13] M. Jain, J. Van Gemert, H. Jégou, P. Bouthemy, and C. G. M.
Snoek. Action localization with tubelets from motion. In
2014 IEEE Conference on Computer Vision and Pattern
Recognition, 2014. 2

[14] Vicky Kalogeiton, Philippe Weinzaepfel, Vittorio Ferrari,
and Cordelia Schmid. Action Tubelet Detector for Spatio-

249



Temporal Action Localization. In ICCV, pages 4415–4423,
2017. 1, 2, 5, 7

[15] Tianwei Lin, Xu Zhao, and Zheng Shou. Single shot tempo-
ral action detection. In Proceedings of the 25th ACM Inter-
national Conference on Multimedia, 2017. 1, 4, 5

[16] Tianwei Lin, Xu Zhao, Haisheng Su, Chongjing Wang, and
Ming Yang. Bsn: Boundary sensitive network for temporal
action proposal generation. In ECCV, 2018. 1

[17] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexander C.
Berg. Ssd: Single shot multibox detector. In ECCV, 2016. 4

[18] Fuchen Long, Ting Yao, Zhaofan Qiu, Xinmei Tian, Jiebo
Luo, and Tao Mei. Gaussian temporal awareness networks
for action localization. In CVPR, 2019. 5

[19] Santiago Manen, Matthieu Guillaumin, and Luc Van Gool.
Prime object proposals with randomized prim’s algorithm.
In ICCV, 2013. 2

[20] Dan Oneata, Jerome Revaud, Jakob Verbeek, and Cordelia
Schmid. Spatio-temporal object detection proposals. In
ECCV, pages 737–752, 2014. 2

[21] Xiaojiang Peng and Cordelia Schmid. Multi-region two-
stream R-CNN for action detection. In ECCV, volume 9908,
pages 744–759, 2016. 2

[22] Xiaojiang Peng and Cordelia Schmid. Multi-region two-
stream R-CNN for action detection. In ECCV, 2016. 7

[23] Rizard Renanda Adhi Pramono, Yie-Tarng Chen, and Wen-
Hsien Fang. Hierarchical self-attention network for action
localization in videos. In ICCV, 2019. 7

[24] Md Atiqur Rahman and Robert Laganière. Mid-level fu-
sion for end-to-end temporal activity detection in untrimmed
video. In BMVC2020, 2020. 1, 4, 5

[25] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick,
and Ali Farhadi. You only look once: Unified, real-time ob-
ject detection. In CVPR, 2015. 4

[26] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.
In CVPR, 2017. 4

[27] Mikel D. Rodriguez, Javed Ahmed, and Mubarak Shah. Ac-
tion mach: a spatio-temporal maximum average correlation
height filter for action recognition. In ICCV, 2008. 5

[28] Suman Saha, Gurkirt Singh, and Fabio Cuzzolin. Amtnet:
Action-micro-tube regression by end-to-end trainable deep
architecture. In ICCV, 2017. 2, 7

[29] Suman Saha, Gurkirt Singh, and Fabio Cuzzolin. Two-
stream amtnet for action detection. CoRR, abs/2004.01494,
2020. 1

[30] Suman Saha, Gurkirt Singh, Michael Sapienza, H. S. Philip
Torr, and Fabio Cuzzolin. Deep learning for detecting multi-
ple space-time action tubes in videos. In BMVC, 2016. 2

[31] Suman Saha, Gurkirt Singh, Michael Sapienza, Philip Torr,
and Fabio Cuzzolin. Deep learning for detecting multiple
space-time action tubes in videos. In BMVC, 2016. 5, 7

[32] Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In Pro-
ceedings of the 27th International Conference on Neural In-
formation Processing Systems - Volume 1, 2014. 1

[33] Gurkirt Singh, Stephen Akrigg, Manuele Di Maio, Valentina
Fontana, Reza Javanmard Alitappeh, Suman Saha, Kossar

Jeddisaravi, Farzad Yousefi, Jacob Culley, Tom Nicholson,
et al. Road: The road event awareness dataset for au-
tonomous driving. IEEE PAMI, 2022. 7

[34] Gurkirt Singh, Suman Saha, Michael Sapienza, Philip H. S.
Torr, and Fabio Cuzzolin. Online real-time multiple spa-
tiotemporal action localisation and prediction. In ICCV,
2017. 2, 5, 7

[35] Lin Song, Shiwei Zhang, Gang Yu, and Hongbin Sun. Tac-
net: Transition-aware context network for spatio-temporal
action detection. In CVPR, 2019. 1, 2, 7

[36] K. Soomro, H. Idrees, and M. Shah. Action localization in
videos through context walk. In ICCV, 2015. 2

[37] Khurram Soomro, Amir Roshan Zamir, Mubarak Shah,
Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. CoRR, 2012. 5

[38] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M.
Paluri. A closer look at spatiotemporal convolutions for ac-
tion recognition. In CVPR, 2018. 1

[39] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M.
Smeulders. Selective search for object recognition. Interna-
tional Journal of Computer Vision, 2013. 2

[40] Heng Wang, Alexander Kläser, Cordelia Schmid, and Liu
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