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Abstract

Multi-view aggregation promises to overcome the occlu-
sion and missed detection challenge in multi-object detec-
tion and tracking. Recent approaches in multi-view detec-
tion and 3D object detection made a huge performance leap
by projecting all views to the ground plane and performing
the detection in the Bird’s Eye View (BEV). In this paper,
we investigate if tracking in the BEV can also bring the next
performance breakthrough in Multi-Target Multi-Camera
(MTMC) tracking. Most current approaches in multi-view
tracking perform the detection and tracking task in each
view and use graph-based approaches to perform the as-
sociation of the pedestrian across each view. This spatial
association is already solved by detecting each pedestrian
once in the BEV, leaving only the problem of temporal asso-
ciation. For the temporal association, we show how to learn
strong Re-Identification (re-ID) features for each detection.
The results show that early-fusion in the BEV achieves high
accuracy for both detection and tracking. EarlyBird out-
performs the state-of-the-art methods and improves the cur-
rent state-of-the-art on Wildtrack by +4.6 MOTA and +5.6
IDF 1. https://github.com/tteepe/EarlyBird

1. Introduction

Detection and tracking of pedestrians has been an essen-
tial problem with numerous applications in video surveil-
lance, autonomous vehicles, and sports analysis. De-
spite the progress on monocular Multiple Object Tracking
(MOT) occlusion remains one of the biggest challenges in
this research field. Occlusion causes detections to get lost
and tracks to get fragmented, thus limiting the detection and
tracking quality. However, practical situations like sports
analysis require detections in highly cluttered or crowded
scenes. Multiple cameras with an overlapping field of view
might be available for these cases. Observing a scene from
multiple views can help overcome these occlusions since
objects hidden in one camera can be visible in another. The
challenge then is to aggregate information from multiple
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Figure 1. Overview of our approach. All input images are encoded
and then perspectively projected to the ground plane. The aggre-
gation reduces the BEV feature where we detect pedestrians and
predict a re-ID feature for tracking.

camera views. In early approaches multi-view detection
was solved with late fusion methods [46]: First, pedestri-
ans are detected in a single view, then this detection is pro-
jected to the 3D space or mostly the ground plane where it
is associated with the projections of the other views. More
recent approaches [21, 22] utilize an early-fusion strategy
that first projects a representation of all views to the com-
mon ground plane or Bird’s Eye View and then perform the
detection. These early-fusion detectors [21, 22] increased
the detection quality significantly compared to the previous
late-fusion approaches. Late-fusion approaches commonly
have the advantage that they require less hardware because
the processing can be performed independently, and the in-
formation projected to 3D is more sparse than the full im-
ages. Early-fusion approaches have the advantage that they
can be trained end-to-end, while late-fusion usually opti-
mizes the detection and the multi-view association sepa-
rately. A challenge for the detection in the Bird’s Eye View
(BEV)-space has been the distortion created by the perspec-
tive transformation. Several approaches [21,27,39] tried to
overcome this problem. We build our approach on [22] but
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add a BEV-Decoder that is based on a ResNet-18 and gives
the decoded features a larger receptive field, allowing the
model to aggregate information from the distortion shad-
ows to the actual location. We mainly focus on the tracking
task, but our model also achieves competitive results in the
detection task.

While early-fusion has been shown to be the stronger
approach for detection, tracking in multi-view is still per-
formed with the late-fusion approach [8, 20, 40, 41]: first
2D detections are acquired. Secondly, detections of each
timestep are associated, and finally, the detections are as-
sociated across timesteps. Other approaches [18,29] switch
the order and first associate within one view and later match
these tracks across the views. Regardless of the ordering,
any stage in this tracking pipeline suffers from inaccura-
cies introduced by the prior stage, i.e., missed 2D detec-
tion later needs to be compensated in the association stage.
Our approach combines the first two steps and directly per-
forms the detections in the BEV building upon the latest
multi-view detectors [21]. For tracking, we adopt the idea
introduced by FairMOT [48] and simultaneously learn a
Re-Identification (re-ID) feature for each detection in the
BEV-space. This approach allows us to skip the first step of
spatial association since our learned detector already solves
this problem. The associate in the temporal domain is first
performed with appearance-based re-ID features and sec-
ondly with a Kalman filter [24] as a motion-based model.
We call this architecture EarlyBird. It is an online, end-to-
end, trainable tracking architecture that improves the state-
of-the-art in tracking by a large margin.

Our contributions are the following:

1) We introduce early-fusion tracking in the Bird’s Eye
View with a simple but strong re-ID association strat-
egy.

2) We introduced a more robust decoder architecture for
the BEV features that improve our tracking results and
detections.

3) In our experiments, we qualitatively and quantitatively
verify the effectiveness of our method against recent
methods and improve the state-of-the-art in tracking
on Wildtrack by a +4.6 MOTA and +5.6 IDFI.

2. Related Work

Multi-View Object Detection. Using a multiple-camera
setup is a prevalent solution to address the difficulties of
pedestrian detection with heavy occlusions. Such a setup
utilizes synchronized and calibrated cameras observing the
same area from different perspectives. The multi-view de-
tection system then integrates these images, all of which
have overlapping fields of view, to perform pedestrian de-
tection. Probabilistic modeling of objects [9, 36] was the
primary focus before the advancements brought by deep
learning. Techniques such as mean-field inference [1, 13]

and conditional random field (CRF) [1,35] were commonly
employed for the aggregation of information from multi-
ple views. However, these techniques often necessitated
additional computations or specific designs not inherent in
deep learning models. MVDet [22] proposed a convolution-
based, end-to-end trainable method that projects encoded
image features from each view to the common ground
plane, yielding significant improvements and making it the
base architecture for all following approaches, including
ours. Instead of projecting only the sparse detection from
each view to the ground plane, [22] first applies an en-
coder to the input image and projects all features to the
ground plane with perspective transformation. The perspec-
tive transformation, which projects image features that de-
pict areas over the ground plane of the actual location in 3D,
causes distortions in the ground plane resembling a shadow
of the actual object [21]. Other approaches [21,27,39] try
to overcome these shortcomings of the perspective transfor-
mation: [21] uses projection-aware transformers with de-
formable attention in the BEV-space to aggregate those
shadows back to the original location. [27] uses regions of
interest from the 2D detections and separately projects those
to the estimated foot location on the ground plane. An-
other approach [39] aims to overcome the shortcomings of
perspective transformation by using multiple stack homo-
graphies at different heights to approximate a complete 3D
projection. Instead of focusing on the model side, [32] tried
to improve detection on the data side. This approach added
additional occlusions with 3D cylindrical objects. This data
augmentation makes it harder for the approach to always
rely on multiple cameras and thus helps to avoid overfitting.

Our approach builds upon MVDet [22] because it is a
solid and straightforward baseline for early-fusion multi-
view object detection that we can extend with our tracking
approach.

Multi-Target Multi-Camera Tracking. There is much lit-
erature on single-camera tracking, and we will discuss one-
shot trackers later, but in this section, we discuss the rele-
vant works in Multi-Target Multi-Camera (MTMC) track-
ing. Most of MTMC trackers assume an overlapping Field
of View (FOV) between the cameras. Fleuret ef al. [13] use
the overlapping FOV to model targets into a probabilistic
occupancy map (POM) and combine occupancy probabili-
ties with color and motion attributes in the tracking process.
As an improvement [2], formulate tracking in POMs as an
integer programming problem, and compute the optimal so-
lution by using the k-shortest paths (KSP) algorithm. The
problem of MTMC tracking can also be seen as a graph
problem. Hypergraphs [20] or multi-commodity network
flows [26,38] are used to model the correspondences across
the views and then solved with min-cost [20, 38] or with
branch-and-price algorithms [26].

In recent years, a two-step approach has become popu-
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Figure 2. Overview of our approach. The input view are encoded and the resulting camera features are projected to the ground plane. The
projected features are then stacked and aggregated to yield the BEV feature. For the image features the box centers are predicted to guide
the occupancy detection in the BEV. Additionally we train a re-ID feature that is guided both by the camera features as well as the BEV
features. The detections and their corresponding re-ID features are then used to associate the detections into tracklets.

lar: first generating local tracklets of all the targets within
each camera, later matching local tracklets that belong to
the same target across all the cameras. For the first step,
the generation of local tracklets within a single camera is
referred to as the single camera MOT, which has been stud-
ied intensively [3,7, 11,44,45,48,49]. Due to the impres-
sive progress of object detection techniques, tracking-by-
detection [3, 1 1,37,45,49] has become the mainstream ap-
proach for multi-target tracking in recent years. For the
second step, various cross-view data association methods
have been proposed to match local tracklets across differ-
ent cameras. Some works [10,23] use the properties of the
epipolar geometry to find correspondences based on loca-
tion on the ground plane. In addition to ground plane loca-
tions [46] adds appearance features as cues for the associa-
tion. The current state-of-the-art models [8,29] flip the first
two steps: the 2D detections are first projected to the 3D
ground plane, and a graph is constructed with re-ID node
features. The nodes are then either first assigned spatially
and temporally [8] or both assignments happen in the same
step [29] using graph neural networks for link prediction.
While all current approaches [3, 8, 37,48, 49] evaluate on
detection results to also account for detection inaccuracies,
LMGP [29] evaluates on groundtruth bounding boxes and
thus can not be compared to any recent works. Our ap-
proach differs from all previous work and is more compa-
rable to one-shot trackers covered in the next section. Our
approach shares the idea with latest approaches [8, 29] to
first associate spatially in our detector and then associate on
the ground plane.

One-Shot Tracking. A special case of single-view Multi-

Object Trackers is one-shot trackers. These trackers per-
form the detection and tracking in one step, thus reduc-
ing inference time. They usually have a lower performance
compared to two-step trackers. The features predicted can
ether be re-ID feature [43,44,48] or motion cues [3, 1 1,49].
The first example for a re-ID-based approach is Track-
RCNN [43] that adds a re-ID feature extraction on top of
Mask R-CNN [17] and regresses a bounding box and a re-
ID feature for each proposal. Similarly, JDE [44] is build
upon YOLOV3 [33], and FairMOT is build upon Center-
Net [50]. The advantage of FairMOT compared to the oth-
ers is that it is anchor-free, meaning detections are not based
on bounding boxes but on a single detection point, leading
to better separation of the re-ID features. D&T was pro-
posed as a motion-based tracker in [1 1], which takes input
from adjacent frames and predicts inter-frame offsets be-
tween bounding boxes. Tracktor [3] directly exploits the
bounding box regression head to propagate identities of re-
gion proposals and thus removes box association. Unlike
other methods, CenterTrack [49] predicts the object center
offset on a triplet input: current frame, last frame, and the
heatmap of last frame detection. The previous heatmap al-
lows this method to match objects anywhere, even if the
boxes overlap. However, motion-based methods only asso-
ciate objects in adjacent frames without re-initializing lost
tracks and thus have difficulty handling occlusions.

In our approach, we thus bring the concept of joint de-
tection and re-ID extraction from FairMOT [48] to MTMC
tracking. While training re-ID features for images is well-
understood task [19,43,44,48], projecting strong re-ID fea-
tures to the BEV is what we will investigate in this work.
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3. EarlyBird

We provide a comprehensive overview of EarlyBird in
Fig. 2. It starts with the input images that are augmented
and fed to the encoder network to yield our image features.
The image features have the size of the input images down-
sampled by 4. The image features from all cameras are sub-
sequently projected to the ground plane and stacked into
the BEV space. In the following step the BEV space is then
reduced in the vertical dimension. The BEV features are fi-
nally fed through a decoder network. Both image features
and BEV features have separate heads for center and offset
detection but share a head for re-ID prediction.

3.1. Encoder

Our approach assumes synchronized RGB input images
from S cameras with an input size of 3 x H; x W;. We en-
code the features of the images with ResNet or Swin Trans-
former networks using three blocks of the network, with
each block downsampling the input by 2. Our goal is to
only downscale the images by the factor of 4, and thus we
upsample and concatenate the output features of each layer
until we get an output of Cy x Hy x Wy with Hy = H; /4,
Wf = Wi/4 and Cf = 128.

3.2. Projection

The projection is the central part of this approach as it
gives a parameter-free link between the image view and the
BEV-view. Following [22], we use perspective projection
to project the image features to the ground plane. Using
the pinhole camera model [15], translation between 3D lo-
cations (z,y, z) and 2D image pixel coordinates (u, v) are

calculated with:
U P11 P12 P13 P4
s|v| =KIR|t = |P21 P22 P23 D24
1 P31 P32 P33 P34

where s is a real-valued scaling factor, P = K [R|t] isa 3
4 perspective transformation matrix, K are intrinsic camera
matrix and, [R|t] is the 3 x 4 extrinsic parameter matrix.
Eq. (1) describes the ray corresponding to each pixel (u, v)
in the 3D world. In our approach, we choose to project all
pixels to the ground plane z = 0, then the projection can be
simplified to:
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where Py denotes the 3 x 3 perspective transformation ma-
trix without the third column from P. We apply Eq. (2)
to project the features from all S cameras, with their pro-
jection Pés), to the ground plane grid of a predefined size
[Hg,W,]. The size of the ground plane grid depends on

the size of the observed and annotated area. Each grid po-
sition represents an area of 10 cm x 10 cm, downsampling
the annotation grid further by 4 due to memory concerns.
All stacked feature maps with C-channels from S cameras
give us BEV feature of size S x Cy x Hy x W,,.

3.3. Aggregation & Decoder

The goal of the aggregation stage is to combine the fea-
tures from all S’ cameras into a single feature, i.e., reduce
the S-dimension of the BEV feature map. We concate-
nate all feature maps along the channel dimension, as in
SxCpxHyx Wy — (S-Cy) x Hy x Wy, yielding a
high- dimensional BEV feature map. With two 2D convolu-
tions, we reduce this high-dimensional BEV feature to our
desired channel size of C; = 128.

After the aggregation, we feed the BEV feature into a
ResNet-18 decoder. The goal of the decoder is to intro-
duce a large receptive field of the ground plane. The distor-
tion introduced by the perspective projections causes pedes-
trian features to spread out from their actual location on
the ground plane. Other approaches [21,27,32,39] identi-
fied this distortion as harmful to the detection accuracy and
all proposed complex solutions, like deformable transform-
ers [21] or ROI projection [27]. Our decoder offers a simple
solution to aggregate location and identification features on
the ground plane.

In each layer of the ResNet, the BEV feature is down-
sampled by 2. We then use a pyramid network architecture
to upsample the output of each layer to the size of the pre-
vious larger output. Then, both features are concatenated
in the channel dimension, and a 2D convolution is applied.
The feature pyramid yields a decoded output with the same
shape as the input of C, x H, x W, but a much higher
receptive field for each grid location.

3.4. Heads & Losses

To get the final prediction of the POM, we use predic-
tion heads on our BEV feature map. The detection archi-
tecture follows CenterNet [50], and we add a head for cen-
ter detection that reduces the feature to 1 x H, x W, to
yield a heatmap or POM on the ground plane. We add an-
other head for offset prediction that helps predict the loca-
tion more accurately as it mitigates the quantization error
from the ground grid. The offset has an (x,y) component
and has the shape 1 x H, x W,. Each head is implemented
by applying a 3 x 3 convolution (with C; = 128 channels),
followed by an activation layer and a 1 X 1 convolution to
the final target size. The center head is trained with Focal
Loss, and the offset head is trained with L1 Loss.

We also add detection heads for image features that pre-
dict the center of the 2D bounding boxes and estimated foot
location at the bottom-center of the bounding box, helping
the image features to have higher activations at the loca-
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tion of each pedestrian. Following FairMOT [48], we add
an uncertainty term to automatically balance the single-task
losses before summing them up.

Re-Identification. The re-ID head aims to generate fea-
tures that can distinguish individual pedestrians. Ideally,
affinity among different pedestrians should be smaller than
between the same pedestrian. To archive this, we learn re-
ID features through a classification task and as a metric
learning task. First, we apply a head that yields the re-ID
feature on the ground plane Cjq 4 X Hy x W, with Cq = 64
and also of the image features Cq ¢ x Hy x Wy. After-
wards, we extract the feature at the location of the center
detection in both planes. We create a class identity distri-
bution with a linear layer that we train with Cross Entropy
Loss to the ground truth class identity. As discussed earlier,
the perspective transformation introduces strong distortion
on the ground plane. Thus, we supervise the re-ID features
from the image view. In addition to the Cross-Entropy loss,
we apply SupCon Loss [25], which pulls features belong-
ing to the same class identity together while simultaneously
pushing apart features of samples from different classes.

3.5. Inference

At inference time, we take the POM predicted by the

BEV center head and perform non-maximum suppression
(NMS) by a simple 3 x 3 max pooling operation as in [49].
We then only extract the detections over a certain threshold
of 0.4. We also extract the identity embeddings at the es-
timated pedestrian centers. In the next section, we discuss
how we associate the detected boxes over time using the
re-ID features.
Online Association. We adopt the hierarchical online data
association approach described by MOTDT [7], but instead
of boxes, we only track the pedestrians centers seen from
the Bird’s Eye View. Our first step involves initializing a
set of tracklets based on the centers detected in the initial
timestep. As each subsequent timestep is processed, we
connect the centers detected to the existing tracklets using a
two-stage matching strategy.

In the first stage, we use a combination of the Kalman
Filter [24], and re-ID features to achieve initial tracking re-
sults. Specifically, we use the Kalman Filter to anticipate
tracklet locations in the next frame and calculate the Ma-
halanobis distance (D,,) between the anticipated and de-
tected center, similar to the DeepSORT method [45]. We
then combine the Mahalanobis distance with the cosine dis-
tance computed on re-ID features into a singular distance
measure (D) using the formula D = AD, + (1 — A)D,,,
where ) is a pre-determined weighting parameter set to 0.98
in our experiments. The Mahalanobis distance is manually
set to infinity if it exceeds a certain threshold, which aligns
with the JDE protocol [44] and prevents the tracking of tra-
jectories exhibiting implausible motion. We then use the

Hungarian algorithm with a matching threshold 7 = 0.4 to
conclude the first matching stage.

The second stage involves attempting to match unde-
tected boxes and tracklets based on the center distance of
their respective boxes, with an increased matching threshold
To = 2.5 m. We continually update the appearance features
of the tracklets at each timestep to account for potential vari-
ations in appearance. Any unmatched centers are classified
as new tracks, and unmatched tracklets are retained for 10
timesteps to facilitate recognition if they reemerge later.

4. Experiments
4.1. Dataset & Metrics

Wildtrack Dataset. Wildtrack [5] is a real-world dataset
captured using seven synchronized and calibrated cameras
with an overlapping field-of-view of an area of 12m X
36 m. The movement of the pedestrians is in a public en-
vironment and unscripted. Annotations are provided on the
ground plane quantized into a 480 x 1440 grid, resulting
in grid cells of 2.5cm x 2.5cm. The average number of
pedestrians per frame is 20, and 3.74 cameras cover each
location. Each camera image is recorded at a resolution of
1080 x 1920 pixels with a frame rate of 2 fps, covering a
total of 35 min.

MultiviewX Dataset. MultiviewX [22] is a synthetic
dataset generated in a game engine and is built to be a
synthetic copy of the Wildtrack dataset. MultiviewX con-
tains views generated by 6 virtual cameras with overlap-
ping field-of-view. The captured area is with 16m x
25 m slightly smaller than the area of the Wildtrack dataset.
For annotation, the ground plane is quantized into a grid
of size 640 x 1000, where each grid represents the same
2.5cm x 2.5 cm squares. The average number of pedestri-
ans per frame is 40, while 4.41 cameras cover each location.
The camera resolution (1080 x 1920), frame rate (2 fps), and
the length (400 frames) are equal to Wildtrack.

Detection Metrics. Unlike monocular-view detection sys-
tems, which evaluate the predicted bounding boxes, multi-
view detection systems assess the projected ground plane
occupancy map. Thus, the comparison to the ground truth
is not calculated with the Intersection over Union (IoU) but
with the Euclidean distance as proposed in [5]. Detection is
classified as true positive if it is within a distance » = 0.5 m,
which roughly corresponds to the radius of a human body.
Following previous works [5,22], we use Multiple Object
Detection Accuracy (MODA) as the primary performance
indicator, as it accounts for the normalized missed detec-
tions and false positives. Additionally, we report the Multi-
ple Object Detection Precision (MODP), Precision, and Re-
call.

Tracking Metrics. For tracking the metrics are also cal-
culated in the ground plane. We report the common MOT
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Wildtrack

MultiviewX

MODA MODP Precision Recall MODA MODP Precision Recall

o, | RCNN & Cluster [46]  11.3 18.4 68 43 18.7 46.4 63.5 43.9
% DeepMCD [6] 67.8 64.2 85 82 70.0 73.0 85.7 83.3
o) Deep-Occlusion [1]  74.1 53.8 95 80 75.2 54.7 97.8 80.2
E MVTT [27] 94.1 81.3 97.6 96.5 95.0 92.8 99.4 95.6
o MVDet [22] 88.2 75.7 94.7 93.6 83.9 79.6 96.8 86.7
=] SHOT [39] 90.2 76.5 96.1 94.0 88.3 82.0 96.6 91.5
5, 3DROMT [32] 91.2 76.9 95.9 95.3 90.0 83.7 97.5 92.4
% MVDeTr [21]  91.5 82.1 97.4 94.0 93.7 91.3 99.5 94.2

EarlyBird 91.2 81.8 94.9 96.3 94.2 90.1 98.6 95.7

Table 1. Evaluation of the detection performance with the state-of-the-art methods on the Wildtrack and MultiviewX datasets. T 3DROM

results are without additional data augmentations.

metrics [4] and identity-aware metrics [34], the threshold
for a positive assignment is set to 7 = 1 m to normalize the
Multiple Object Tracking Precision (MOTP). The primary
metrics under consideration are Multiple Object Tracking
Accuracy (MOTA) and IDF1. MOTA takes missed detec-
tions, false detections, and identity switches into account.
IDF1 measures missed detections, false positives, and iden-
tity switches. Additionally, we also report Mostly Tracked
(MT) and Mostly Lost (ML). These are reported as a per-
centage of the total count of unique pedestrians present in
the test set.

4.2. Implementation Details

The input size of the images is 720 x 1280 pixels. For
augmentation at train time, we follow [14,21]: we apply
random resizing and cropping on the RGB input, in a scale
range of [0.8, 1.2] and adapt the camera intrinsic K accord-
ingly. Additionally, we add some noise to the translation
vector t of the camera extrinsic to avoid overfitting the de-
coder. We train the detector using an Adam optimizer with
a one-cycle learning rate scheduler with a maximum learn-
ing rate of 1073, We train for 50 epochs and depending
on the size of the encoder, with a batch size of 1 — 2 but
accumulate gradients over multiple batches before updating
the weights to have a effective batch size of 16. The encoder
and decoder network are initialized with pre-trained weights
on ImageNet-1K. All experiments are conducted using one
RTX 3090 GPU.

4.3. Main Results

Detection. In the tracking-by-detection paradigm, good
detections are the basis for good tracking results. While our
method does not focus on improving the detection, we still
need to be close to the state-of-the-art to achieve competi-
tive results. Tab. 1 compares our methods detection perfor-
mance to previous methods. We first compare our results to

Wildtrack
IDF11 MOTA1 MOTP1T MT1T MLJ
KSP-DO [5] 73.2 69.6 615 28.7 25.1
KSP-DO-ptrack [5] 78.4 72.2 60.3 42.1 14.6
GLMB-YOLOv3 [30] 74.3 69.7 732 795 21.6
GLMB-DO [30] 72.5 70.1 63.1 93.6 22.8
DMCT [47] 77.8 72.8 79.1 61.0 4.9
DMCT Stack [47] 81.9 74.6 789 659 49
ReST! [8] 86.7  84.9 84.1 87.8 4.9
EarlyBird 92.3 89.5 86.6 78.0 4.9
MultiviewX
IDF11 MOTA1 MOTPT MTT MLJ
EarlyBird 82.4 88.4 86.2 829 13

Table 2. Evaluation of tracking results on the Wildtrack and Mul-
tiviewX. T ReST originally reported the tracking metrics on view-
based tracking instead of tracking in the projected view. The re-
sults shown are re-computed by us.

the baseline: MVDet [22], as we base our approach on it.
The results show that our decoder architecture and augmen-
tation changes improved MVDet. Other detection-focused
methods [21,27,39] also extend MVDet and achieve com-
parative results on Wildtrack, but our approach has com-
petitive results on MultiviewX. The current state-of-the-art
MVTT [27] is a two-stage detection approach and could still
be added to our single-state approach to further improve the
results.

Tracking. In Tab. 2 we compare our method to state-
of-the-art approaches. Our approach outperforms all cur-
rent approaches by a big margin. Compared to the current
best-performing method ReST [8], we improve the IDF1 by
5.6, and the MOTA by 4.6 percent points. All other meth-
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ods [5,8,29,30,47] start from 2D detections, and to compare
tracking methods, you also need to take the detection qual-
ity into account. For most of these approaches, we cannot
directly compare the detection quality, but ReST [&] uses
detection from MVDeTr [21], which performs very close to
our detector (cf. Tab. 1). ReST and EarlyBird follow a sim-
ilar approach: associate spatially on the ground plane, then
associate temporally. However, ReST only projects detec-
tions in 2D to the ground plane and associates them with a
graph solver. In contrast, we project the complete input im-
age feature space to the ground plane and associate it with
the decoder. Our results show that with similar detection
quality, our approach outperforms ReST, which shows the
advantage of our early-fusion approach compared to graph-
based late-fusion.

4.4. Ablations Studies

Influence of Method Components. Next, we ablate
each component introduced in our method compared to
the baseline as shown in Tab. 3. The baseline consists of
MVDet [22] with minimal additions to perform tracking,
namely a RelD head added to the BEV-space. The baseline
results suffer from strong overfitting and the added augmen-
tation in the next step mostly aleviates this. We augment the
input images with scaling and cropping to avoid overfitting
in the encoder and add transitive noise to the projection to
the ground plane to avoid overfitting in the prediction heads.
With better augmentation, we introduced our larger decoder
based on a ResNet-18 with a feature pyramid. These addi-
tions gave us one of the most robust detection results, but
as tracking is our primary focus, we added the view center
and re-ID loss. These two losses are applied to the image
features and should help guide these features. While the 2D
center detection alone decreased our detection performance,
using it with the re-ID loss gave us the final SOTA results.
Influence of the Encoder Network.  The encoder ex-
tracts the features of the RGB image that are projected
to the ground plane. While all of the similar detection-
based approaches [21,22,27,32] use a ResNet-18 encoder,
these approaches do not need to encode the identity fea-
ture. Thus, we try our approach with larger encoders and
transformer-based encoders, see Tab. 4. The ablation shows
that ResNet-18 has the best performance. ResNet-50 may
be slightly better in the detection and tracking performance,
but the smaller ResNet-18 outperforms it in the main met-
rics MODA and MOTA and has competitive scores for
IDF1. We thus use ResNet-18 to report all other results.

4.5. Qualitative Results

In Fig. 3, we plot the output of our model on the test set
of Wildtrack. In Fig. 3a, we compare the prediction of the
POM to the ground truth as a heatmap at a single timestep.
Each point in the ground truth represents a pedestrian in the

Detection Tracking
MODA MODP IDF1 MOTA MOTP
Baseline 77.8 789 713 72,6 809
+ Augmentation 89.5 81.7 845 874 83.0
+ Decoder 91.3 822 91.1 89.1 869

+ View Center Loss  91.0 82.1 90.0 89.1 84.0
+ Viewre-ID Loss  91.2 81.8 923 89.5 86.6

Table 3. Ablation of the components introduced by our approach
compared to the baseline method.

Detection Tracking

MODA MODP IDF1 MOTA MOTP

ResNet-18  91.2 81.8 923 895 86.6
ResNet-50 89.6 823 926 88.8 86.5
Swin-T  89.5 813 920 873 879

Table 4. Ablation of different encoders on detection and tracking
results of the Wildtrack dataset.

BEV. The scene’s center is crowded with pedestrians, and
the prediction in this high-overlap area is almost perfect.
The further the pedestrians are on a side, the less accurate
the prediction is. This inaccuracy could be due to the in-
creased distortion further from the cameras and less overlap
of the views in the border regions.

Fig. 3b shows similar results for tracking. We show all
tracks on the ground plane of the full test set of Wildtrack,
where each color and line represents the path one identity
takes. The tracks in the center of the scene are predicted
almost perfectly. However, the top-left and top-right tracks
are segmented or switched tracks. This inaccuracy could
be due to less accurate or missing detections and identity
features outside the ground plane.

5. Discussion

Limitations. The first limitation of our approach is the re-
quirement for high-quality 3D annotations and camera cali-
brations. While this is easy to archive with synthetic data, it
is costly for real-world data. Therefore, we could not eval-
uate some older datasets (CAMPUS [46], PETS09 [12]),
where most of the late-fusion models can work with only
2D annotations and ground plane homography. Further-
more, our approach requires synchronized cameras. Since
we lift all cameras to the same 3D space, the time differ-
ences should be minimal so that moving objects do not
project to different locations in 3D. Late-fusion MTMC
tracking methods can account for more drift in the tem-
poral domain. Our approach also has higher hardware re-
quirements. While late-fusion approaches may process each
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(a) Comparison of the detection result on Wildtrack as a heat map. Each point in the ground truth represents a pedestrian in the BEV.

(b) Comparisons of the tracking results on Wildtrack. Each colored line represents a path taken by one tracked pedestrian as seen from the BEV.

Figure 3. Qualitative detection (a) and tracking (b) results of our approach (left) compared to the ground truth (right).

camera decentralized and fuse the information centrally, our
approach processes all camera images simultaneously. It
thus requires more memory and computational resources on
a single machine.

Ethical Impact. Tracking methods always have the risk
of being used for illegal surveillance. Methods that focus
on pedestrian tracking must face this criticism, especially.
The dataset Wildtrack [5] has been criticized [16] for the
missing consent of the recorded persons. Unfortunately, a
good comparison to the state-of-the-art is only possible with
this dataset, even though a synthetic replication with Mul-
tiviewX [22] is now available. We are the first to evaluate
tracking on this synthetic dataset to lower the ethical impli-
cations of tracking.

Future Work. For the detection part, the biggest chal-
lenge of our and other current approaches [21,27,39] is the
distortion caused by the projective transformation. Other
methods that lift from 2D to 3D space could be explored
for multi-view detection, i.e., Simple-BEV [14], Lift-Splat-
Shot [31], or BEVFormer [28]. Most current approaches
only use the current frame for detection. Using more tem-
poral frames could improve the detection performance [28].
Using more temporal context could also improve the track-
ing quality, and approaches like CenterTrack [49] could be
used to track via motion cues. The pedestrian datasets used
in this work have about 400 timestamps, which is relatively
small by modern computer vision standards, and the detec-
tion and tracking accuracy is saturating. The need for larger
datasets is apparent, and datasets with similar MTMC prob-

lems for traffic surveillance [18,42] could bridge this gap.

6. Conclusion

This paper shows that the EarlyBird catches the worm
through multi-view highly accurate tracking. Early-fusion
of all views and tracking in the bird’s eye view consider-
ably improves MTMC tracking. We adapt one-shot track-
ing to multi-view tracking to propose an online, anchor-free
tracker. We propose ways to efficiently train re-ID features
in BEV and ablate each of our tracking improvements.

We expect EarlyBird to inspire feature work in early-
fusion multi-view tracking and believe that EarlyBird, to-
gether with our suggested future work, makes significant
progress towards tackling multi-view tracking problems.
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