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Abstract

Lensless imaging has emerged as a promising solution
to overcome the need for expensive and bulky lenses used in
traditional cameras. This technique leverages a mask to op-
tically encode the scene, thus generating a sensor pattern.
The image is subsequently reconstructed using a computa-
tional algorithm. Traditional model-based reconstruction
methods often suffer from prolonged convergence time and
subpar perceptual image quality. To mitigate these issues,
data-driven deep neural networks can potentially offer en-
hanced reconstruction quality alongside reduced inference
time. However, deep learning methods fall short in pro-
viding improved results and tend to produce artifacts, pri-
marily because they do not incorporate any prior knowl-
edge about the imaging model. In this work, we propose
a DeepLIR, a hybrid approach that combines the physical
system model with a deep learning model. This is achieved
by unrolling a conventional model-based optimization al-
gorithm and incorporating an attention-based deep learn-
ing model to denoise the image, thereby enhancing the re-
construction quality. Our empirical analysis confirms that
DeepLIR surpasses existing lensless image reconstruction
techniques in terms of image quality and computational ef-
ficiency. Specifically, DeepLIR achieves a remarkable 1.35
X improvement in perceptual quality over the nearest com-
petitor, reflecting its robustness and superiority. Further-
more, it demonstrates superior generalization capabilities
when applied to real-world imaging. Code available at :
https://github.com/arpanpoudel/lenslessimaging.

1. Introduction

The current imaging system, widely adopted in most
modern electronics, is based on a lens that adheres to the
pinhole imaging model. However, the physical constraints
of the lens hinder its miniaturization, consequently limit-
ing the downsizing of the camera. A potential approach
to circumvent this limitation is the utilization of a lensless
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camera, where a lens is substituted by an optical encoder
that captures the scene. The sensor measurements obtained
are then reconstructed by computational algorithms. Re-
cent studies have shown promising results in image forma-
tion with lensless cameras, which offer smaller size, lower
cost, and lighter weight compared to traditional lens-based
cameras [3,5, 18,26].

Lensless imaging can be categorized into three differ-
ent systems: illumination-modulated, mask-modulated, and
programmable modulator lensless system [0]. In this work,
we focus on phase-modulated mask-based lensless imagers
where a mask encodes the scene into the sensor measure-
ment and reconstructs the final image with a reconstruc-
tion algorithm. Mask-based lensless imaging has applica-
tions in 2D imaging [3, 18], 3D imaging [2, 5], and mi-
croscopy [1,9,19].

The classical approach for image reconstruction involves
formulating the imaging system as a model-based inverse
problem, which is solved iteratively by minimizing the loss
function to reconstruct an image through optimization tech-
niques. This function consists of data fidelity and a regular-
izer to recover the final image. This approach uses prior
information of the optical element, known as the point-
spread-function (PSF), which multiplexes the light from the
scene. To obtain the PSF of the system, a point light source
illuminates the mask and produces a specific pattern on the
sensor [25,27]. However, the multiplexing of light through
a mask results in an ill-conditioned system of equations that
makes image reconstruction challenging. Iterative meth-
ods [4, 7] are used to solve the systems of equations and
recover the final image [2]. However, this method doesn’t
provide a convergence guarantee within a few iterations and
produces reconstruction artifacts due to model mismatch,
and calibration errors.

The problem of solving the ill-conditioned system of
equations for image reconstruction can be modeled using
deep learning-based methods. In this approach, a deep neu-
ral network (DNN) is utilized to reconstruct an image by
learning the parameters of the network, using large datasets
of images to map sensor measurements to the ground truth.
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However, this method does not consider any prior informa-
tion about how the images were formed. Additionally, the
interpretation of this method can be quite complex. This
approach also fails to consider the multiplexing property of
the sensor measurement through the mask. Multiplexing
is responsible for transforming the local information into
overlapping sensor measurements. Consequently, while the
deep neural architecture can efficiently identify local fea-
tures, it does not capture the global features present in the
sensor measurement due to the mask’s multiplexing prop-
erty [27] and produce reconstruction artifacts.

In this work, we sidestep this problem by unrolling the
fixed number of iterations of the classical algorithm through
a neural network and further denoise the resulting image
with attention-based U-Net [29] relying on ConvNeXt [22].
We unroll the iterative alternating direction method of mul-
tipliers (ADMM) [7] derived with a variable splitting that
leverages the specific structure for lensless imaging [2] as a
layer of the neural network. The intermediate result is then
fed to the denoiser model to reconstruct the final image. Our
main idea is to utilize the prior information about the image
formation process with the classical approach and use the
intermediate information to reconstruct the image with an
network with an attention mechanism [32].

We evaluate the performance of our model using images
from DiffuserCam [2]. Empirically, we observe that our
model outperforms the baselines on lensless images as mea-
sured in MSE, PSNR, and LPIPS [37]. Fig. | illustrates an
overview of our proposed method, and we detail our method
further in Section 3; experimental setup and evaluations in
Section 4; discussion about advantages and limitations in
Section 5; we conclude our work in Section 6.

2. Background And Related Work
2.1. Forward Measurment Model

For a lensless camera, DiffuserCam, we consider the fol-
lowing forward measurement model

y(d,m,y) = crop[a(d,x,y) *X(dvxvy)} (1)
= CAx
where a is a PSF of the imaging system, x represents the
scene, and (X,y) represents the sensor coordinates for d
channels. The symbol * denotes 2D discrete linear con-
volution and C denotes the crop operation to restrict the
size of the output. PSF of the DiffuserCam, a, is obtained
by refracting light from the point source through a diffuser,
which creates a high-contrast caustic pattern [2, 18].
The goal is to recover the scene x from the measurement
y. To reconstruct an image x, from the measurement y, we
need to solve Eq. (1) for x.

2.2. Unrolling Inverse Algorithm

The reconstructed image can be obtained by solving the
following regularized constrained optimization problem:

. 1
X = arg min §||y — CAx||3 + \||¥x]; 2)

Here U denotes the sparsifying transform, such as dis-
crete cosine transform (DCT), finite-differences for total
variation (TV), which is a linear operator that transforms
the image pixels into sparse representations. A regular-
izes the sparsity constraints. A variety of iterative al-
gorithms have demonstrated effectiveness in solving this
optimization problem. These include the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [4], the Itera-
tive Shrinkage-Thresholding Algorithm (ISTA), and the Al-
ternating Direction Method of Multipliers (ADMM) [7].

One can construct an ADMM solver with a variable split-
ting to reconstruct an image from the measurement [2]. To
achieve this, Eq. (2) can be formulated as:
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With ADMM, the following iteration scheme can be
used to reconstruct z**1 at iteration k, as formulated in [2],
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Here (I)ﬁ denotes vectorial soft-thresholding with a
threshold value of Lz, and «, 3, and -y represents the La-
grange multipiers associated with u, v, and w, respectively.
11, te and pg are the penalty parameters.

With this formulation, we incorporate the physical model
of the imaging system to reconstruct the image. However,
such an approach requires many iterations for convergence,
and the resulting images still possess reconstruction arti-
facts. Furthermore, this method only works well when the
priors are correctly chosen. An alternative approach in-
volves executing a predetermined number of iterations, N,
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Figure 1. Overview of the reconstruction pipeline with DeepLIR: The process begins with sensor measurements obtained from a lensless
camera. The reconstructed image is achieved by solving a constrained optimization problem through a fixed number of iterations. Subse-

quently, the intermediate result is denoised with a denoiser model.

of these algorithms, with each iteration represented as a
layer of a neural network. This can be achieved by mak-
ing algorithm hyperparameters, such as 7, j1, 1o and pg as
learnable parameters [10] [25]. Many existing works [25]
[16] [34] have implemented this idea in lensless image re-
construction. For instance, Le-ADMM [25] has imple-
mented unrolling iterations of ADMM. However, the recon-
structed image contains numerous artifacts, is not visually
appealing, and scores low on evaluation metrics.

2.3. Denoising models

Image denoising is a challenging computer vision task
that aims to remove noise from noisy images. In re-
cent years, the emergence of vision transformers [1 1] [21],
which are based on attention mechanism [32], has shown
promising results in solving this task [20].

In contrast to vision transformers, diffusion models [14]
[31] with conditional sampling algorithms have demon-
strated promising results in solving inverse problems [30]
[8] in medical image reconstruction. However, these mod-
els are not suitable for lensless imaging systems as they do
not incorporate the physical model and often result in recon-
struction artifacts. Additionally, the sampling algorithms
used in these models can be slow, making them impractical
for real-time image generation in lensless cameras.

In the sections that follow, we propose a new image re-
construction pipeline for lensless imaging. This pipeline
unrolls the few iterations of ADMM and denoises interme-
diate images with an attention-based U-Net denoiser model
that can bridge the gaps in performance, speed, and com-
patibility.

3. Method
3.1. Network Architecture

As shown in Fig. 1, Our model combines two models:
Unrolled classical model and the Denoiser model.

Unrolled Classical model. Given a sensor measurement
y € RHEXWXCin (F W and C;,, are the measurement
height, width, and input channel number, respectively), we

extract the noisy image Iy € RT*WXC with a known
forward model from y as

Iy = Hyn(y) ®)

where Hy n () is the unrolled classical model and it con-
tains N iterations of ADMM represented as a layer in a neu-
ral network. More specifically, intermediate images I, Io,
..., Iy are generated after each iteration as

Ii = Hapym,(Iizh), i =1,2,...,N (6)

where Happa, () denotes the i-th layer of ADMM
iteration whose update equation is given by Eq. (4). The
trainable parameters for i-th iteration in Haparas, (+) are

115, py, py and 7° [25].

Denoiser model. Taking a noisy image Iy, we de-
noise the image to reconstruct high-quality image Irp¢ as

Irng = Hpen(IN) @)

where Hppn(+) is the module for reconstruction. Un-
rolling a few layers of ADMM can be used to iteratively
refine the image estimate, while the denoiser model focuses
on extracting high-frequency components of an image. To
implement the denoiser model, we leverage the attention
mechanism [32] on U-Net [29].

Attention-based U-Net: Our denoiser model follows
the backbone of DDPM [14] [24] that takes a noisy image
and results in a less noisy image. Fig. 2 shows an overview
of the model. The following sections provide a thorough
discussion of the details of the downsampling, bottleneck,
and upsampling operations that are implemented within the
U-Net architecture.

3.1.1 Downsampling

The downsampling module within our architecture primar-
ily consists of two ConvNeXt blocks [22], group normaliza-
tion [33], linear attention [15], a residual connection, and
a downsampling operation with a factor of 2. The Con-
vNeXt block, inspired by research [22], initially employs
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Figure 3. Overview of ConvNeXt block

depthwise separable convolution to effectively capture spa-
tial correlations in the input feature maps. Sequentially ar-
ranged convolutional layers, interleaved with GELU activa-
tions [13] and group normalization, manipulate these fea-
ture maps within this block. The group normalization sta-
bilizes the learning process by mitigating the internal co-
variate shift [33] within the block. It also incorporates a
residual connection, assisting the model in learning iden-
tity mappings and preventing the vanishing gradient prob-
lem [12]. Fig. 3 gives an overview of ConvNeXt block used
in the downsampling module.

The reconstructed images can often be affected by com-
plex distortions or aberrations. These effects may be caused
by factors such as the lensless sensor design, environmen-
tal conditions, or the properties of the object being imaged.
Because of these distortions, important information about
an object might be scattered across the entire image. Hence,
the need arises for the model to correlate distant regions of
the image. This is where the attention mechanism comes

in handy. It allows our model to understand the interdepen-
dencies between different regions of an image, regardless of
their distance in the spatial domain. It essentially provides
a form of global context to the model, which can be particu-
larly beneficial for tasks that require an understanding of the
whole image, such as denoising with multiplexing property
in our case. Hence, the attention mechanism helps capture
long-range dependencies in the sensor-acquired noisy im-
age data, and incorporating this layer improves the denoised
output, enhancing the clarity and recognizability of key fea-
tures [1 1] [15] [36] essential for lensless imaging. To imple-
ment an attention mechanism, we use linear attention [15]
as it reduces the computational complexity to linear making
our model efficient instead of self-attention following the
two ConvNeXt and group normalization block.

3.1.2 Bottleneck

The bottleneck module comprises two ConvNeXt blocks
with a group normalization and self-attention mechanism
and is supported by a residual connection. The self-
attention mechanism empowers the model to prioritize the
most crucial image features. The residual connection al-
lows the input to bypass the group normalization and self-
attention mechanism and be directly added to the output,
aiding the model in preserving information from preceding
layers and learning identity mappings efficiently.
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3.1.3 Upsampling

The upsampling module in our architecture parallels the op-
erations seen in the downsampling module, but with a dis-
tinction - the downsampling operation is replaced by an up-
sampling operation. This change facilitates the reconstruc-
tion of the data from the compressed feature space back
to its original resolution, aiding in the generation of high-
quality outputs.

3.2. Loss function

For DeepLIR, we optimize the parameters of the model
by minimizing the mean-squared error (MSE) loss

L=|Iuq—Irnql3 (®)

where Ifq is the ground-truth image and Irp( is the re-
constructed image.

4. Experiments
4.1. Experminetal Setup

Dataset. To train our model, we use the DiffuserCam
Lensless Mirflickr Dataset (DLMD) [25] which consists of
25,000 aligned image pairs taken with both DiffuserCam
and a lensed camera. We utilize 24,000 image pairs as a
training set and 1,000 image pairs as testing images. The
raw images are downsampled by a factor of 4 to obtain an
image of size 480 x 270 to avoid degradation of lensed im-
age quality due to moiré fringes [25].

We unroll 5 iterations of ADMM with finite differences
for total variation (TV) as a sparsifying transform to opti-
mize computation for all our experiments. For attention-
based U-Net, we use four layers of the downsampling mod-
ule, one bottleneck, and three upsampling modules. Fol-
lowing the upsampling module, a final layer which consists
of a ConvNeXt and a convolution layer is applied to yield
an image of the required shape. This model consists of 19.3
million parameters with 18.3 million trainable parameters.

To compare DeepLIR with other attention-based mod-
els, we replaced the denoiser model with SwinIR [20]. Af-
ter unrolling the classical model, SwinIR is used to refine
the reconstructed image. SwinlR key design lies in the use
of local-window based self-attention, significantly reducing
computation costs and making the network more efficient.
For SwinlR, we use a window size of 8, three layers of
Residual Swin Transformer Block (RSTB) [20] each con-
taining one Swin Transformer Layer (STL) [21], embed-
ding dimension of 180 and six attention heads. This model
consists of 3.1 million parameters with 1.96 million train-
able parameters.

Our model is implemented in PyTorch and trained on
GeForce RTX 3090 GPU. During the training process, we
employed a batch size of 2, and the model was trained for

a total of 50 epochs (75 hours to train to completion). We
used ADAMW [23] optimizer with the learning rate set to
1 x 10~%, betas to (0.9, 0.999), and weight decay of 0.01.
We used Exponential Moving Average (EMA) on model pa-
rameters with a decay factor of 0.995. To perform the quan-
titative evaluations, we used the 1000 image pairs as testing
images, and the inference time was averaged for 100 trials.

4.2. Quantitative Evaluation

In each experiment, we report the Mean Square Error
(MSE), Peak Signal-to-Noise Ratio (PSNR), and Learned
Perceptual Image Patch Similarity (LPIPS) [37] as evalua-
tion metrics. These are utilized to evaluate the quality of the
resulting images, comparing them to images obtained with
a conventional lensed camera.

Table 1. Comparison of evaluation metrics for various models.

Model MSE PSNR LPIPS Time (ms)

ADMM (Conv.) 0.15 8721 0.78 810
Le-ADMM-U [25] 0.0074 21.30 0.1904 75
ADMM+ (SwinIR [20]) 0.0069 22.00 0.2069 1140

U-Net [25] 0.0154 18.12 0.2461 10
MMCN [35] 0.0026 25.69 0.1897 91
Kingshott et al. [16] 0.0029 2534 0.35 84

0.0087 20.56 - 32
0.0022 26.40 0.1412 165

Rego et al. [28]
DeepLIR (Ours)

A comparison of these metrics, as well as inference
time on GPU, with those of other models in the field, is
presented in Tab. 1, specifically focusing on images cap-
tured by the DiffuserCam. In our experimental analysis, we
observed that ADMM exhibits prolonged inference times
due to its requirement for a larger number of iterations to
converge. Despite this extended computational effort, the
solutions obtained using ADMM consistently fall behind
those achieved by other models in terms of both quality
and efficiency. In contrast to ADMM (Converged at 100
iterations) and Le-ADMM-U, DeepLIR produces signifi-
cantly lower MSE and higher PSNR, indicating more ac-
curate reconstructions. Compared to SwinlR, our method
achieves greater performance with a much shorter infer-
ence time. While U-Net has the least inference time among
the compared methods, its performance in terms of MSE,
PSNR, and LPIPS lags significantly behind ours. Lastly,
DeepLIR outperforms unrolled primal-dual network [17],
model mismatch compensation network [35], and PSF es-
timation method [28] in all available metrics except for in-
ference time. In the context of lensless imaging, where the
quality of visual results holds larger importance, the signifi-
cance of inference time diminishes compared to the quality
of the reconstructed images. While it is true that DeepLIR
exhibits a longer inference time compared to competing
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DeepLIR(Ours)

Figure 4. Comparative image reconstructions from DiffuserCam measurements using various models. Big red box: Zoom in version of the
indicated smaller red box. DeepLIR is able to reconstruct complex patterns and fine details where other models fail. You may zoom in to

view more details.

methods like unrolled primal-dual networks [17], model
mismatch compensation networks [35], and PSF estima-
tion methods [28], its superior performance across all other
available metrics underscores its effectiveness. In summary,
DeepLIR achieves the best MSE, LPIPS, and PSNR with an
inference time of 165 ms which demonstrates a satisfactory
balance between performance and computational efficiency.

4.3. Qualitative Evaluation

In addition to the quantitative analysis, we conduct a
qualitative evaluation to visually examine the quality of
image reconstruction by our model compared to the other
methods. The comparison is illustrated in Fig. 4.

The reconstructed images from our DeepLIR model vis-
ibly outperform those from other methods. Specifically,
the images produced by our model exhibit superior clar-
ity, sharper details, and improved color fidelity. This is
particularly evident when observing intricate details and
color gradients in the reconstructed images. In comparison,
the ADMM and Le-ADMM-U models appear to introduce

more noise and distortion into the images. The reconstruc-
tions by SwinlR and U-Net also present issues with clarity,
and in the case of U-Net, there is a noticeable loss of image
detail and color accuracy. The visual results demonstrate
that our DeepLIR model not only excels in quantitative met-
rics but also delivers superior visual quality in image recon-
struction.

4.4. Generalization to real-world imaging

Following our qualitative evaluations, we test DeepLIR’s
adaptability to real-world scenarios. The primary challenge
in lensless imaging is dealing with the unpredictabilities of
natural environments—variations in ambient light, dynamic
subjects, and obstructions that introduce noise. We pro-
vide a visualization of the real-world image reconstruction
Fig. 5. Remarkably, DeepLIR showcased a good perfor-
mance when deployed in these uncontrolled settings. It ef-
fectively managed to reconstruct subjects and details from
raw diffraction patterns, even in conditions far from the
ideal parameters of our training data and test set taken from
a monitor screen.
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Figure 5. Comparative reconstructions of real-world scenes from DiffuserCam measurements using various models. Among all the tested
methods, only DeepLIR manages to reconstruct the images with remarkably accurate colorization and fewer artifacts. For example, the
shadow of the hat in the second image appears more realistic with DeepLIR. The texture of the alligator’s skin in the first image is also
better represented with DeepLIR. Additionally, the seahorse in the third image is best depicted with DeepLIR, while other models struggle

with this particular detail.

5. Discussion

The presented experiments and results have led us to sev-
eral key observations about the DeepL.IR model, its perfor-
mance, and its relation to other existing methods in the field
of image reconstruction from DiffuserCam measurements.

5.1. Advantages of DeepLIR

Balanced Performance: One of the most significant take-
aways from our quantitative evaluations is that DeepLIR of-
fers a robust balance between image quality and computa-
tional speed. While there are methods with shorter infer-
ence times, such as Le-ADMM-U, they lag behind signifi-
cantly in terms of image quality. On the other hand, while
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SwinlR provides good image quality, its long inference time
makes it less suitable for real-time applications.

Visual Quality: The qualitative evaluations emphasize the
high visual quality of reconstructions achieved by DeepLIR.
Not only does it offer sharper details and better color fi-
delity, but it also outperforms other methods when faced
with intricate details, which are often a challenge for lens-
less imaging.

5.2. Possible Improvements and Extensions

Unsupervised approach: In our current method, the mea-
surements from the DiffuserCam heavily rely on the specific
PSF, which encapsulates the physical model of our mea-
surement procedure. A major limitation arises when alter-
ing the measurement process, such as by swapping to a dif-
ferent mask. Such alterations necessitate the collection of
new paired images in alignment with the modified process,
followed by a comprehensive retraining of our DeepLIR
model. This inherent limitation restricts DeepLIR’s adapt-
ability to diverse measurement processes.

To overcome this challenge, our future endeavors will

shift towards an unsupervised approach. Our plan is to har-
ness the power of generative models to learn the inherent
distribution of real-world images. By achieving this, we
aim to provide an efficient sampling algorithm capable of
reconstructing images in real time, regardless of the specific
measurement process in play.
Real-world imaging: In our experiments with Diffuser-
Cam’s measurement, while results were promising in con-
trolled settings, challenges arose in real-world imaging sce-
narios, particularly in the precise reconstruction of back-
ground details. Several factors might be at play, includ-
ing the inherent complexity of real-world scenes, the cur-
rent lensless imaging limitations, and external noise. Fu-
ture work will aim to address these by considering adaptive
PSFs tailored to general scene conditions, integrating more
discerning algorithms for detailed reconstructions, and em-
ploying advanced noise-reduction techniques. Addition-
ally, enhancements in DiffuserCam’s optical components
and sensor sensitivity could pave the way for better real-
world imaging fidelity.

6. Conclusion

In conclusion, we introduce a new pipeline to address
lensless image reconstruction, unrolling several iterations
of ADMM algorithms to procure an initial estimate of the
scene. Leveraging this estimate, an attention-based U-
Net is applied for denoising, wherein the attention mecha-
nism assists in retrieving information dispersed by the in-
herent multiplexing property of light. Empirical evalua-
tions exhibit that DeepLIR provides reconstructions of su-
perior perceptual quality across both controlled environ-
ments and real-world imaging scenarios. In contrast to
existing work, DeepLIR offers noticeable advantages in

both qualitative and practical aspects. The findings of
this work shed light on the promising synergy between
the attention mechanism and classical methods, highlight-
ing their potential to enhance performance beyond that of
larger, previously successful models in image reconstruc-
tion and denoising. This research not only advances the
state-of-the-art in lensless image reconstruction but also
underscores the broad applicability and efficiency of in-
tegrating attention mechanisms within traditional frame-
works.
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