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4. Experiments

4.3. Ablation studies and model behavior

4.3.7 Key-points importance and aggregation function

In all the experiments presented in the main paper, we used
48 through 68 lip landmarks for viseme representation. In
this experiment, we use a subset of these landmarks for
building the reference and computing correlation. In Ta-
ble 1, landmarks corresponding to (1) inner lip-region are
60-68, (2) outer lip-region are 48-59 and alternate are the
alternate landmarks between 48-68. We observe that con-
sidering just inner landmarks performs the lowest, mostly
due to indistinguishable variation between viseme represen-
tations. Performance of remaining sets is similar, suggest-
ing that outer lip-region could be the most relevant factor
as it is common across them. Due to similar results and
insignificant computational overhead, we considered all lip
landmarks in PhoVis. In Sec.3.6 of the main paper, we men-

Table 1. Lip landmark importance in reference RPV

Lip-keypoints Precision F1 Score Error Error
set in Reference (weighted) (weighted) Precision F1-Score

Inner 0.678 0.560 0.380 0.368
Outer 0.592 0.595 0.324 0.487
Alternate 0.627 0.572 0.326 0.490
All 0.710 0.606 0.314 0.462

tioned that there are multiple ways to aggregate key-points
across frames to derive the reference. Table 2 shows the re-
sults when different aggregation functions are used. We ob-
serve that each function has its trade-off between F1-score
and error metrics. Moreover, we observed that using an av-
eraging technique reduced inter-viseme distinction. There-
fore, between minimum and maximum, max yields slightly
better error F1. Hence, was used max in PhoVis.

Table 2. Key-point aggregation function and performance

Keypoint Precision F1-Score Error Error
aggregator (weighted) (weighted) Precision F1-Score

Mean 0.613 0.618 0.380 0.368
Median 0.610 0.615 0.319 0.484
Min 0.645 0.650 0.381 0.347
Max 0.710 0.606 0.314 0.462

4.3.8 ML model for perceptual scoring.

We experimented with three ML models - MLP, Random
Forest Classifier and Support Vector Classifier (SVC) for
each approach in the task above. Model-search details can
be found in the supplementary. The results for Spanish are
shown in Table 3. RF performs better for PhoVis and Base-
line, while MLP is better for SyncNet and VocaLiST.

Table 3. Precision of ML models for Binary scoring (Spanish)

Model PhoVis E2E SyncNet VocaLiST

MLP 0.635 0.521 0.551 0.565
RF 0.710 0.568 0.541 0.500

SVC 0.572 0.547 0.563 0.501

Discussion and future work

The proposed PhoVis model has the potential to act as a
fundamental method over which multiple solutions related
to various AV problems can be built. However, PhoVis itself
can be improved by further tuning different components of
the method.

To validate the efficacy of our approach, we used basic
face and landmark detection models in the paper. To reduce
the impact of any poor performance displayed by either of
these models on our predictions and remove edge-cases of
extreme face poses, lighting conditions, etc., we included
a filtering step in our viseme extraction pipeline. This step
scans for any frames that have spurious landmarks (Section
3.4 and Figure 4 of main paper). Sample erratic frames fil-
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tered out by our pipeline are shown in Figure 1. We ex-
plicitly tackle the extreme pose cases, which other embed-
ding methods would blindly process and give erratic results.
This suggests that the results presented in the paper form a
base benchmark with the simplest face or landmark detec-
tion models and thus can be tuned further.

Figure 1. Filtered cases of LM model

Since, there is a temporal factor associated with visemes,
as well as landmarks, a basic extension could be to con-
sider temporal consistency while generating the reference
viseme. However, the typical duration of a phoneme is 100-
250 ms. At 25 fps, a phoneme will have 2–6 frames. Con-
sidering an error margin of ≈ 50ms [1] in start/end times,
the no. of confident frames becomes quite less to provide
temporal information. Fig.2 shows a sample phoneme /T/
where the last frame seems unrelated to the viseme /t/. It
would be interesting to test quantitatively, but we do not ex-
pect a significant boost.

Figure 2. Phoneme: /T/, duration:150ms.

Another experiment could be to compute distribution of
the the key-points for each reference viseme instead of us-
ing aggregated 2d landmarks. This could be done by build-
ing models like Gaussian mixture model that approximate
viseme distribution, which can then be compared against
current frame’s visemes for computing the sync distance.

A line of potential future work could be to use PhoVis
as a base and build solutions for different applications that
can be targeted by this technology. PhoVis computes audio
to lip distance at the elementary phoneme and viseme level.
The extracted phoneme-viseme correspondence or the ref-
erence dictionary can be seamlessly used for active speaker
detection, AV lead/lag detection and many other AV prob-
lems that involve lip-movement to audio matching.

Improving dubbing quality scoring. PhoVis distance does
not examine the image quality or synthesis artifacts while
generating the perceptual score, as it is designed for audio-
lip sync evaluation. This could be implicitly captured by
the behavior of landmark detection model, but this does
not give a direct feedback. Thus, a future extension could

be to merge the PhoVis score with an image quality score
for better benchmarking of lip-synthesis methods. It can
also be clubbed with audio perceptual quality while access-
ing the dubbing quality. Incorporating audio as a modality
could also help expand our method to better accommodate
tonal information, which could help expand the scoring to
tonal languages. To sum up, the experience of watching a
dubbed video is a variable that is dependent on the different
quality aspects of multiple modalities, each of which could
be incorporated in future with the audio-lip synchronization
score to predict a holistic dubbing score.

3. PhoVis: Phoneme-Viseme correspondence
for audio-lip correlation measurement

3.4. Phoneme-viseme mapping
To perform viseme comparison across languages, we

find the set of visemes that are common across the 6
P1 languages (English, French, Italian, German, Span-
ish and Portuguese) we considered. These visemes are
V ∗ ={/f/,/i/,/k/,/p/,/s/,/t/}. Therefore, we
filter out phonemes corresponding to the above 6 visemes
and use only these phonemes/visemes for correlation mea-
surement. Below is the mapping M of IPA Phonemes to
6 common viseme for P1 languages that we have utilized
in our method. The filtering functions ϕfiltv and ϕfiltp

give the extracted set of phonemes P and the correspond-
ing visemes V , respectively.
fr-FR: {b: p, d: t, f: f, g: k, j: i, k: k, l: t, m: p,

n: t, n: k, p: p, s: s, t: t, v: f, z: s, i: i},
es-ES: {b: p, d: t, f: f, g: k, j: i, k: k, l: t, m: p,

n: t, n: k, p: p, s: s, t: t, x: k, z: s, i: i},
de-DE: {b: p, d: t, ç: k, f: f, g: k, h: k, j: i, k: k,

lm: p, n: t, n: k, p: p, s: s, v: f, x: k, z: s},
pt-BR: {t: t, b: p, d: t, f: f, g: k, j: i, k: k, l: t,

m: p, n: t, p: p, s: s, t: t, v: f, z: s, i: i},
it-IT: {b: p, d: t, dz: s, f: f, g: k, h: k, j: i, k: k,

l: t, m: p, p: p, s: s, t: t, ts: s, v: f, i: i},
en-US: {b: p, d: t, f: f, g: k, h: k, j: i, k: k, l: t,

m: p, n: t, n: k, p: p, s: s, t: t, v: f, i: i}

3.5. Building the phoneme-viseme reference

For each distinct viseme present in the clip, we build a
reference viseme which is represented by a set of lip key-
points. These key-points are 2d coordinates representing a
certain point of the lip region. For a given clip, there are
multiple frames that correspond to the same viseme. There-
fore, to build a reference set of key-points per viseme for the
clip, we again use an aggregation logic across the viseme
samples. The obtained set of key-points [L1, ..Lk, Lk+1, ..]
have a 2d coordinate for each lip-landmark. This set be-
comes the reference for a particular viseme and forms the
reference dictionary RPV . The maximum size of RPV is 6,
each representation corresponding to a viseme in V ∗.

Reference visemes for few sample clips are shown in
Figure 3. In the figure, each color represents the landmarks
for one viseme. We observe that not all clips have 6 ref-
erence visemes. This is because the number of reference
visemes depends on the phonemes present in the original



Figure 3. Reference visemes for sample clips. Each color represents the landmarks for one viseme. Note that not all the clips have 6
reference visemes. The number of reference visemes depends on the phonemes in the original dialogue and landmark detection accuracy.

dialogue and landmark detection accuracy. We also observe
that the distinction between visemes in each clip is different.
For e.g., clip 1 has almost similar landmarks for different
visemes, whereas clip 4 has only 3 visemes in its reference
dictionary but there is significant distinction between them.
This could be due to various factors such as phonemes in the
dialogue, actor’s speaking style, dialogue delivery, and so
on. This variation is captured by our method at a dialogue
level, making it robust to these factors. A generic viseme
representation would either fail in these cases or would need
adaptation/recalibration.

3.5.1 Distance metric for score calculation

We experimented with 4 distance metrics for PhoVis corre-
lation measurement between the expected viseme L and the
current frame’s viseme L′. Below are the equations for the
distance metrics.
Area normalized L2 distance

dL2 =
1

N

N∑
j=1

||Lj
k − L′j

k ||2
r

(1)

where N is the number of key-points, L′
k is the current

frame’s landmark and Lk is the reference’s landmarks. r is
the normalization factor - the max of x and y coordinates.

Cosine distance

dcos = 1− u.v

||u||2||v||2
(2)

where u contains linearly stacked key-points from L′
k from

the current frame’s viseme, and v contains linearly stacked
key-points from Lk, from the reference viseme. Linear
stacking is done to compute distance over 2d key-points.

Chebyshev distance

dcheby = max
i

|ui − vi| (3)

where u contains linearly stacked key-points from L′
k from

the current frame’s viseme, and v contains linearly stacked
key-points from Lk, from the reference viseme.

Correlation

dcorr = 1− (u− ū).(v − v̄)

||u− ū||2||v − v̄||2
(4)

where ū is the mean of the elements of u and x.y is the dot
product of matrices x and y.

A. Appendix
A.1. Dataset statistics

Language-wise statistical properties for data analysis of
our annotated perceptual dataset can be found in Table 5.
We annotated ≈8200 dubbed clips in 6 P1 languages, where
the original was in English and the dubbed versions were in
French, Italian, German, Spanish and Portuguese. Each clip
was annotated by 3 dubbing experts who were familiar with
the language. Annotation values were from 1-5. (-1) was
the expected label in case the annotator was not able to label
the clip, mostly due to dark frames, lip-occlusion, etc. The
table shows the statistics of each expert annotator - in the
fields Label 1, Label 2 and Label 3, respectively. Columns
4, 5 and 6 represent the median, mean and minimum aggre-
gation techniques to generate a label for each clip. For e.g.
column 5 shows the properties of mean aggregation, which
therefore corresponds to Mean Opinion Score (MOS).

For French, Italian and Spanish, we see that 50% of clips
have 4 or 5 as label. In German and Portuguese, we see that
50% label is 3. Hence, for binary scoring, we chose 0-3
as Bad dubs and 4-5 as Good dub. For experiments, we
divided our annotated dataset in a train-test split of 70-30
ratio. Table 4 shows the number of samples per language
in our train and test sets, that were used for all the binary
perceptual scoring experiments mentioned in the paper.

A.2. Perceptual scoring model selection details

From the following parameter search range, we ran-
domly sampled 200 configurations for each model and se-
lected the model based on 5-fold cross-validation.

A.2.1 Search parameter range

Multi-layer Perceptron (MLP)



Table 4. PV (annotated) dataset distribution for binary perceptual
scoring

Language Train Test Total
Good Bad Total Good Bad Total

Spanish 404 777 1181 173 334 507 1688
French 764 259 1023 328 111 439 1462
Italian 760 430 1190 325 185 510 1700

German 436 730 1166 187 313 500 1666
Portuguese 416 788 1204 179 338 517 1721

• Hidden layer sizes = 10− 500, with a step of 5
+ (x,x) , x ∈ [10, 200] at a step of 5

• Activation = [relu, tanh, identity]

• Learning rate = [0.0001, 0.001, 0.005, 0.0005, 0.00001]

• Optimizer = Adam

• Loss = Binary cross-entropy

Random Forest (RF)

• No. of estimators = 10− 1000, with a step of 10

• Max features = [auto, sqrt]

• Max depth = 10− 50, with a step of 5
+ [None, 1, 2, 5]

• Min samples split = [2, 5, 10, 20]

• Min samples leaf = [1, 2, 4]

• bootstrap = [True, False]

• Optimizer = Adam

• Loss = Binary cross-entropy

Support Vector Classifier (SVC)

• Regularization =10− 500, with a step of 10

• Kernel = [linear, poly, rbf, sigmoid]

• Gamma = [scale, auto]

• Optimizer = Adam

• Loss = Binary cross-entropy
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Table 5. Language-wise statistics of PV Annotated dataset used for all the experiments in the paper. Label 1, 2 and 3 are the annotations
per annotator. We have 3 annotators per clip. Annotation values were from 1-5. -1 was the label in case the annotator was not able to label
the clip, mostly due to dark frames, lip-occlusion, etc. For French, Italian and Spanish, we see that 50% of clips have 4 or 5 as label. In
German and Portuguese, we see that 50% label is 3. Hence, for binary scoring, we chose 0-3 as Bad dubs and 4-5 as Good dub.

German

Label 1 Label 2 Label 3 Median Mean Minimum Variance

Count 1674 1675 1677 1672 1672 1672 1672
Mean 3.2736 3.32358 3.18247 3.4079 3.41228 2.76854 0.45624
Std. Deviation 1.40376 1.3424 1.56715 0.9998 0.92172 0.92748 0.45408
Min -1 -1 -1 1 1 1 0
25% 3 3 3 3 3 2 0.22222
50% 3 4 3 4 3.66667 3 0.22222
75% 4 4 4 4 4 3 0.66667
Max 5 5 5 5 5 5 3.55556

French

Count 1466 1462 1467 1458 1458 1458 1458
Mean 3.82742 3.6498 3.7621 3.92661 3.90855 3.31824 0.37411
Std. Deviation 1.06618 0.94355 1.51346 0.66954 0.5458 0.71379 0.36667
Min -1 -1 -1 1.5 1.5 1 0
25% 3 3 4 4 3.66667 3 0.22222
50% 4 4 4 4 4 3 0.22222
75% 5 4 5 4 4.33333 4 0.66667
Max 5 5 5 5 5 5 2.88889

Italian

Count 1705 1706 1704 1699 1699 1699 1699
Mean 3.75249 3.70281 3.38087 3.69423 3.69521 3 0.49004
Std. Deviation 1.16521 1.05127 1.12408 0.82596 0.63673 0.78637 0.4221
Min -1 -1 -1 1 1.33333 1 0
25% 3 3 3 3 3.33333 3 0.22222
50% 4 4 4 4 3.66667 3 0.22222
75% 5 4 4 4 4 4 0.66667
Max 5 5 5 5 5 5 2.88889

Spanish

Count 1689 1692 1694 1687 1687 1687 1687
Mean 3.68384 3.21809 3.22019 3.47985 3.42946 2.73266 0.46537
Std. Deviation 1.06628 0.98975 1.35249 0.8856 0.81381 1.01835 0.42166
Min -1 -1 -1 1 1 1 0
25% 3 3 2 3 3 2 0.22222
50% 4 3 3 4 3.66667 3 0.22222
75% 4 4 4 4 4 3 0.66667
Max 5 5 5 5 5 5 2.88889

Portuguese

Count 1733 1730 1733 1728 1728 1728 1728
Mean 3.19042 3.26994 2.92037 3.19647 3.17332 2.2934 0.69655
Std. Deviation 1.09195 1.12928 1.23016 0.8484 0.683 0.88356 0.52821
Min -1 -1 -1 1 1.33333 1 0
25% 3 3 2 3 2.66667 2 0.22222
50% 3 3 3 3 3.33333 2 0.66667
75% 4 4 4 4 3.66667 3 0.88889
Max 5 5 5 5 5 5 3.55556


