1. A.1. Additional Qualitative Evaluations

We present 12 additional qualitative evaluation results of our proposed RealPixVSR model in the remaining supplementary material, where we compare it with six state-of-the-art models: RealSR [1], BSRGAN [2], RealVSR [3], Real-ESRGAN [4], DBVSR [5], and RealBasicVSR [6]. For each result, we display the input frame on the left side, and the restoration results of each comparison model and our model on the right side in a 2x4 grid. The location of the restored block is indicated with a colored rectangle in the input frame. Based on the displayed qualitative evaluation results, we are confident that our proposed RealPixVSR model significantly outperforms the other models.

References

Figure 1. **Qualitative Comparison [Clip 01 - Frame 50]**. The proposed RealPixVSR effectively uses the pixel-level degradation representation and its recurrent propagation to super-resolve images with more detail compared to other models.

Figure 2. **Qualitative Comparison [Clip 04 - Frame 50]**. The proposed RealPixVSR effectively uses the pixel-level degradation representation and its recurrent propagation to super-resolve images with more detail compared to other models.

Figure 3. **Qualitative Comparison [Clip 13 - Frame 10]**. The proposed RealPixVSR effectively uses the pixel-level degradation representation and its recurrent propagation to super-resolve images with more detail compared to other models.
Figure 4. **Qualitative Comparison [Clip 14 - Frame 50]**. The proposed RealPixVSR effectively uses the pixel-level degradation representation and its recurrent propagation to super-resolve images with more detail compared to other models.

Figure 5. **Qualitative Comparison [Clip 15 - Frame 50]**. The proposed RealPixVSR effectively uses the pixel-level degradation representation and its recurrent propagation to super-resolve images with more detail compared to other models.
Figure 6. **Qualitative Comparison [Clip 20 - Frame 50].** The proposed RealPixVSR effectively uses the pixel-level degradation representation and its recurrent propagation to super-resolve images with more detail compared to other models.

Figure 7. **Qualitative Comparison [Clip 21 - Frame 00].** The proposed RealPixVSR effectively uses the pixel-level degradation representation and its recurrent propagation to super-resolve images with more detail compared to other models.

Figure 8. **Qualitative Comparison [Clip 01 - Frame 50].** The proposed RealPixVSR effectively uses the pixel-level degradation representation and its recurrent propagation to super-resolve images with more detail compared to other models.
Figure 9. **Qualitative Comparison [Clip 30 - Frame 20].** The proposed RealPixVSR effectively uses the pixel-level degradation representation and its recurrent propagation to super-resolve images with more detail compared to other models.

Figure 10. **Qualitative Comparison [Clip 37 - Frame 98].** The proposed RealPixVSR effectively uses the pixel-level degradation representation and its recurrent propagation to super-resolve images with more detail compared to other models.
Figure 11. **Qualitative Comparison [Clip 41 - Frame 50].** The proposed RealPixVSR effectively uses the pixel-level degradation representation and its recurrent propagation to super-resolve images with more detail compared to other models.

Figure 12. **Qualitative Comparison [Clip 45 - Frame 50].** The proposed RealPixVSR effectively uses the pixel-level degradation representation and its recurrent propagation to super-resolve images with more detail compared to other models.