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Abstract

The non-contact estimation of vital signs, particularly
heart rate, from video data is a promising method for remote
health monitoring. 3D convolutional layers are widely used
for this task due to their ability to capture both spatial and
temporal features. However, traditional 3D convolutions,
while effective in many cases, lack the capacity to adjust dy-
namically to the temporal variability inherent in physiolog-
ical signals such as remote photoplethysmography (rPPG),
which are characterized by subtle frequency changes over
time. To address this, we propose PULSE (Physiological
Understanding with Liquid Signal Extraction), a frame-
work that employs Liquid Time-Constant (LTC) models with
3D convolutional layers to enhance temporal sensitivity and
improve the extraction of these fine-grained rPPG signals.
In PULSE, traditional 3D-conv layers are deployed for ini-
tial feature extraction, while LTC-based 3D-conv layers dy-
namically adapt and guide the temporal processing, allow-
ing the model to better track and interpret the subtle vari-
ations in heart rate signals under different conditions, such
as motion artifacts and lighting changes. We evaluated the
effectiveness of PULSE in an unsupervised training setting,
demonstrating that our solution performs well even in the
absence of labeled datasets a common challenge in rPPG
signal extraction. Experimental evaluations on three public
datasets confirm that PULSE achieves comparable or supe-
rior results to existing methods, proving its robustness and
efficacy for real-world, non-contact health monitoring ap-
plications.

1. Introduction

Monitoring vital signs such as heart rate (HR), respi-
ratory frequency (RF), and heart rate variability (HRV) is
crucial in healthcare and wellness domains [42, 56]. Tradi-
tionally, these signals are measured using skin-contact sen-
sors like photoplethysmography (PPG) and electrocardiog-
raphy (ECG), which track blood volume changes and elec-
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trical activity in the body [2,22]. Although accurate, these
methods often require specialized equipment such as pulse
oximeters or ECG monitors, which can be cumbersome
and uncomfortable for continuous use [30]. Issues such as
skin irritation from ECG electrodes and the unsuitability of
pulse oximeters for long-term monitoring, especially in ac-
tive patients, have driven interest in non-invasive alterna-
tives [33,58]. These alternatives are particularly valuable in
telemedicine and remote monitoring, where real-time data
is critical but constant sensor contact is impractical [0, 15].

Camera-based remote photoplethysmography (rPPG)
has emerged as a promising non-contact method for moni-
toring vital signs by analyzing subtle color changes in facial
videos caused by blood flow [42, 56]. This approach can
be easily integrated into consumer electronics like smart-
phones and webcams, expanding its potential applications
in healthcare and well-being. However, the development
of accurate rPPG extraction models is challenging due to
noise from lighting variations [10], head movements, and
skin tone differences, as well as the scarcity of large, di-
verse datasets with synchronized video and physiological
recordings.

To address these challenges, researchers have explored
various solutions [17, 44, 48, 51] , with 3D Convolutional
Neural Networks (3D CNN) becoming widely adopted in
video-based rPPG signal extraction [17, 35,43,59] . 3D
CNN are powerful tools for capturing both spatial and tem-
poral features simultaneously, making them a natural choice
for rPPG, where temporal changes in pixel intensity are di-
rectly related to physiological signals like heart rate. These
layers allow the model to process video sequences holisti-
cally, extracting spatio-temporal patterns critical for accu-
rate rPPG signal estimation.

Despite their success, traditional 3D CNN face limita-
tions when applied to rPPG signal extraction. The fixed
temporal receptive fields of 3D-conv layers makes it diffi-
cult for them to adapt to the subtle and variable nature of
physiological signals . rPPG signals vary in frequency and
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amplitude over time, exhibiting both quick fluctuations over
short periods and slower trends over longer periods, adding
another layer of complexity to modeling them. Traditional
3D-conv layers may struggle to capture these fine-grained,
dynamic temporal patterns, leading to reduced accuracy in
scenarios where lighting, head motion, or other external fac-
tors introduce noise [9,27,45,54].

We propose the PULSE (Physiological Understanding
with Liquid Signal Extraction) framework, which integrates
Liquid Time-Constant (LTC) technique [18] alongside 3D
CNNs to improve rPPG signal extraction. In this hybrid
approach, traditional 3D-conv layers handle initial spatio-
temporal feature extraction, while LTC-based 3D-conv lay-
ers, designed specifically for processing time-varying data,
guide the temporal adaptation. This combination allows the
model to effectively capture diverse temporal dependencies,
making it more robust to variations in rPPG signals, such as
heart rate fluctuations, even under challenging conditions
like head movements or lighting changes. By incorporat-
ing LTC-based 3D-conv layers in the final stages, PULSE
enhances the system’s ability to track subtle physiological
signals while preserving the spatio-temporal structure ex-
tracted by the initial 3D-conv layers.

We evaluated the effectiveness of PULSE in an unsu-
pervised training setting using the SiNC [44] framework,
demonstrating that our solution performs well even in the
absence of large labeled datasets, a common challenge in
rPPG signal extraction. Experimental evaluations on three
public datasets confirm that PULSE achieves comparable or
superior results to existing methods, proving its robustness
and efficacy for real-world, non-contact health monitoring
applications.

The motivation behind PULSE is to address the inherent
temporal variability in rPPG signals by dynamically adapt-
ing to changing temporal patterns while maintaining robust
spatial feature extraction. Through extensive experiments,
we show that PULSE improves the accuracy and stability
of rPPG signal extraction, paving the way for future inno-
vations in remote health monitoring and telemedicine.

Our contributions can be summarized as follows:

¢ We introduce the PULSE framework, which com-
bines 3D-conv layer based blocks with Liquid Time-
Constant (LTC) 3D-convolutional layer based block .
This hybrid approach leverages the strengths of 3D-
convolutional layers for initial spatio-temporal feature
extraction and LTC-based 3D-convolutional layers for
dynamic temporal adaptation, enhancing the model’s
ability to accurately estimate rPPG signals under vary-
ing conditions such as head movements and lighting
changes.

» Extensive experiments on three public datasets demon-
strate that our approach achieves comparable or su-
perior results to state-of-the-art methods, significantly

improving camera-based heart-rate estimation.

2. Related Work

Remote Photoplethysmography (rPPG):
Conventional rPPG techniques [1 1, 25,49, 50, 53] estimate
pulse signals from facial videos by detecting and analyz-
ing slight skin color changes caused by the heartbeat. Re-
mote pulse estimation methods have evolved significantly,
progressing from blind source separation [39, 40] to linear
color transformations [12,40,52, 53], and more recently, to
supervised deep learning models [9, 23,27, 29, 34, 35, 43,

,00,62]. To evaluate their effectiveness, rPPG datasets
have been developed to include various interferences such
as head motion [47], facial expressions [24,49], video com-
pression [20], and skin tone variations [55]. Additionally,
rPPG estimation can be performed using pre-processed rep-
resentations like normalized differences [9,26] and spatial-
temporal maps [29]. To further improve robustness, self-
adaptive [9] and background-guided [37] attention mech-
anisms have been introduced to emphasize important fa-
cial regions in the physiological representation. In deep
learning-based remote photoplethysmography (rPPG) mea-
surement, diverse architectures have been utilized, includ-
ing 2D convolutional neural networks (2DCNN) that use
consecutive video frames as input [9, 27, 37, 46], spatial-
temporal signal maps [29, 35, 36], and more recently,
3DCNN-based methods [17, 59] designed for optimal per-
formance on compressed videos.

Unsupervised Learning for rPPG:

Recent unsupervised rPPG approaches leverage a con-
trastive learning framework [4, 8,32], training models with
video pairs to minimize prediction distances for similar
videos and maximize them for dissimilar ones. Gideon et
al. [17] introduced a contrastive method incorporating fre-
quency resampling for negative samples, calculating mean
square errors between power spectral densities, but their re-
liance on known resampled frequencies undermines accu-
racy. Yuzhe et al. [57] modified the InfoNCE loss [38] by
adding a resampling factor to adjust pair similarity based
on sampling rates, although their framework still needs
post-self-supervised fine-tuning with PPG labels. Unlike
Gideon’s approach, Contrast-Phys [48] and SLF-RPM [51]
consider all non-anchor samples as negatives, facing simi-
lar challenges due to potential pulse rate similarities among
individuals. Yue et al. [61] proposed an advanced self-
supervised contrastive framework featuring a learnable fre-
quency augmentation module, local rPPG expert aggrega-
tion, and frequency-inspired losses. In contrast, Speth et
al. [44] developed the SiNC framework, a non-contrastive
method that employs periodic signal priors and frequency
domain filtering as a loss function, presenting a novel alter-
native to traditional contrastive techniques.

Liquid Neural Network:

Liquid Neural Networks (LNNs), introduced by Hasani et
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al. [1], represent a significant advancement in neural net-
work architecture, drawing inspiration from the nervous
system of the C. elegans nematode. These networks are
designed to process time-series data more effectively than
traditional neural networks, making them particularly valu-
able for applications involving continuous sequential infor-
mation [18,41]. This approach builds upon recent advance-
ments in neural network architectures designed to handle
temporal data. For instance, recurrent neural networks
(RNNs) and long short-term memory (LSTM) networks
have shown promise in capturing temporal dependencies in
various time series analysis tasks [21].LNNs offer several
technical advantages over conventional neural networks.
They operate in continuous time, potentially capturing sub-
tle temporal variations that discrete-time models might miss
to potentially capturing subtle temporal variations in blood
flow that are crucial for rPPG. Their sparse connectivity,
utilizing fewer but more expressive neurons, can lead to
more efficient processing. Additionally, LNNs exhibit im-
proved interpretability, allowing for easier understanding of
the network’s decision-making process [5, 19,41]. LNNs
are capable to learn ’on the job” adapting beyond the ini-
tial training phase to handle changing conditions and real-
time data more effectively [41]. This adaptability makes
LNNs particularly well-suited for tasks such as processing
and forecasting time series data, image and video process-
ing, and natural language understanding [18]. The key in-
novation of LNNss lies in their Liquid Time Constant (LTC)
model, which allows each artificial neuron’s time constant
to adapt based on input data, enabling real-time adjustment
of network dynamics [41]. The LTC module enables the
network to operate in continuous time, which is critical for
capturing the fine-grained temporal dynamics often missed
by discrete-time models. This continuous-time operation
allows the LTC module to maintain a persistent memory of
past inputs, which is essential for tasks that require long-
term dependencies and real-time adaptability, such as phys-
iological signal processing, including remote photoplethys-
mography (rPPG).

3. Proposed Method

Our goal is to extract remote photoplethysmography
(rPPG) signals from facial videos using a fully unsuper-
vised framework, without relying on labeled data. We
present PULSE (Physiological Understanding with Liq-
uid Signal Extraction), an architecture designed to cap-
ture both spatial and temporal features from video frames
for robust rPPG signal estimation. PULSE is composed
of two main types of blocks: the first utilizes traditional
3D-convolutional layers for initial spatio-temporal fea-
ture extraction, while the second employs LTC-based 3D-
convolutional layers to dynamically model temporal depen-
dencies. For signal prediction, we use a frequency-domain
loss function from the SiNC [44] framework . The input to

the model is an RGB facial video V € REXWxHXT yhere
C' is the number of color channels, W x H are the frame
dimensions, and 7' is the number of frames. The output of
the model M is a predicted rPPG waveform Y = M(V),
where Y € RT, representing the estimated signal across the
T frames.

3.1. Overview of PULSE Architecture

The PULSE architecture leverages a combination of
blocks with 3D-convolutional layers and block with Lig-
uid Time-Constant (LTC) 3D-convolutional layers to ensure
robust spatio-temporal feature extraction and temporal con-
sistency, as shown in Figure 1.

3D-Convolutional Layer Based Blocks: The input fa-
cial video is processed through a series of spatial downsam-
pling blocks (B1, B2, Bs, B4) using a 3D-CNN architecture
inspired by [43]. These blocks reduce the spatial dimen-
sions while preserving temporal resolution, enabling effi-
cient extraction of abstract spatial features from the input
frames.

LTC 3D-Convolutional Layer Based Block: After the
spatial downsampling blocks, the model transitions to LTC-
based convolutional block Byrc, where LTC-based 3D
convolution layers replace standard 3D convolutions. This
block capture temporal patterns across various time scales,
enabling the model to track subtle changes crucial for rPPG
signal estimation. The concept of LTC-based 3D convolu-
tion layers is explained further in section 3.2.

Motivation for Design: PULSE is designed to capture
both spatial and temporal information for effective rPPG
signal estimation. The initial 3D-conv blocks (B;, B, Bs,
B,) extract stable spatial features, reducing variability early
on. The LTC-based block B¢ then refine the temporal
aspects, enabling the model to adapt to fluctuations in the
physiological signals while maintaining the spatio-temporal
structure from the earlier layers.

3.2. Liquid Time Constant (LTC) based 3D Convo-
lutional Layer

To capture the varying temporal patterns inherent in
physiological signals, we integrate a Liquid Time Constant
(LTC) model with 3D convolutional layers. Before delving
into the details, we provide a brief introduction to the un-
derlying principles of the LTC model.
Concept Behind the LTC Model:
The Liquid Time-Constant (LTC) model describes the tem-
poral evolution of the hidden state /() in response to inputs
and internal state dynamics using an ordinary differential

equation (ODE) [16] dh

TE =-h+ Iinput (D

where:

e 7 is the time constant, representing how quickly the
potential decays.

¢ h is hidden state of model.
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Figure 1. Overview of the PULSE framework for rPPG signal extraction. The input face video is processed through a series of 3D-
convolutional blocks (B;, ¢ = 1,2, 3,4), where each block performs spatial downsampling while maintaining the temporal dimension.
Following this, the LTC-based 3D-convolutional block By rc are applied to capture and stabilize temporal dynamics, ensuring robust
waveform reconstruction in the temporal domain. Finally, the extracted features are flattened and used to predict the rPPG signal over
time, which is then optimized using a loss function to enhance accuracy. The details of the LTC-based convolutional layers are explained
in Figure 2.
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Figure 2. Overview of the LTC-based 3D Convolutional Layer. The input tensor X € R

WXWXHXT o hrocessed through multiple

unfolding steps [ (ranging from 0 to . — 1). At each step, the hidden state hgl) is updated using 3D convolution operations combined

with the Liquid Time-Constant (LTC) model, as described in Algorithm 1. The process begins by initializing the hidden state h£0>. Each

D)

subsequent hidden state hi 1 A is computed by applying 3D convolutions to the input tensor and the previous hidden state, followed by a

tanh nonlinearity. After all steps, the final hidden state h(Z~1) g RCnédden XWXHXT ypdergoes an additional 3D convolution to produce

the output tensor h(E=1) g RCout XWX HXT
* Iinput is the input current driving the neuron.

Incorporating External Inputs and Internal States:

In a more general neural network model, the input current
Tinpu: can be decomposed into contributions from external
inputs  and recurrent connections from other neurons (or
from the same neuron):

[input = Winz + Whnh +b 2
where: W;,x represents the weighted input, W, repre-
sents the weighted recurrent input from the neuron’s own
state or other neurons’ states and b is a bias term. Substitut-
ing this into the equation 1, we get:

PO = o+ Wan + Winh + )
This equation can be generalized as a function f(x, h):
f(z,h) = Winz + Whih (C))
Thus, the equaticzﬁll becomes:
T —h+ f(z,h)+b 5)

Using Euler’s Method numerical technique for solving or-
dinary differential equations (ODEs)

hsse = ho+ 20 (cha ot S h) +0).©

See detail derivation in Supplementary(Section: 1.1)
Integration of LTC-based Model with 3D Convolutional
Layer:
The LTC-based 3D convolutional layer in our model is es-
sential for effectively capturing both spatial and tempo-
ral dynamics. This layer applies 3D convolutional opera-
tions across the spatial dimensions (height and width) and
the temporal dimension. These operations serve as a re-
placement for traditional linear transformations W;;, X and
Whirh, utilizing 3D convolutions instead, as depicted in
Figure 2.

The nonlinear transformation function f(X,h) within
this layer is defined by:

f(X,h) = tanh(conv3d(X, W;p) + conv3d(h, Wpy)) (7)

where the 3D convolution operations are applied to the in-
put tensor X = {xg,1,...,07_ 1} € REnXWxHXT
with T" frames. The hidden states of the LTC model at
each time step t € [0,7 — 1] are represented by h =
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{ho,hi,...,hp_1} € RCnidaen xWXHXT " ith the corre-
sponding weights W,;, and Wy,,.

The evolution of the hidden state in the LTC convolu-
tional layer is governed by the following ordinary differen-
tial equation (ODE):

T% = — h + tanh(conv3d(X, W3 ) + conv3d(h, Wpy))
+b

(®)

where 7 is the time constant, b is the bias term, and h rep-
resents the hidden state.

Solving Eq:8 analytically is challenging due to the non-
linearity introduced by the LTC model [18]. However, the
state of the system at any time point ¢ can be determined
using a numerical ODE solver, which simulates the system
starting from an initial state hy to hp_;. The ODE solver
discretizes the continuous time interval [0, 7" — 1] into dis-
crete steps [to,t1,...,tn—1], with the task of updating the
hidden states from ¢; to ;4. Let L represent the number
of unfolding (discretization) steps that the solver needs to
process within each unit time interval [¢;,¢;11], such that
tit1 = t; + LAt, where At is the unfolding time step. Us-

X

0 1 t;  ti T-1

h o1 ti  ti T-1

r B
{E&i, ti+ At, t;+2At,....t; + LAt = ti+1}

ing Euler’s method to numerically solve this ODE, the hid-
den states h; where V¢ € [0, T — 1] are iteratively updated
at [*" unfolding time step as follows:
h(),, =h{ + & (—hﬁ” + tanh(conv3d(X, Wip)
(&)
+conv3d(h§’>, W) +b)

Algorithm 1 details the iterative update process for the
LTC-based 3D Convolutional Layer. The input sequence
X = {xg,1,..., 27 1} € REnXWXHXT js nrocessed to
produce the final hidden states h(Z—1) € RCoutxWxHXT
The computational complexity of the LTC Convolutional
Layer for an input sequence of length T"is O(L x T'), where
L is the number of discretization steps per unit time.

4. Loss Functions

We employ the frequency domain loss functions from
SiNC [44], which are designed to guide the model in captur-
ing and preserving essential frequency characteristics dur-
ing training.

L=Ly+Ls+ Ly (10)
where, £;, = Bandwidth Loss , £ = Sparsity Loss , £, =
Variance Loss

a

> R+

i=—00

1
Ly = ==5

I "

Algorithm 1: Iterative Update Rule for the LTC-based
3D Convolutional Layer Using Euler’s Method

Input: Initial hidden state ho, time constant 7, LTC bias
b, unfolding time step At,
L = Number of unfolding steps, convolutional weights
Win, Whh, Wout, input sequence
X = {x0,%X1,...,XT-1} € RCinxWxHXT
Output: Final hidden states h(* 1) ¢ RCout XWxHxT
Initialization:
Set the initial hidden states:
h = {ho,h1,..., hr_1} € ROnidden xWXHXT
forl=0to L —1do
Compute the next hidden state V¢ € [0, 7 — 1]:
by, = + 2 (-n+
tanh (conv3d(X7 Win) + conv3d(h§l),Whh) + b))
end
hL—1 — conv3d(h(L71),Wout)
return h(*~Y

b
> B a2

i=F*+Ap

1 —-Ap
L:s:ﬁ Z F; +

d
Z (CDF,(Q
F; = FFT(Y) be the power in the i-th frequency bin of
the predicted signal. Here, a = 0.66 Hz and b = 3 Hz. F™*
represents argmax(F'), and Ap denotes the frequencies of
the spectral peak and the padding around the peak, respec-
tively. CDF refers to the cumulative distribution function.

— (CDF;(P))? 13)

&.M—‘

5. Gradient Flow of the Loss in the LTC Con-
volution

The gradient of the loss £ with respect to W;,,Whp, T
and b can be computed from Eq:9
Gradient of Loss with respect to W;;,:

L-1 (14+1)
I
Gradient of Loss with respect to W,y :
oL _ Lz‘l oL ontY as)
OWhn = gp{tH  OWhn,
Gradient of Loss with respect to 7:
oL = oc on'"tY
aor ; onith " or
(16)
Gradient of Loss witll respect to b:
-1 (t+1)
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For detail derivation of loss gradient flow see Supple-
mentary(Section: 1.2).

6. Training Details

Datasets:

We evaluated our proposed method using three well-
established benchmarks for rPPG signal estimation PURE
[47], UBFC-rPPG [3], and COHFACE [20]. The PURE
dataset comprises 60 face videos from 10 subjects, with
each recording lasting around one minute over six sessions.
These sessions encompass various head movements, such
as steady motion, talking, slow and fast head translations,
as well as small and medium head rotations. The videos are
recorded at 640x480 resolution and 30 FPS. The UBFC-
rPPG dataset contains 42 one-minute face videos of par-
ticipants engaged in a time-constrained math game. The
videos also recorded at 640x480 resolution and 30 FPS,
are accompanied by simultaneous PPG signals and heart
rate recordings. Lastly, the COHFACE dataset features 160
one-minute videos from 40 subjects, captured under both
studio and natural lighting conditions. The videos are com-
pressed using the MPEG-4 Visual codec, which, as high-
lighted by [31], may degrade the quality of rPPG signals.
These videos are recorded at a resolution of 640x480 pixels
and a frame rate of 20 FPS.

Data Preprocessing:

For preparing the video clips, we employed RetinaFace [ 3]
to detect and crop faces from each frame, producing 64 x 64
cropped facial images. Rather than cropping faces based on
each predicted bounding box individually, we determined
the maximum window across all possible bounding boxes
within each frame. This method helps to prevent the artifi-
cial jerks that can occur when faces are cropped separately
for each frame and stacked together. By adopting this ap-
proach, we achieve smoother transitions between frames,
thereby enhancing the overall quality of the input images
fed into our model.

Augmentations:

We applied the same augmentation techniques as SiNC
[44], including Gaussian noise addition and brightness ad-
justment for image intensity augmentation. Spatial augmen-
tation involved random flips and cropping, followed by in-
terpolation. Temporal augmentation used random sequence
flipping and frame rate adjustments, along with resampling
to handle temporal variations. These strategies enhance
model performance and robustness against diverse, noisy
inputs.

Implementation details:

For implementation, the model was trained using a Quadro
RTX 8000 GPU for 200 epochs with a batch size of 20.
PyTorch served as the development framework, and the
AdamW optimizer [28] was used with a learning rate of
10~*. To ensure consistent input processing, a clip length of

T = 120 frames (4 seconds) was utilized, adjusting the in-
put signal to achieve a frequency resolution of 0.33 beats
per minute (bpm). We use a 5-fold cross-validation ap-
proach for all three datasets, following the same fold con-
figuration as in [17]. This approach involved using three
folds for training, one for validation, and one for testing,
instead of separate training and testing sets. To improve
model robustness, we trained three models with different
initializations, resulting in a total of 15 models across the
three datasets. The results provide both the mean and the
standard deviation of the errors.

Evaluation Metrics:

We assess heart rate accuracy using mean absolute error
(MAE), root mean squared error (RMSE), and Pearson cor-
relation coefficient (r). MAE and RMSE are measured
in beats per minute (bpm), with smaller values indicating
lower errors. Conversely, a higher Pearson correlation co-
efficient (r), close to one, reflects lower errors. Detailed
information on evaluation metrics can be found in our sup-
plementary material (section: 1.4).

7. Results & Analysis
7.1. Intra-Dataset Evaluation

Table 1 presents the intra-dataset results for various ap-
proaches, including traditional, supervised, and unsuper-
vised methods. Our model, PULSE, surpasses the state-
of-the-art unsupervised non-contrastive method SiNC [44],
achieving the best results among all unsupervised meth-
ods and performing on par with the leading supervised ap-
proaches. The proposed PULSE recorded the lowest Mean
Absolute Error (MAE) among unsupervised methods, with
a Pearson correlation coefficient (r) close to 1 for all three
datasets PURE , UBFC-rPPG and COHFACE, underscor-
ing its exceptional accuracy and reliability.
Figure 3 presents the rPPG waveform generated by PULSE
alongside the ground truth rPPG signal and corresponding
feature heat map. The comparison highlights the model’s
capability to extract stable features and produce smooth
waveforms, demonstrating a close similarity between the
generated and ground truth signals.

7.2. Cross-Dataset Evaluation

We further evaluated our method PULSE in a cross-
dataset setting using the PURE ,UBFC-rPPG and CO-
HFACE datasets to assess the model’s robustness and gen-
eralization capabilities. These datasets were chosen due
to their differences in factors such as head motion, light-
ing variations, and camera sensors, which are critical for
rPPG estimation. Table 2 presents the cross-dataset test re-
sults. In this experiment, we trained the model on the PURE
dataset and evaluated its performance on UBFC-rPPG, then
reversed the process by training on UBFC-rPPG and test-
ing on PURE. In both cases, PULSE exhibited strong per-
formance, outperforming both supervised and unsupervised
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Table 1. The table presents intra-dataset Heart Rate (HR) results. An upward arrow (1) indicates that higher values are better, while a
downward arrow ({.) denotes that lower values are preferable. The best results are highlighted in bold, and the second-best are underlined.
Abbreviations: MAE stands for Mean Absolute Error, RMSE for Root Mean Square Error, and r for Pearson correlation coefficient.

UBFC-rPPG PURE COHFACE
Method MAE | RMSE| rt MAE | RMSE| rt MAE | RMSE| rf
Traditional Method
Verkruysse et al. (GREEN) [50] 7.50 14.41 0.62 7.23 17.05 0.69 - - -
Poh et al. (ICA) [39] 5.17 11.76 0.65 3.76 12.60 0.85 - - -
Haan et al. (CHROM) [1 1] 2.36 9.23 0.87 0.75 2.23 1.00 7.8 12.45 0.26
Wang et al. (POS) [53] 2.11 9.11 0.87 0.80 4.11 0.98 13.43 17.05 0.24
Supervised Method
Spetlik et al. (HR-CNN) (BMVC 138) [46] - - - 1.84 2.37 0.98 10.8 8.1 0.29
Lu et al. (Dual-GAN) (CVPR 21) [29] 0.44 0.67 0.99 0.82 1.31 0.99 - - -
Speth et al. (RPNet) (21) [43] 0.53+0.01 1.78+0.02 099 | 1.15£0.27 5.77+1.25 0.96+0.01 - - -
Yu et al. (PhysNet) (19) [59] 0.55+0.03 2.03£0.37 099 | 0.99+£0.19 5.22+093 0.97+0.01 - - -
Deshpande et al. (CVPR 23) [14] - - - - - - 2.92 6.128 0.86
Chen et al (CVPR 23) [7] - - - - - - 2.042 3.142 0.959
Gideon et al. ICCV 21) [17] - - - 2.1 2.6 0.99 2.5 7.8 0.75
Unsupervised Method
Gideon et al. ICCV 21) [17] 1.85 4.28 0.93 2.3 2.9 0.99 1.5 4.6 0.99
Sun et al. (Contrast-Phys) (ECCV 22) [48] 0.64 1.00 0.99 1.00 1.40 0.99 - -
Yue et al. (TPAMI 23) [61] 0.58 0.94 0.99 1.23 2.01 0.99 - - -
Speth et al. (SINC) (CVPR 23) [44] 0.59 1.83+£0.04 099 | 0.61+0.66 1.84+0.40 1.00 244 +£0.64 6.02+1.07 0.86+0.05
PULSE (Ours) 0.50+£0.04 1.81+0.19 099 | 0.25+0.01 0.38 +0.02 1.00 1.30+0.14 3.71+£0.56 0.94+0.01
Input
video 64x64 16x16 8x8

32x32

Figure 3. Feature heat maps and waveform extractions from the PURE, UBFC-rPPG, and COHFACE datasets illustrate feature extraction
at different spatial resolutions: block (B1) with 64 x 64, block (B2) with 32 x 32, block (B3) with 16 x 16, block (B4) with 8 x 8, and
block Brrc with 4 x 4. The heat maps show stable feature extraction across varying resolutions, with low-level resolutions maintaining
consistency. The waveforms on the right compare the extracted rPPG signals (blue) to the ground truth (red), demonstrating smooth signal
extraction. The first row shows the sample from the PURE dataset, the second from UBFC-rPPG, and the third from COHFACE.

Table 2. The table presents cross-dataset Heart Rate (HR) results.
An upward arrow (1) indicates that higher values are favorable,
while a downward arrow (J) suggests that lower values are better.

rates (COHFACE operates at 20 FPS). Interestingly, while
training on COHFACE resulted in less favorable outcomes
when tested on PURE, it performed well on UBFC. These

Training Testing MAE . . , Jo .
Dataset Dataset Method (bpm)* rt results highlight the model’s adaptability across different
UBFC PhysNet [ 7.02£335  0.60+0.13 datasets, while also emphasizing the influence of FPS dis-
UBFC Contrast-Pys [48] ~ 1022£0.38  0.45+0.04 : B ot
SURE UBFC SINC [11] 6645176 0594010 crepancies on cross-dataset generalization.
UBFC PULSE 3.06+0.07  0.81:+0.01 7.3. Robustness to Test-Time Perturbations
COHFACE _ PULSE 1473023 0.21£0.02 . .
PURE PhysNet [ 3812034 087£0.02 This experiment evaluates the robustness of PULSE, par-
PURE Contrast-Pys [48] ~ 19.61+2.01  0.330.06 ticularly its LTC-based convolutional layers, compared to
UBFC PURE ISJIIIJ\II(‘:S[E ! :'23 : 3‘22 8'22 : 8.3(1) SiNC under test-time perturbations. A percentage of video
COHFACE  PULSE 9502006 020002 frames (5%, 10%, 15%, 20%) were corrupted with Gaus-
PURE PULSE 1216027 0.44 £0.02 sian noise, exposure changes, or dark frames.
COHFACE ~ UBFC PULSE 2.61£052 080 +0.05 .
Table 5 shows that PULSE consistently outperforms
SiNC across all perturbations. The dynamic time constants
approaches. However, its performance decreased when of the LTC layers help PULSE handle temporal disruptions

tested on COHFACE, likely due to differences in frame

effectively, maintaining stability and accuracy even with
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Table 3. Comparison of PULSE and SiNC on the PURE dataset under conditions like Steady, Talking/Laughing, Motion, and Low Light.

Steady Talking , Laughing Small body movement Dark light Head movement
Method MAE| RMSE| rt | MAE| RMSE| r1 | MAE| RMSE| rt | MAE| RMSE| rt | MAE| RMSE| rt
SiNC [44] 0.50 1.50 0.99 0.65 2.00 0.98 0.55 1.80 0.98 0.70 1.90 0.99 0.65 2.00 1.0
PULSE(Ours) 0.18 0.27 0.99 0.32 0.46 0.99 0.21 0.37 0.99 0.24 0.35 0.99 0.24 0.34 0.99

Table 4. Performance comparison between PULSE and SiNC on the COHFACE dataset under various conditions including light, gender,

skin tone, and motion.

Normal Light Low Light Male (28 subjects) Female (12 subjets) Light Skin Dark Skin(2 subjects) ‘With motion
Method |[MAE| RMSE| r? |[MAE| RMSE| rt MAE| RMSE| rt MAE| RMSE| r1t |[MAE| RMSE| rt |[MAE| RMSE| rt [MAE| RMSE| r1
SiNC [44]| 2.22 6.12 086 2.71 6.85 0.85| 2.23 548 0.87| 298 824 077 2.12 534 088 6.79 13.97 043] 2.34 6.11 085
PULSE 1.11 3.81 096 1.62 478 091| 1.38 3.81 093 1.06 331 096 1.18 332 095 3.96 9.38 0.72| 1.20 341 095

Table 5. This experiment evaluates the robustness of our PULSE method, particularly the advantage of LTC-based convolutional block,

compared to the SiNC [

] method under test-time perturbations. The perturbations included Gaussian noise, exposure changes, and dark

frames, with the ’Perturbation level’ column indicating the percentage of frames that are randomly corrupted in the video. The results
suggest that PULSE demonstrates improved resilience in handling temporal frame corruption.

Dataset Perturbation level SiNC PULSE (Ours)
MAE] RMSE] rf MAE] RMSE] rf
5% 2.18 £0.26 6.21 +0.97 | 0.86 +0.06 | 0.96 £ 0.17 2.19+0.90 | 0.93+0.03
PURE 10% 4.09 £0.91 1277 £0.87 | 0.58 £0.12 | 2.58 4+ 0.74 8.17 £0.97 | 0.76 £ 0.07
15% 6.64 £ 191 1730 £ 148 | 048 +£0.14 | 484 +090 | 12.59 + 1.30 | 0.63 £ 0.10
20% 7.65 £ 1.79 1865+ 1.26 | 044 +0.1T | 6.92+0.86 | 15.73 £ 1.58 | 0.58 + 0.08
5% 10.69 £ 1.37 | 18.31 &+ 1.28 | 0.41 £0.07 | 3.57 £ 0.38 10.84 +£0.90 | 0.78 £ 0.04
UBFC-tPPG 10% 1740 £ 1.15 | 2398 £ 1.04 | 0.14 £0.04 | 10.62 £ 1.23 | 21.07 £ 1.25 | 0.42 £+ 0.07
15% 19.88 £ 1.18 | 26.03 £ 1.61 | 0.09 £0.10 | 16.84 £ 1.51 | 22.17 + 1.21 | 0.23 £ 0.05
20% 21.64 £1.28 | 2749 £ 1.78 | 0.08 £0.06 | 20.53 + 0.82 | 25.51 £0.03 | 0.11 & 0.03

Table 6. Ablation Study on the Effect of Unfolding Steps (L) on
the PURE Dataset. The table presents the impact of varying the
number of unfolding steps L.

Unfolding Steps(L) MAE| RMSE| rt
40 0.47 £0.01 0.61 +£0.01 0.96+0.003
60 0.41+0.01 0.49 +0.04 0.98+0.002
80 0.31+0.02 0.44 +£0.03 0.99+0.001
100 0.25+0.01 0.38 £0.02 1.00

corrupted frames, demonstrating its resilience to real-world
video degradation.

7.4. Performance Evaluation Under Different Con-
ditions

We evaluated the PULSE model on the COHFACE and
PURE datasets under various challenging conditions to as-
sess its robustness. For COHFACE (Table 4), we tested
under conditions like Normal/Low Light, Male/Female,
Light/Dark Skin, and Motion. PULSE consistently outper-
formed SiNC, particularly in difficult scenarios such as Low
Light and Dark Skin.

On the PURE dataset (Table 3), we tested under Steady,
Talking/Laughing, Small Body Movement, Low Light, and
Head Movement conditions. PULSE demonstrated superior
performance, especially in motion and low light settings.
These results highlight the advantage of LTC-based convo-
lutional block, enabling PULSE to adapt and perform well
across different conditions.

7.5. Effect of Unfolding Steps on Performance
We performed an ablation study on the PURE dataset to
evaluate the effect of varying the number of unfolding steps

L in the LTC-based 3D Convolutional Layer. We tested
four settings: 40, 60, 80, and 100 steps. As shown in Ta-
ble 6, increasing L improved model accuracy, with lower
MAE and RMSE values. The best performance was ob-
served at L = 100, indicating that more unfolding steps
help the model capture temporal dependencies more effec-
tively, enhancing rPPG signal prediction.

8. Conclusion

We introduced PULSE, a framework combining 3D con-
volutional layers with Liquid Time-Constant (LTC) models
to improve rPPG signal extraction. By dynamically cap-
turing temporal variations in physiological signals, PULSE
enhances heart rate estimation accuracy, even under chal-
lenging conditions like motion and lighting changes. Eval-
uations on datasets such as PURE and UBFC-rPPG showed
that PULSE performs better than existing methods in both
accuracy and robustness. Our experiments were conducted
within an unsupervised setting using the SiNC [44] frame-
work, demonstrating PULSE’s suitability for scenarios with
limited labeled data. Future work may extend PULSE to
other vital signs and incorporate additional modalities for
broader application in non-contact health monitoring.
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