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Abstract

In this paper, we present a class-conditioned Denoising
Diffusion Probabilistic Model (DDPM) based approach to
augment point cloud data within the latent feature space.
Our method focuses on generating synthetic point cloud la-
tent embeddings, which encode both spatial and semantic
information of the point cloud. By harnessing the capabil-
ities of DDPM within a class-conditioned framework, our
goal is to provide a cost-effective and practical solution for
the augmentation of point cloud samples. We conduct ex-
periments on the publicly available point cloud dataset, and
our findings suggest that the proposed approach (a) effec-
tively generates high-quality synthetic embeddings directly
from the Gaussian noise and (b) improves the classification
performance of the point cloud classes within limited data
settings.

1. Introduction

The advancements in 3D acquisition technologies have
increased the use of 3D data in scientific and engineering
fields. 3D data provides detailed geometric information
about the object, allowing for an overall understanding of
its spatial and semantic characteristics [10,21]. 3D data can
be represented in multiple formats, such as depth images,
point clouds, meshes, and volumetric grids [14]. The point
cloud is a fundamental 3D data format, which consists of
densely packed data points in a 3D coordinate system. Each
point within this collection is represented by a set of coor-
dinates (x, y, and z). These coordinates accurately depict

the object’s surface geometry and provide a comprehensive
digital representation of the object [9]. Due to its efficacy in
representing spatial information, point clouds have applica-
tions in urban planning, robotics, and autonomous driving.

Point clouds can be collected through various sensing
technologies such as laser scanning, LiDAR, and pho-
togrammetry. While these sensing technologies offer a non-
intrusive and convenient way to collect 3D data, they come
with their own set of limitations. One significant limita-
tion is the high operational cost associated with collecting
high-quality data. This cost includes equipment and data
processing expenses. Acquiring the necessary equipment,
such as high-fidelity scanners, requires a high initial invest-
ment. While addressing data processing costs, deep neural
network (DNN) remains the state-of-the-art method for pro-
cessing point cloud data [9]. DNN requires a large amount
of data to achieve robust results, which can be expensive
and time-consuming to collect and process [28].

To address this data scarcity and reduce the overall
cost of data acquisition, Data Augmentation (DA) offers a
promising solution [4, 6]. DA has demonstrated significant
performance improvements in training DNN and is widely
applied in domains such as image, audio, and natural lan-
guage processing [5,26]. DA artificially expands the size of
a dataset by generating new samples through various trans-
formations on the existing data. The fundamental princi-
ple behind these transformations is to introduce meaningful
variations into the original data without changing its core
information. This process improves the robustness of the
learning algorithm and serves as an important countermea-
sure against overfitting.
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In this paper, we present a class-conditioned DDPM-
based framework for augmenting the point cloud data. Our
research contributions are summarized below:

* In contrast to conventional augmentation techniques,
our approach involves use of latent point cloud em-
beddings as descriptors for point cloud data. These
embeddings serve as high-level representations of the
data, and we conduct augmentation procedure based
on these embeddings.

* We propose a class-conditioned Denoising Diffusion
Probabilistic Model (DDPM) based framework which
learns the point cloud latent representations and gen-
erates the class-specific synthetic point cloud embed-
dings from the Gaussian noise.

* We evaluate the class discrimination efficacy of syn-
thetic class embeddings via applying an off-the-shelf
classifier. Additionally, we compare the quality of
synthetic embeddings generated via proposed frame-
work with class-conditioned Variational Autoencoder
(cVAE) and class-conditioned Generative Adversarial
Network (cGAN).

* We perform a similarity check between the original
and synthetic embeddings via Jensen-Shannon Diver-
gence (JSD) scores. Furthermore, we perform a vi-
sual comparison of synthetic and original embeddings
through t-distributed stochastic neighbor embedding
(t-SNE) visualizations.

The rest of the paper is structured as follows: Section
2 presents a brief review on point cloud augmentation and
DDPM. Section 3 introduces the dataset. Section 4 outlines
the proposed framework. Section 5 details the experiments
conducted, while Section 6 presents the results. Section 7
offers a discussion of the findings. Finally, Section 8 con-
cludes the paper and outlines potential future work.

2. Background
2.1. Point Cloud Augmentation

Point cloud DA can be categorized into three categories:
(a) traditional methods, (b) deep learning-based approaches,
and (c) latent feature space augmentation.

2.1.1 Traditional Augmentation

Traditional augmentation methods for point cloud data in-
volve applying geometric or statistical transformations. Ge-
ometric transformations are mostly inspired by image trans-
formations, which include translation, rotation, and scaling
operations applied uniformly or along specific axes [15].
Statistical transformations include (a) adding noise from a

uniform distribution to simulate sensor inaccuracies, (b) re-
moving a certain percentage of points to simulate missing or
occluded data, (c) jittering within a local neighborhood, and
(d) selecting a subset of points to reduce the point cloud’s
density. While these techniques are easy to implement, they
struggle to capture the complex semantics of point cloud
data. Additionally, manual methods demand domain exper-
tise to select suitable transformations [15].

2.1.2 Deep Learning-based Augmentation

Deep learning-based DA techniques leverage the capabil-
ities of DNN to create meaningful augmentations. These
techniques include a wide array of strategies, such as VAE,
GAN, flow-based generative models, and transformers [1].
VAE can learn compact representations, which can be in-
terpolated to create new variations [|1]. GAN can learn
the underlying point cloud distribution by training genera-
tor and discriminator in a competitive process [8]. Further-
more, other image-based strategies like in-painting or out-
painting can be applied where DNNs reconstruct missing
parts of point clouds [23]. Self-supervised learning tech-
niques, which exploit the intrinsic relationships within data,
can also be applied to generate augmented samples [27]. In
contrast to traditional methods, these methods generate re-
alistic and contextually relevant augmentations.

2.1.3 Latent Feature Space Augmentation

The latent feature space DA method enhances datasets by
generating new examples within a compact and noise-free
latent space rather than the original data [20]. In this
approach, meaningful latent representations are extracted
from the original data either through (a) kernel functions,
(b) dimensionality reduction techniques like principal com-
ponent analysis, or (c) trained DNN, which maps the orig-
inal data onto a semantically meaningful latent space [18].
Since these latent representations are less prone to noise,
multiple augmentation techniques can be applied within this
space. Moreover, the compact nature of these latent repre-
sentations facilitates faster computation. In the context of
point clouds, multiple classification networks [3] have been
proposed, which showcase a robust capacity to learn dis-
criminative latent features.

2.2. Denoising Diffusion Probabilistic Model

DDPM belongs to the category of score-based genera-
tive models. These models learn the inherent data distri-
bution by approximating the gradients of the log-likelihood
of the data [12]. DDPM comprises two sub-processes: for-
ward diffusion and backward diffusion. The forward diffu-
sion process starts with adding Gaussian noise to the input
data over a series of time steps until the data transforms into
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Figure 1. Proposed framework: PointNet generates point cloud latent embeddings, which, along with class labels are input into the
class-conditioned DDPM to generate synthetic point cloud embeddings.

pure noise. During this process, the magnitude of the Gaus-
sian noise is progressively increased at each step, which is
governed by a predetermined noise scheduler. The forward
process is deterministic, which implies that if both the input
data and the parameters of the noise scheduler are known,
one can precisely replicate the whole process. On the other
hand, the backward diffusion process aims to reconstruct
the original data from the noise. It begins with the noisy
data obtained at the end of the forward diffusion process,
and at each time step, a neural network predicts how much
noise needs to be removed to return to the previous step.

DDPM can be conditioned to generate synthetic data
samples belonging to a specific class. This conditioning
process can be performed either with classifier guidance or
with classifier-free guidance. In classifier guidance [7], the
DDPM leverages the knowledge of an external classifier to
guide the generation of synthetic data samples. The gradi-
ents of the classifier are injected into the backward diffusion
process of the unconditional diffusion model. Another strat-
egy for conditioning DDPM is classifier-free guidance [13],
which involves mixing the score estimates of a conditional
and a jointly trained unconditional diffusion model.

3. Dataset

Our proposed approach is evaluated on the ShapeNet
dataset [2], which consists of richly annotated 3D shapes.
ShapeNet comprises multiple versions; for our experiments,
we use a publicly available subset which comprises 16
classes and is divided into train and test splits. The over-
all distribution of the dataset is shown in Table 1.

4. Method

Our methodology draws inspiration from the research
presented in [22] and consists of two main stages: (a) Gen-
erating latent embeddings for point cloud data and (b) De-
veloping a class-conditioned DDPM to augment these la-
tent embeddings. Figure 1 offers a visual overview of our
approach.

Table 1. Class-wise data distribution. Note the presence of a high
class imbalance in the dataset.

Class Name Train Samples Test Samples
Cap 43 12
Rocket 44 15
Earphone 49 14
Bag 62 14
Skateboard 126 25
Mug 144 40
Motorbike 157 45
Knife 202 61
Pistol 232 42
Laptop 363 82
Guitar 604 144
Lamp 817 222
Airplane 2157 527
Car 1463 361
Chair 2988 752
Table 4202 1058

4.1. Generation of Point Cloud Embeddings

To generate the latent point cloud embeddings, we ap-
ply PointNet [3], which is a DNN designed to learn class-
disentangled representations from the global and local point
cloud features. In our implementation, we first conduct
sample-wise normalization on the ShapeNet dataset to en-
sure uniform scale and range across data samples. After-
ward, we train the PointNet on sparse categorical cross-
entropy loss in conjunction with the Adam [16] optimizer.
The learning rate is set at 0.0001. We apply a 5-fold cross-
validation in order to validate that PointNet learns discrim-
inative features across the dataset. PointNet achieves an F1
score of 0.93 £ 0.01, which confirms that PointNet learns
well-discriminative features. Finally, we extract the class-
specific 784-dimensional latent embedding from the dense
feature representation layer, which is just after the global
max pooling layer (refer to Figure 1). We reshape these
784-dimensional embeddings into 28 x 28-dimensional em-
beddings. This reshaping enhances the compatibility of the
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embeddings as inputs to our DDPM implementation.

4.2. Class-conditioned DDPM Development

In order to develop a class-conditioned DDPM suitable
to learn the latent embeddings distribution, we implement
a conditional U-Net (Figure 2) where model conditioning
is based on the classifier-free diffusion guidance [13]. We
generate context embeddings and time step embeddings via
applying separate multi-layer perceptron networks. These
networks comprise two dense layers, each with 256 neu-
rons and GELU activation. We infuse these embeddings
into the U-Net architecture to enable DDPM conditioning.
During the training process, we gradually generate noisy
versions of the latent point cloud embeddings by applying
a predefined noise scheduler. The U-Net then learns to de-
noise the noisy versions of the latent point cloud embed-
dings. During the inference, we generate synthetic point
cloud embeddings from the Gaussian noise by sequentially
removing noise via trained U-Net. The architecture of U-
Net is illustrated in Figure 2.

We train class-conditioned DDPM to 50 epochs with
Adam optimizer [16]. The learning rate and batch size
are set to 0.0001 and 32, respectively. We train the class-
conditioned DDPM on the train set. We continue the train-
ing process iteratively until the model reaches its conver-
gence point and achieves the minimum value of the loss
function. Once the model achieves this criterion, we gen-
erate 1000 synthetic samples for each class.

5. Experiments & Validation Procedure

In order to validate the quality of synthetic embeddings
generated via proposed approach, we conduct following ex-
periments.

5.1. Class Discrimination Information

The quality of synthetic data can be evaluated in terms
of its capacity to retain the class discrimination information
which is relevant for downstream tasks [24]. To evaluate the
quality of the synthetic data we perform following evalua-
tions.

e We train a Multi-Layer Perceptron (MLP) using the
Train set of the original embeddings and evaluate its
performance on the Test set of the original embed-
dings. We report the classification performance and
consider it a benchmark for evaluating the quality of
the generated synthetic point cloud embeddings.

* We train the MLP on synthetically generated point
cloud embeddings and evaluate its performance on
both Train and Test sets of the original embeddings.
If MLP demonstrates satisfactory performance on the
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Figure 2. U-Net architecture in DDPM. Context and Time embed-
dings are encoded via separate dense layers.

Train set, it confirms the equivalence in class discrim-
ination ability between the synthetic and original em-
beddings. Similarly, if MLP demonstrates satisfactory
performance on the 7est set, it confirms the potential
of synthetic embeddings to generalize to unseen data.

* We combine the synthetic embeddings with the Train
set of original embeddings and evaluate on the 7est set
of the original embeddings. If good classification per-
formance is observed, then one can argue that synthet-
ically generated point cloud embeddings hold mean-
ingful and discriminative information about the data.

Furthermore, to facilitate a more detailed investigation,
we conduct sub-experiments with different variations of the
dataset. We divide the dataset into three subsets based on
the sample count per class. We categorize these subsets
as follows: Small (fewer than 100 samples in each class),
Medium (between 100 to 850 samples), and Large (between
2100 to 4250 samples). This categorization allows us to an-
alyze how MLP performs on point cloud classes with vary-
ing sample sizes.

5.2. Comparison with cVAE & cGAN Embeddings

We implement a class-conditioned VAE [17] and a class-
conditioned GAN [&] to compare the quality of the synthetic
EEG embeddings generated by the proposed DDPM. Since
both VAE and GAN have been widely applied to gener-
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Table 2. Classification report with macro-averaged Precision, Recall, and F1 Score. Train Set & Test Set refers to the training and test set
of original embeddings, while Syn. Embeddings refers to the embeddings generated via class-conditioned DDPM. Details in Section 6.1.

Dataset Size  Trained on Tested on  Accuracy Precision Recall F1 Score

Complete Train Set Test Set 95.30+0.50 0.944+0.00 0.92+0.00 0.93+0.00
Complete Syn. Embeddings Train Set  95.05+0.29 0.88+£0.01 0.93+0.02 0.89+0.01
Complete Syn. Embeddings  Test Set 93.50+£0.47 0.84+0.02 0.93+0.01 0.86+0.02
Complete Syn. + Train Set ~ Test Set 95.77£0.48 0.94+0.02 0.93+0.01 0.94+0.01
Small Train Set Test Set 82.45+5.07 0.84+0.02 0.83£0.01 0.83£0.01
Small Syn. Embeddings  Train Set  95.244+0.75 0.95£0.01 0.95£0.01 0.95+£0.01
Small Syn. Embeddings  Test Set 88.13+3.07 0.87£0.02 0.87£0.04 0.86+0.01
Small Syn. + Train Set ~ Test Set 91.36+2.54 0.92+0.02 0.91+0.01 0.91+0.02
Medium Train Set Test Set  94.53+1.16 0.93£0.01 0.93£0.01 0.93£0.01
Medium Syn. Embeddings  Train Set  93.60+0.55 0.90£0.02 0.94+0.01 0.92+0.01
Medium Syn. Embeddings  Test Set ~ 92.46+2.32 0.90£0.02 0.93£0.01 0.92+0.01
Medium Syn. + Train Set ~ Test Set ~ 94.71+£1.03  0.94+0.01 0.95+£0.01 0.94-+0.01
Large Train Set Test Set  96.74+0.04 0.97£0.00 0.97£0.00 0.97+0.00
Large Syn. Embeddings Train Set  96.90+0.03 0.97+£0.00 0.97+0.00 0.9740.00
Large Syn. Embeddings  Test Set 96.74+0.05 0.974+0.00 0.97£0.00 0.97+0.00
Large Syn. + Train Set ~ Test Set ~ 96.74+0.04 0.97+0.0 0.97+0.0 0.97+0.0

ate synthetic data, comparing them with the proposed ap- 6. Results

proach will allow for a qualitative assessment of synthetic
data quality.

5.3. Mutual Information Measure

We compute the Jensen-Shannon Divergence (JSD)
score [19] between the synthetic and original embeddings.
JSD quantifies the dissimilarity in the information con-
tained within the two distributions. This quantitative evalu-
ation provides a statistical metric for assessing how closely
the synthetic embeddings match the original ones. Its value
ranges from 0 to 1. A JSD value closer to 0 indicates high
similarity between the distributions, whereas a value closer
to 1 indicates high dissimilarity.

5.4. Visual Examination

We apply t-SNE [25] plots to evaluate how well the syn-
thetic embedding distribution resembles the original point
cloud distribution. t-SNE is a dimensionality reduction
technique which maps high-dimensional data to a low-
dimensional space while preserving local structures and
non-linear relationships between data points. In contrast
to other methods of dimensionality reduction, t-SNE ad-
dresses the issue of overlapping data points, which leads to
enhanced interpretability. We create two-dimensional plots
of synthetic and original embeddings for complete, small,
medium, and large sets.

6.1. Class Discrimination Information

We repeat the training process 10 times and report
the outcomes in terms of mean scoretvariance. Table 2
presents a summary of the overall results.

* We observe that combining the synthetic embeddings
with the original training set consistently improves the
MLP’s performance across all dataset sizes. The im-
provements are especially notable in the small and
medium dataset sizes, where the combined training ap-
proach significantly improves the MLP’s performance.

* We observe that in the large subset, MLP performed
exceptionally well across all the cases. This suggests
that with enough data samples, proposed DDPM can
generate synthetic embeddings identical to the original
embeddings.

* We observe that performance of MLP trained on
synthetic embeddings remains stable across different
dataset sizes, indicating that the proposed method gen-
erates robust synthetic embeddings.

* Class-wise Results: In Table 3, we present the class-
wise classification results obtained by training the
MLP on a combination of synthetic embeddings with
Train set and evaluated on the Test set of original em-
beddings. Upon analyzing these results, we observe
there is overall high F1 scores for most classes, which
imply a good balance between precision and recall.
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Table 3. Class-wise classification report on Complete set. MLP is
trained on Syn.+Train Set and evaluated on Test set

Class Name Precision Recall F1 Score
Cap 0.80 0.97 0.88
Rocket 0.89 0.70 0.78
Earphone 0.77 0.83 0.81
Bag 0.90 0.97 0.94
Skateboard 0.97 0.97 0.97
Mug 0.97 0.94 0.96
Motorbike 0.97 0.97 0.97
Knife 0.95 0.94 0.95
Pistol 0.97 0.97 0.97
Laptop 0.97 0.97 0.97
Guitar 0.96 0.97 0.96
Lamp 0.95 0.92 0.93
Airplane 0.97 0.97 0.97
Car 0.96 0.96 0.96
Chair 0.96 0.97 0.97
Table 0.97 0.97 0.97

We also observe that there is a consistency in perfor-
mance across the classes, with many classes achieving
F1 scores above 0.9. However, Rocket and Earphone
have lower precision and recall scores, indicating chal-
lenges in correctly identifying these objects compared
to other classes.

6.2. Comparison with cVAE & cGAN Embeddings

We expanded our experiments by incorporating cVAE
and cGAN to augment latent point cloud embeddings. We
present a summary of the results in Table 4. We observe
that proposed DDPM outperforms cVAE and cGAN sig-
nificantly in Complete, Small, Medium, and Large subsets.
This indicates that DDPM generates a robust and accurate
data representation across different subset sizes. We also
observe a higher variance in cVAE and cGAN scores, which
indicates that these models are more sensitive to the varia-
tions in the dataset and the training process. This sensitivity
can lead to inconsistent performance across different runs
or subsets of the data, making these models less reliable for
real-world applications. In contrast, the proposed DDPM
approach delivers good performance across all dataset sizes,
with minimal variance in its scores. This consistency high-
lights the robustness of the proposed method.

6.3. Mutual Information Measure

The JSD scores offer valuable insights into the quality
of synthetic embeddings. Lower JSD scores between the
two sets indicate a significant similarity. We calculate class-
specific JSD scores between the synthetic embeddings and
both the Train and Test sets of the original embeddings.

The obtained results are summarized in Table 5. We ob-
serve that JSD scores for cVAE-generated synthetic embed-
dings range from 0.19 to 0.22 for the train set and 0.19
to 0.22 for the test set. These scores suggest that the dis-
tributions of cVAE embeddings are moderately similar to
both the Train and Test sets of Original Embeddings. In
the case of cGAN synthetic embeddings, JSD scores range
from 0.28 to 0.31 for both the Train and Test sets. These
higher scores indicate a larger dissimilarity between cGAN
embeddings and the original data distributions, suggesting
that cGAN-generated embeddings are less aligned with the
original data. In contrast, JSD scores for DDPM-generated
embeddings are consistently lower, ranging from 0.05 to
0.09 for the Train set and 0.05 to 0.08 for the Test set. These
lower scores indicate that DDPM-generated synthetic em-
beddings are remarkably similar to the original data distri-
butions, demonstrating a closer match to the underlying data
characteristics.

6.4. Visual Examination

We plot two-dimensional t-SNE plots of original and
synthetic embeddings generated via proposed DDPM for
complete, small, medium, and large subsets. These plots
(Figure 3) provide insights into how these embeddings are
distributed along the t-SNE space.

We observe that synthetically generated embeddings
construct distinct clusters. This demonstrates the efficacy
of synthetic embeddings in effectively learning discriminat-
ing class patterns. In the small subset, we observe that all
four classes form distinct clusters, with the Rocket class ex-
hibiting higher variance. This increased variability in the
Rocket class aligns with that of the original dataset, where
rocket shapes inherently have a wide range of variations.
The synthetic embeddings generated for the medium subset
effectively captured the features of the classes present in it,
except for the constrained cluster of the Lamp class. Lamp
class also showed a higher variance.

Furthermore, we observe that class clusters in the large
subset are highly separable, leading to well-defined bound-
aries between different classes. One potential reason for
this separability is the presence of a large number of data
samples. The larger data samples allow the DDPM to learn
diverse and complex patterns, resulting in well-defined clus-
ters. The t-SNE visualization of the complete set reveals a
smooth transition between distinct clusters of all classes.
However, the embeddings of the Lamp and Rocket classes
exhibit significant variability, resulting in highly scattered
points in the plot for these classes. Apart from this, the
visualization confirms the overall quality of the generated
synthetic embeddings.
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Table 4. Comparison of proposed DDPM approach with cVAE and cGAN. MLP is trained on Synthetic Embeddings and evaluated on the

test set of Original Embeddings. Details in Section 6.2.

Accuracy Precision Recall F1 Score
cVAE (Complete)  0.68+£0.25  0.80£0.12 0.84+£0.13 0.73+0.20
c¢VAE (Small) 0.62+0.18  0.70+0.08 0.62+0.12 0.5740.23
cVAE (Medium) 0.68+£0.19  0.76+0.10 0.71+0.12 0.6940.22
cVAE (Large) 0.90£0.01  0.904+0.00 0.894+0.01 0.8940.00
c¢GAN (Complete)  0.35+£0.08  0.24£0.02 0.28+0.05 0.24%0.01
¢GAN (Small) 0.43+0.11  0.34+0.16 0.44+0.12 0.37%0.15
c¢GAN (Medium) 0.35+0.11  0.37£0.13  0.39+0.10  0.2940.10
cGAN (Large) 0.57£0.09  0.484+0.12 0.63+0.18 0.49+0.15
DDPM (Complete) 93.50+0.47 0.84+£0.02 0.93+£0.01 0.86+0.02
DDPM (Small) 88.13+3.07 0.87+0.02 0.87+0.04 0.86+0.01
DDPM (Medium)  92.46+2.32 0.90£0.02 0.93+£0.01 0.92+0.01
DDPM (Large) 96.74+0.05  0.97+0.00 0.97+0.00 0.97+0.00

Table 5. The JSD score is computed between Synthetic Embeddings and the Train/Test set of Original Embeddings. JSD = 0 means

identical distributions; JSD = 1 means dissimilar distributions. Details in Section 6.3.

cVAE Embeddings cGAN Embeddings DDPM Embeddings
Class Name Syn.—Train Syn.—Test | Syn.—Train Syn.-Test | Syn.—Train Syn.-Test
Cap 0.20 0.20 0.29 0.29 0.08 0.08
Rocket 0.22 0.22 0.29 0.28 0.08 0.07
Earphone 0.19 0.20 0.28 0.28 0.08 0.07
Bag 0.20 0.20 0.29 0.28 0.07 0.07
Skateboard 0.21 0.21 0.29 0.29 0.08 0.08
Mug 0.19 0.19 0.29 0.29 0.08 0.08
Motorbike 0.20 0.20 0.29 0.29 0.06 0.06
Knife 0.20 0.20 0.29 0.29 0.07 0.06
Pistol 0.20 0.20 0.28 0.28 0.09 0.08
Laptop 0.20 0.20 0.29 0.29 0.08 0.08
Guitar 0.21 0.21 0.30 0.30 0.05 0.05
Lamp 0.20 0.20 0.31 0.31 0.07 0.07
Airplane 0.19 0.19 0.30 0.30 0.07 0.07
Car 0.20 0.20 0.29 0.29 0.07 0.07
Chair 0.21 0.21 0.30 0.30 0.07 0.07
Table 0.19 0.19 0.31 0.31 0.08 0.08

7. Discussions

The collection of high-quality point cloud data can be ex-
pensive, and its limited availability often poses challenges
in developing robust DNN models. DA solves this prob-
lem via generating synthetic data. In our approach, we ap-
ply a class-conditioned DDPM to generate synthetic data.
DDPM learns a denoising process which helps the model
to learn intricate patterns within data. As the noise level
decreases over iterations, the model gradually refines its
understanding of the data. While comparing DDPM with
other generative methods like VAE and GAN, DDPM of-

fers several advantages such as (a) It provides explicit likeli-
hood function for generated samples, whereas VAE approx-
imates the likelihood and GAN does not provide at all, (b)
DDPM tends to be more stable during training compared to
GAN. Also, GANs may suffer from mode collapse, where
they fail to explore the entire data distribution, especially
when data is not uniformly distributed among the classes.
DDPM are less prone to the aforementioned issues. We ob-
serve that the proposed method efficiently learns the point
cloud distributions even for classes with very limited sam-
ple sizes. This can be advantageous in scenarios where ob-
taining point cloud data is expensive and non-trivial. An
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Figure 3. t-SNE visualizations of original (top row) and synthetic embeddings via class-conditioned DDPM (bottom row). The columns
represent different dataset sizes: Complete, Small, Medium, and Large, from left to right. Distinguishable embeddings can be observed in

the plots. For details refer to the Section 6.4.

additional benefit of the proposed approach is its capacity
to generate any number of samples for each class. Fur-
thermore, being a class-conditioned model, it eliminates the
need to train multiple models for individual classes.

8. Conclusion & Future Work

Data augmentation is a widely adopted practice in deep
learning due to its simplicity and effectiveness. It reduces
the need for extensive data collection, allowing deep neu-
ral networks to achieve remarkable performance even with
limited data. Moreover, data augmentation can be eas-
ily integrated into existing deep learning pipelines, mak-
ing it a valuable tool for model generalization and cost-
effectiveness across various applications. In this paper,
we present a class conditioned Denoising Diffusion Proba-
bilistic Model-based latent feature space data augmentation
method for point cloud data. We aim to synthetically gen-
erate high-quality point cloud latent embeddings, which are
compact feature representations encapsulating spatial and
semantic information of point cloud data.

In the scope of this paper, we applied PointNet to extract
latent class-wise feature representations from point clouds
due to its inherent ability to extract well-discriminative
feature representations. It would be intriguing to ex-
plore masked autoencoders or self-supervised learning-
based methods, with an emphasis on extracting class-wise
disentangled representations. We investigate our proposed
approach on the synthetic dataset where objects are com-
plete and without any background and occlusion. Objects
in real-world datasets may contain background noise and
may be occluded at different levels. It will be interesting to
check how the proposed method works with these datasets

and how the proposed approach can incorporate these in-
trinsic noises. Another future work will be to add semantic
information aware loss functions for a better-informed re-
construction.
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