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1. Hyper-parameters
The training hyper-parameters utilized for training the people counting models using image-level architectures, point-

wise localization, and object detectors are outlined in Tab. 1, Tab. 2, and Tab. 3, respectively. These hyper-parameters were
applied consistently across all reported results in Section 4. In the case of image-level tasks, the loss functions employed
were either Mean Square Error (MSE) for regression or Cross Entropy (CE) for classification. On the other hand, point-
wise localization loss functions encompassed multiple terms within the loss function, such as Euclidean distance between
points (EUC), Smooth L1 distance (SL1), or Split loss (L-S). For object detectors, YoloV8 utilized Varifocal loss (VFL) and
Distribution Focal loss, while DINO employed L1 distance and Generalized Intersection over Union (GIOU).

Table 1. Image-level training hyper-parameters

Image-Level models from Scratch Image-Level models from MAE Pretraining Image-Level models from Fine-Tuning

ConvNeXt-Micro/Tiny ViT-3L/4L ConvNeXt-Micro/Tiny ViT-3L/4L ConvNeXt-Micro/Tiny ViT-3L/4L

Learning Rate 1.00e-4 1.00e-4 1.50e-6 1.50e-4 2.00e-4 1.00e-5
Epochs 450 450 500 500 450 450
Batch Size 64 64 64 64 64 64
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Momentum (beta1, beta2) (0.9; 0.999) (0.9; 0.95) (0.9; 0.95) (0.9; 0.95) (0.9; 0.999) (0.9; 0.999)
Weight Decay 0.3 0.3 0.05 0.05 0.05 0.3
Scheduler Cosine Cosine Cosine Cosine Cosine Cosine
Warmup Epochs 40 20 40 40 40 5
Loss Function MSE/CE MSE/CE MSE MSE MSE/CE MSE/CE

Table 2. Point-wise localization training hyper-parameters

Point-Level Localizers

P2PNet PET

Learning Rate 1.00e-4 1.00e-4
Epochs 1500 1500
Batch Size 8 8
Optimizer Adam AdamW
Momentum (beta1, beta2) (0.9, 0.999) (0.9, 0.999)
Weight Decay N/A N/A
Scheduler None None
Warmup Epochs N/A N/A
Loss Function EUC + CE SL1 + CE + L-S

Table 3. Object Detection training hyper-parameters

Object Detectors

YoloV8-S/M/L DINO-SWIN-Tiny

Learning Rate 1.00e-3 1.00e-4
Epochs 400 12
Batch Size 16 4
Optimizer SGD AdamW
Momentum [beta or (beta1, beta2)] 0.937 (0.9; 0.999)
Weight Decay 0.0005 N/A
Scheduler Cosine None
Warmup Epochs 3 N/A
Loss Function VFL + DFL L1 + GIOU

Fig. 1 displays the count accuracy versus threshold curves for object detectors. These curves were generated after the
completion of training, and the validation set was utilized to identify the optimal score threshold for evaluation purposes. The
determined best thresholds for the LLVIP and Distech IR datasets are outlined in Tab. 4.

2. Effect of class imbalance on image-level counting
Tab. 5 and Tab. 6 illustrate the achieved count accuracy per number of people in each image for LLVIP and Distech IR,

respectively. The tables also present the class distribution, aiding in the analysis of class imbalance within this framework.
As expected, higher occurrences of a category correlate with higher count accuracy. Classes represented by only one image
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Figure 1. Count accuracy at various thresholds for the LLVIP and Distech IR datasets using YoloV8-S, YoloV8-M, YoloV8-L, and DINO
models. The selected best threshold represents the value that yields the highest count accuracy.

Table 4. Best thresholds per model per dataset

Dataset Yolov8-S Yolov8-M Yolov8-L DINO

LLVIP 0.343 0.503 0.43 0.405
Distech IR 0.351 0.159 0.504 0.405

displayed a binary performance outcome, typically 0% or 100%. This trend aligns with findings in existing literature on
image-level tasks characterized by severe class imbalance. Notably, regression-based methods were equally impacted by this
class imbalance. These results are a notable drawback of such people counting techniques. We hypothesize that employing
stratified versions of datasets or techniques designed to mitigate the effects of class imbalance might enhance performance
and potentially match the performance of object detectors.

Table 5. Count Accuracy Per Class LLVIP

Accuracy Count : 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Occurences 1 1203 990 602 333 171 81 45 24 9 3 2 1 1

Model Pretrain. Head Type

ConvNeXt
None Classification 100.00 91.81 83.52 74.61 73.32 65.99 48.78 57.50 29.41 7.14 25.00 0.00 100.00 0.00

Regression 100.00 92.47 85.86 74.61 68.27 69.23 53.66 66.25 44.12 21.43 37.50 0.00 100.00 100.00

MAE Classification 100.00 92.79 86.16 73.05 70.91 67.61 57.72 60.00 35.29 7.14 0.00 0.00 100.00 100.00
Regression 100.00 93.56 85.15 75.70 71.15 69.23 52.03 56.25 38.24 28.57 25.00 0.00 100.00 100.00

ViT
None Classification 0.00 80.79 65.41 54.98 56.01 42.51 38.21 36.25 26.47 0.00 25.00 0.00 100.00 0.00

Regression 0.00 78.82 66.73 58.26 55.53 48.99 34.96 35.00 20.59 0.00 0.00 0.00 0.00 0.00

MAE Classification 0.00 86.79 64.90 55.30 57.21 36.84 26.83 50.00 2.94 0.00 0.00 0.00 0.00 0.00
Regression 100.00 81.66 63.58 61.99 56.25 45.34 39.84 42.50 29.41 14.29 12.50 0.00 0.00 100.00

3. Localization details
The localization results on the main manuscript are reported in terms of mean Absolute Euclidean Distance (mAED). We

calculate the mAED between the predicted coordinates and the ground truth for all images in the testing set. Both the x and
y position coordinates are normalized within the range of 0 to 1.



Table 6. Count Accuracy Per Class Distech IR

Accuracy Count : 0 2 3 4 5 6

Occurences 19 50 36 5 144 1

Model Pretraining Head Type

ConvNeXt
None Classification 89.47 86.00 44.44 20.00 95.83 0.00

Regression 94.74 62.00 83.33 20.00 93.75 0.00

MAE Classification 84.21 82.00 75.00 0.00 97.22 100.00
Regression 89.47 78.00 77.78 20.00 93.75 0.00

ViT
None Classification 94.74 68.00 30.56 40.00 96.53 0.00

Regression 94.74 56.00 52.78 0.00 86.81 0.00

MAE Classification 89.47 76.00 33.33 0.00 91.67 100.00
Regression 78.95 42.00 33.33 20.00 84.72 0.00

The mAED is computed as:

mAED =
1

M

M∑
j=1

1

Nj

Nj∑
i=1

||pij − p̂ij ||22 (1)

where p̂ij and pij represent the coordinates of the predicted and ground truth positions for the ith point within the jth image.
As previously outlined, the predicted points and ground truth are paired using the Hungarian matching algorithm. In this
context, M signifies the total number of images within the test set, while Nj indicates the total number of points per image.
When the estimated points and ground truth locations fail to align, a penalty distance of 1 is assigned.

Since image-level techniques lack localization information, we use class activation maps to obtain the locations of indi-
viduals. Our proposed algorithm leverages the identified count of people (numInstances) to guide te localization process.
Empirically, a threshold of 27 was determined to effectively binarize the activation map and extract the relevant regions of
interest. For specifics regarding the employed algorithm, refer to Algorithm 1. Several examples illustrating the localization
obtained using the aforementioned algorithm from the activation maps are presented in Fig. 2.



Figure 2. Examples of people localization using ConvNeXt attention maps.



Algorithm 1 People’s location from ConvNeXt activation maps

1: procedure LOCATEPEOPLE(activationMap, binaryThreshold, numInstances)
2: activationMap← binarize(activationMap, binaryThreshold)
3: countours← findCountours(activationMap).
4: x, y ← findCoordinates(countours).
5: if numInstances = len(countours) then
6: return x, y
7: else if numInstances < len(countours) then
8: countours← reverseSortByAreaSize(countours)
9: x, y ← findCoordinates(countours).

10: x, y ← sliceList(countours, start = 0, end = numInstances).
11: return x, y
12: else
13: x, y ← List(), List()
14: avgInstanceSize← totalArea(countours)/numInstances
15: for contour in countours do
16: numPeoples← round(area(contour)/avgInstanceSize)
17: if numPeoples ≤ 1 then
18: px, py ← findCoordinates(countour)
19: x← x.append(px)
20: y ← y.append(py)
21: else
22: randomCoordinates← uniformRandomSample(contour, numSamples = numPeoples)
23: for px, py in randomCoordinates do
24: x← x.append(px)
25: y ← y.append(py)
26: return x, y
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