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Abstract

In recent times, contrastive learning based loss func-
tions have become increasingly popular for visual self-
supervised representation learning owing to their state-of-
the-art (SOTA) performance. Most of the modern con-
trastive learning methods generalize only to one positive
and multiple negatives per anchor in a batch. A re-
cent state-of-the-art contrastive loss called supervised con-
trastive (SupCon) loss, extends self-supervised contrastive
learning to supervised setting by generalizing to multiple
positives and negatives in a batch and improves upon the
cross-entropy loss. In this paper, we propose a novel con-
trastive loss function — Tuned Contrastive Learning (TCL)
loss, that generalizes to multiple positives and negatives in
a batch and offers parameters to tune and improve the gra-
dient responses from hard positives and hard negatives. We
provide theoretical analysis of our loss function’s gradient
response and show mathematically how it is better than that
of SupCon loss. We empirically compare our loss function
with SupCon loss and cross-entropy loss in supervised set-
ting on multiple classification-task datasets to show its ef-
fectiveness. We also show the stability of our loss function
to a range of hyper-parameter settings. Unlike SupCon loss
which is only applied to supervised setting, we show how to
extend TCL to self-supervised setting and empirically com-
pare it with various SOTA self-supervised learning methods.
Hence, we show that TCL loss achieves performance on par
with SOTA methods in both supervised and self-supervised
settings.

1. Introduction

Paucity of labeled data limits the application of super-
vised learning to various visual learning tasks [35]. As a
result, unsupervised [17, 19,26] and self-supervised based
learning methods [4, 6, 18,32] have garnered a lot of atten-
tion and popularity for their ability to learn from vast unla-
beled data. Such methods can be broadly classified into two
categories: generative methods and discriminative methods.
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Figure 1. Figure illustrates intuitively how TCL loss differs from
SupCon loss [23]. For the terms inside the summation of L;“?
(from Eq. (2)) in the SupCon loss to decrease, the anchor z; will
pull the positive 2z, but push away the other positives to some ex-
tent in the embedding space. TCL loss introduces parameters that
reduce this effect and increase the gradient response from posi-
tives. This leads to consistently better performance.

Generative methods [17,26] train deep neural networks to
generate in the input space i.e. the pixel space and hence,
are computationally expensive and not necessary for repre-
sentation learning. On the other hand, discriminative ap-
proaches [ 1,6, 13, 16,30, 33] train deep neural networks to
learn representations for pretext tasks using unlabeled data
and an objective function. Out of these discriminative based
approaches, contrastive learning based methods [1, 6, 30]
have performed significantly well and are an active area of
research.

The common principle of contrastive learning based
methods in an unsupervised setting is to create semantic
preserving transformations of the input which are called
positives and treat transformations of other samples in a

OPytorch implementation of our work released and available at:
https://github.com/chaitanyaanimesh/Tuned-Contrastive-Learning.
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batch as negatives [2,23]. The contrastive loss objective
considers every transformed sample as a reference sample,
called an anchor, and is then used to train the network ar-
chitecture to pull the positives (for that anchor) closer to the
anchor and push the negatives away from the anchor in la-
tent space [2,23]. The positives are often created using var-
ious data augmentation strategies. Supervised Contrastive
Learning [23] extended contrastive learning to supervised
setting by using the label information and treating the other
samples in the batch having the same label as that of the
anchor also as positives in addition to the ones produced
through data augmentation strategies. It presents a new loss
called supervised contrastive loss (abbreviated as SupCon
loss) that can be viewed as a loss generalizing to multiple
positives available in a batch.

In this work, we propose a novel contrastive learning
loss objective, which we call Tuned Contrastive Learn-
ing (TCL) Loss that can use multiple positives and mul-
tiple negatives present in a batch. We show how it can
be used in supervised as well as self-supervised settings.
TCL loss improves upon the limitations of the SupCon loss:
1. Implicit consideration of positives as negatives and, 2.
No provision of regulating hard negative gradient response.
TCL loss thus gives better gradient response to hard pos-
itives and hard negatives. This leads to small (< 1% in
terms of classification accuracy) but consistent improve-
ments in performance over SupCon loss and comprehensive
outperformance over cross-entropy loss. Since TCL gener-
alizes to multiple positives, we then present a novel idea of
having and using positive triplets (and possibly more) in-
stead of being limited to positive pairs for self-supervised
learning. We evaluate our loss function in self-supervised
settings without making use of any label information and
show how TCL outperforms SimCLR [6] and performs on
par with various SOTA self-supervised learning methods
]. Our key contributions in the
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paper are as follows:

1. We identify and analyse in detail two limitations of the
supervised contrastive (SupCon) loss.

2. We present a novel contrastive loss function called
Tuned Contrastive Learning (TCL) loss that general-
izes to multiple positives and multiple negatives in a
batch, overcomes the described limitations of the Sup-
Con loss and is applicable in both supervised and self-
supervised settings. We mathematically show with
clear proofs how our loss’s gradient response is better
than that of SupCon loss.

3. We compare TCL loss with SupCon loss (as well as
cross-entropy loss) in supervised settings on various
classification datasets and show that TCL loss gives
consistent improvements in top-1 accuracy over Sup-
Con loss. We empirically show the stability of TCL

loss to a range of hyperparameters: network architec-
ture, batch size, projector size and augmentation strat-

cgy.

4. At last, we present a novel idea of having positive
triplets (and possibly more) instead of positive pairs
and show how TCL can be extended to self-supervised
settings. We empirically show that TCL outperforms
SimCLR, and performs on par with various SOTA self-
supervised learning (SSL) methods.

2. Related Work

In this section, we cover various popular and recent
works in brief involving contrastive learning.

Deep Metric learning methods originated with the idea
of contrastive losses and were introduced with the goal
of learning a distance metric between samples in a high-
dimensional space [2]. The goal in such methods is to learn
a function that maps similar samples to nearby points in this
space, and dissimilar samples to distant points. There is of-
ten a margin parameter, m, imposing the distance between
examples from different classes to be larger than this value
of m [2]. The triplet loss [22] and the proposed improve-
ments [7,27] on it used this principle. These methods rely
heavily on sophisticated sampling techniques for choosing
samples in every batch for better training.

SimCLR [6], an Info-NCE [30] loss based framework,
learns visual representations by increasing the similarity be-
tween the embeddings of two augmented views of the input
image. Augmented views generally come from a series of
transformations like random resizing, cropping, color jit-
tering, and random blurring. Although they make use of
multiple negatives, only one positive is available per an-
chor. They require large batch sizes in order to have more
hard negatives in the batch to learn from and boost the per-
formance. SupCon loss [23] applies contrastive learning in
supervised setting by basically extending the SImCLR loss
to generalize to multiple positives available in a batch and
improves upon the cross-entropy loss which lacks robust-
ness to noisy labels [29, 34] and has the possibility of poor
margins [14,25].

Unlike SimCLR or SupCon, many SOTA SSL ap-
proaches only work with positives (don’t require negatives)
or use different approach altogether. BYOL [18] uses asym-
metric networks with one network using an additional pre-
dictor module while the other using exponential moving av-
erage (EMA) to update its weights, in order to learn us-
ing positive pairs only and prevent collapse. SimSiam [9]
uses stop-gradient operation instead of EMA and asymmet-
ric networks to achieve the same goal. Barlow Twins [32]
objective function on the other hand computes the cross-
correlation matrix between the embeddings of two identi-
cal networks fed with augmentations of a batch of samples,
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and tries to make this matrix close to identity. SWAV uses
a clustering approach and enforces consistency between the
cluster assignments of multiple positives produced through
multi-crop strategy [4].

3. Methodology
3.1. Supervised Contrastive Learning & Its Issues

The framework for Supervised Contrastive Learning
consists of three components: a data augmentation mod-
ule that produces two augmentations for each sample in the
batch, an encoder network that maps the augmentations to
their corresponding representation vectors and a projection
network that produces normalized embeddings for the rep-
resentation vectors to be fed to the loss function. The pro-
jection network is later discarded and the encoder network
is used at inference time by training a linear classifier (at-
tached to the frozen encoder) with cross-entropy loss. Sec-
tion 3.1 of [23] contains more details on this. The SupCon
loss is given by the following two equations (refers to L..7
in [23]):

L =% L (1)
iel
where
-1 exp(zi.2p/T)
L3 = log(——rsmp—) @)
Pl 2, D
and
D' = Z exp(zi.zp [T) + Z exp(zi.zn/T) (3)
p'€P(i) nEN (i)

Here I denotes the batch of samples obtained after aug-
mentation and so, will be twice the size of the original input
batch. ¢ € I denotes a sample (anchor) within it. z; denotes
the normalized projection network embedding for the sam-
ple i as given by the projector network. P (%) is the set of all
positives for the anchor 7 (except the anchor 7 itself) i.e. pos-
itive from the augmentation module and positives with the
same label as anchor 7 in the batch I. N (i) denotes the set of
negatives in the batch such that N (i) = I'\ (P(i)U{i}). As
shown in Section 2 of the supplementary material of [23],
we have the following lemma:

Lemma 1 The gradient of the SupCon loss per sample —
L:"P with respect to the normalized projection network em-
bedding z; is given by:

oL 1

s s
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Note that A(i) = P(i) U N (4) here. The authors further
show in Section 3 of the supplementary [23] that the gradi-
ent from a positive while flowing back through the projector
into the encoder reduces to almost zero for easy positives
and | P}, — Xjp| for a hard positive because of the normal-
ization consideration in the projection network. Similarly,
the gradient from a negative reduces to almost zero for easy
negatives and | P, | for a hard negative. We now present and
analyse the following two limitations of the SupCon loss:

1. Implicit consideration of positives as negatives:
Having a closer look at the L;“” (Eq. (2)) loss term
reveals that each individual term of L;"” inside the
summation, consists of similarity terms of the anchor
1 with all the positives in the batch — the set P(i) —
in the denominator, thereby implicitly considering all
the positives except the positive p in the numerator as
negatives. Although L;"” as a whole will consider
all positives as positives indeed, its individual terms
at their respective local levels implicitly consider the
positives as negatives that leads to reduced gradient re-
sponse from positives. A glance at the derivation of
Lemma 1 in [23] clearly shows that this leads to the
magnitude of the gradient response from a hard posi-
tive getting reduced to |X;, — P;,| instead of simply
| Xip|. The term P;, consists of an exponential term
in the numerator and thus can reduce the magnitude of
| Xip — Pj,| considerably, especially because the tem-
perature 7 is generally chosen to be small. Note that
the authors of [23] approximate the numerator of P,
to 1 while considering the magnitude of | X;;, — P;| in
their supplementary by assuming z;.z, ~ 0 for a hard
positive which might not always be true. Another way
to look at this limitation analytically is to observe the
log part in the individual terms of L;“”. For them to
decrease and ideally converge to close to zero, the nu-
merator term inside the log function will encourage the
anchor z; to pull the positive z, towards it while the
denominator term will encourage it to push away the
other positives present in P (i) by some extent, thereby
treating the other positives as negatives implicitly.

2. No possibility of regulating P : [6,23] mention that
performance in contrastive learning benefits from hard
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negatives and gradient contribution from hard nega-
tives should be higher. It is easy to observe from
Eq. (7) that the magnitude of the gradient signal from
a hard negative — | P}, | in the SupCon loss decreases
with batch size and the number of positives in the
batch, and can become considerably small, especially
since the denominator consists of similarity terms be-
tween the anchor and all the positives in the batch
which are temperature scaled and exponentiated. This
can limit the gradient contribution from hard negatives.

3.2. Tuned Contrastive Learning

In this section, we present our novel contrastive loss
function — Tuned Contrastive Learning (TCL) Loss.
Note that our representation learning framework remains
the same as that of Supervised Contrastive Learning dis-
cussed above. The TCL loss is given by the following equa-

tions:

Ltcl — ZL§CZ (8)
iel
Lt(‘l Z CXP Zz 2p/T) ) 9)
erP(i
where
D(z) = Z exp(z;.2p /T)+
p'€P(i) (10)
k(Y exp(—zizp)) +ha( Y expl(zizn/T))
p'eP(i) neN (i)

ki,ky >1 (11)

k1 and ko are scalar parameters that are fixed before
training. All other symbols have the same meaning as dis-
cussed in the previous section. We now present the follow-
ing lemma:

Lemma 2 The gradient of the TCL loss per sample — Lt¢!
with respect to the normalized projection network embed-
ding z; is given by:

oLt 1
92 ;( Z ZP(Pitp — Xip — }/;i)) + Z 2 P)
’ pEP (i) neN (i)
Gradient Gradient
[from positives from negatives
(12)
where )
Xip = 572 (13)
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. exp(zizp/T)
PL=l (14)

D(z;)

Tkiexp(—z;.zp)

Y =
v D(z)

15)

koexp(z;.2n/T)
pl = = 16
in D) (16)
From Lemma 2, Theorem 1 and Theorem 2 follow in a
straightforward fashion. The proofs for Lemma 2 and the
two theorems are provided in our supplementary.

Theorem 1 For ki, ks > 1, the magnitude of the gradient
from a hard positive for TCL loss is strictly greater than the
magnitude of the gradient from a hard positive for SupCon
and hence, the following result follows:

| Xip — P, + Y| > | Xip — Py (17)

(TCL’s hard positive gradient) (Supcon’s hard positive gradient)
Theorem 2 For fixed ki, the magnitude of the gradient re-

. t .
sponse from a hard negative for TCL loss — P;, strictly
increases with ko.

Effects of k; and k; The authors of SupCon show (in
equation 18 in the supplementary of [23]) that the magni-
tude of gradient response from a hard positive | X;;, — Pj|
increases with the number of positives and negatives in the
batch. This is basically a result of reducing the value of be,
a term that results from having positive similarity terms in
the denominator of L;"?. But they approximate the numer-
ator of P, to 1 by assuming z;.z;, ~ 0 for a hard positive
which might not always be true (especially since 7 is typi-
cally chosen to be small like 0.1). As evident from the proof
of Theorem 1 in our supplementary, we further push this
idea and reduce the value of P, in SupCon loss to P
TCL loss by having an extra term in the denominator mvolv—
ing ky — kl(Zp’eP(i) exp(—z;.2,)) and choosing a large
enough value for k;. Hence, it reduces the effect of im-
plicit consideration of positives as negatives, the first limita-
tion of SupCon loss discussed in the previous section. Note
that having the extra term to increase the gradient response
from hard positive is not the same as increasing the gradient
response by amplifying the learning rate. This is because
for the same and fixed learning rate, TCL loss increases
the magnitude of the gradient signal over SupCon loss by
changing the coefficient of z, in Eq. (12) which in turn
means changing the gradient direction as well. This leads to
consistently better performance as shown in the numerous
experiments that we perform. Also, it directly follows from
Theorem 2 that ko allows to regulate (increase) the gradient
signal from a hard negative and thus, overcomes the second
limitation of the SupCon loss.
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Augmentation Strategy for Self-Supervised Setting
Since TCL loss can use multiple positives, we consider
working with positive triplets instead of positive pairs in
self-supervised settings. Given a batch B with N sam-
ples, we produce augmented batch I of size 3N by pro-
ducing three augmented views (positives) for each sample
in B. This idea can further be extended in different ways to
have more positives per anchor. For example, one can think
of combining different augmentation strategies to produce
multiple views per sample although we limit ourselves to
positive triplets in this work.

4. Experiments

We evaluate TCL in three stages: 1. Supervised setting,
2. Hyper-parameter stability and 3. Self-supervised setting.
We then present empirical analysis of TCL loss’s parame-
ters — k1 and ks. All the relevant training details are men-
tioned in our supplementary.

4.1. Supervised Setting

We start by evaluating TCL in supervised setting first.
Since the authors of [23] mention that SupCon loss per-
forms significantly better than triplet loss [22] and N-pair
loss [28], we directly compare TCL loss with SupCon and
cross-entropy losses on various classification benchmarks
that include CIFAR-10, CIFAR-100 [24], Fashion MNIST
(FMNIST) [31] and ImageNet-100 [12]. The encoder net-
work chosen is ResNet-50 [21] for CIFAR and FMNIST
datasets while Resnet-18 [21] for ImageNet dataset (be-
cause of memory constraints). The representation vector
is the activation of the final pooling layer of the encoder.
ResNet-18 and ResNet-34 encoders give 512 dimensional
representation vectors while ResNet-50 and above produce
2048 dimensional vectors. The projector network is a MLP
with one hidden layer with sizes being 512 for ResNet-18
and Resnet-34, and 2048 for ResNet-50 and higher net-
works. The output layer of the projector MLP is 128 dimen-
sional for all the networks. We use the same cross-entropy
implementation as used by Supervised Contrastive Learn-
ing [23].

Note that for fair comparison of TCL with Su-
pervised Contrastive Learning, we keep the architec-
ture and all other possible hyper-parameters except the
learning rate exactly the same. We also do hyper-
parameter tuning significantly more for Supervised
Contrastive Learning than for TCL. As a result, we
found that our re-implementation of Supervised Contrastive
Learning gave better results than what is reported in the
paper [23]. For example, on CIFAR-100 our significantly
tuned version of SupCon achieves 79.1% top-1 classifica-
tion accuracy, 2.6% more than what is reported in Sup-
Con paper. As the authors of SupCon [23] mention that
200 epochs of contrastive training are sufficient for training

a ResNet-50 on complete ImageNet dataset, our observa-
tions for the supervised setting case on relatively smaller
datasets like CIFAR, FMNIST and ImageNet-100 are con-
sistent with this finding. We train Resnet-50 (and ResNet-
18) for a total of 150 epochs — 100 epochs of contrastive
training for the encoder and the projector followed by 50
epochs of cross-entropy training for the linear layer. Note
that 150 epochs of total training was sufficient for our re-
implementation of SupCon loss to achieve better results
than reported in the paper (2.6% more on CIFAR-100 and
0.3% more on CIFAR-10). We anyways still provide results
for 250 epochs of training in the supplementary. We have
also provided 95% confidence intervals calculated over dif-
ferent seeds for this setting in the supplementary. As Tab. 1
shows, TCL loss consistently performs better than SupCon
loss and outperforms cross-entropy loss on all the datasets.

Dataset Cross-Entropy ~ SupCon TCL
CIFAR-10 95.0 96.3(96.0) 964
CIFAR-100 75.3 79.1(76.5) 79.8
FashionMNIST 94.5 95.5 95.7
ImageNet-100  84.2 85.9 86.7

Table 1. Comparison of top-1 accuracies of TCL loss with SupCon
loss and cross-entropy loss in supervised settings. The values in
parenthesis for SupCon loss denote the values presented in their

paper.

4.2. Hyper-parameter Stability

We now show the stability of TCL loss to a range of
hyper-parameters. We compare TCL loss with SupCon
loss on various hyper-parameters — encoder architectures,
batch sizes, projection embedding sizes and different aug-
mentations. For all the hyper-parameter experiments we
choose CIFAR-100 as the common dataset (unless stated
otherwise), set total training epochs to 150 (same as earlier
section), temperature 7 to 0.1 and use SGD optimizer with
momentum=0.9 and weight decay=1e — 4.

4.2.1 Encoder Architecture

We choose 4 encoder architectures of varying sizes-
ResNet-18, ResNet-34, ResNet-50 and ResNet-101. For
both TCL loss and SupCon loss, we choose batch size as
128 and AutoAugment [10] data augmentation method. As
evident from Fig. 2b, TCL loss achieves consistent improve-
ments in top-1 test classification accuracy over SupCon loss
on all the architectures. We also tested TCL loss and Sup-
Con loss on ImageNet-100 with ResNet-18 (batch size of
256) and ResNet-34 (batch size of 128). Using ResNet-18,
TCL loss achieved 86.7% top-1 accuracy while SupCon loss
achieved 85.9% top-1 accuracy. When switching to ResNet-
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Figure 2. SupCon vs TCL losses on a range of hyper-parameters.

34, TCL loss got 87.2% top-1 accuracy while SupCon loss
got 86.5% top-1 accuracy.

4.2.2 Batch Size

For comparing TCL loss with SupCon loss on different
batch sizes, we choose ResNet-50 as the encoder architec-
ture and AutoAugment [10] data augmentation. As evident
from Fig. 2a, we observe that TCL loss consistently per-
forms better than SupCon loss on all batch sizes. All the
batch sizes mentioned are after performing augmentation.
Note that the authors of SupCon loss use an effective batch
size of 256 (after augmentation) for CIFAR datasets in their
released code'. We select batch sizes equal to, smaller and
greater than this value for comparison to demonstrate the
effectiveness of Tuned Contrastive Learning.

4.2.3 Projection Network Embedding (z;) Size

In this section we analyse empirically how SupCon and
TCL losses perform on various projection network output
embedding sizes. This particular experiment was not ex-
plored as stated by the authors of Supervised Contrastive

Thttps://github.com/HobbitLong/SupContrast

Learning [23]. ResNet-50 is the common encoder used with
Auto-Augment [10] data augmentation. As evident from
Fig. 2c, we observe that TCL loss achieves consistent im-
provements in top-1 test classification accuracy over Sup-
Con loss for various projector output sizes. We observe that
64 performs the worst while 128, 256, 512 and 1024 give
similar results. 2048 performs the best for both with TCL
loss achieving 1.2% higher accuracy than SupCon loss for
this size.

4.2.4 Augmentations

We choose two augmentation strategies — AutoAugment
and SimAugment for comparisons. AutoAugment [10] is a
two-stage augmentation policy trained with reinforcement
learning and gives stronger (aggressive and diverse) aug-
mentations. SimAugment [6] is relatively a weaker aug-
mentation strategy used in SimCLR that applies simple
transformations like random flips, rotations, color jitters and
gaussian blurring. We don’t use gaussian blur in our imple-
mentation of SimAugment and train for 100 extra epochs
i.e. 250 epochs while using it. Fig. 2d shows that TCL loss
performs better than SupCon loss with both augmentations
although, the gain is more with AutoAugment — the stronger
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Method Projector Size

CIFAR-10 CIFAR-100 ImageNet-100

BYOL [18] 4096 92.6 70.2 80.1
DINO [5] 256 89.2 66.4 74.8
SimSiam [9] 2048 90.5 65.9 77.0
MOCO V2 [8,20] 256 92.9 69.5 78.2
ReSSL [30] 256 90.6 65.8 76.6
VICReg [3] 2048 90.1 68.5 79.2
SwAV [4] 256 89.2 64.7 74.3
W-MSE [15] 256 88.2 61.3 69.1
ARB [35] 256 91.8 68.2 74.9
ARB [35] 2048 92.2 69.6 79.5
Barlow-Twins [32] 256 87.4 57.9 67.2
Barlow-Twins [32] 2048 89.6 69.2 78.6
SimCLR [6] 256 90.7 65.5 77.5
TCL (Self-Supervised) 256 91.8 67.2 78.4
TCL (Supervised) 128 95.8 77.5 86.7

Table 2. Comparison of top-1 accuracy of TCL with various SSL methods. Values in bold show the best performing method.

augmentation strategy.
4.3. Self-Supervised Setting

In this section we evaluate TCL without any labels in
self-supervised setting by making use of positive triplets as
described earlier. We compare TCL with various SOTA
SSL methods as shown in Tab. 2. The results for these
methods are taken from the works of [35], [I1]. The
datasets used for comparison are CIFAR 10, CIFAR-100
and ImageNet-100. ResNet-18 is the common encoder used
for every method. For CIFAR-10 and CIFAR-100 every
method uses 1000 epochs of contrastive pre-training includ-
ing TCL. For ImageNet-100, every method does 400 epochs
of contrastive pre-training.

Tab. 2 shows the top-1 accuracy achieved by various
methods on the three datasets. TCL performs consistently
better than SimCLR [6] and performs on par with various
other methods. Note that methods like BYOL [18], VI-
CReg [3], ARB [35] and Barlow-Twins [32] use much
larger projector size for output embedding and extra
hidden layers in the projector MLP to get better perfor-
mance while MOCO V2 [8] uses a queue size of 32,768 to
get better results. Few of the methods like BYOL [18],
SimSiam [9], MOCO V2 [8, 20] also maintain two net-
works and hence, effectively use double the number of
parameters and are memory intensive. TCL will also
benefit from larger projector sizes, extra hidden layers or
using a large momentum queue [8] but our aim here is to
do a fair comparison with its counterpart SImCLR [6] and
show that TCL loss is a better InfoNCE-like loss in this set-
ting.

We also add the results of supervised TCL that can make
use of labels as it is generalizable to any number of posi-

tives. Supervised TCL achieves significantly better results
than all other SSL methods. SwAV does use a multi-crop
strategy to create multiple augmentations but is not ex-
tended to supervised setting to use the labels [4].

4.4. Analyzing effects of k; and k; on TCL

As we discussed earlier in Sec. 3.2, k1 helps in increas-
ing the magnitude of gradient from positives while k5 helps
in regulating (increasing) the gradient from negatives. We
verify our claims empirically. We provide values for k; and
ko for all our experiments and insights on how to choose
them in the supplementary.

Analyzing effects of k; We calculate the mean gradient
from all positives (expressions from Eq. (17)) per anchor
averaged across the batch and plot the values for SupCon
loss and TCL loss over the course of training of ResNet-50
on CIFAR-100 for 100 epochs. As evident from Fig. 3a, in-
creasing the value of k4 increases the magnitude of gradient
response from positives. We also analyze how this corre-
lates with the top-1 accuracy in Fig. 3b. As we see for small
values of ki, the top-1 accuracy remains more or less the
same as that of SupCon loss. As we increase it further, the
gradient from positives increase leading to gains in top-1
accuracy. The top-1 accuracy reaches a peak and then starts
to drop with further increase in k. We hypothesize that this
drop is because very large values of k; start affecting the
gradient response from negatives (Eq. (16) and Eq. (10)).
We verify this hypothesis while analyzing k.

Analyzing effects of k5 We calculate the mean gradient
from all negatives (expressions from Eq. (7) and Eq. (16))
per anchor averaged across the batch for the same setting
as above and plot the values for SupCon loss and TCL loss.
As we see in Fig. 3c, TCL loss’s gradient lags behind Sup-
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Supcon vs TCL (at various k1)
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Figure 3. Analysis of effects of the parameters k1 and k2 on TCL loss

Con loss’s gradient by some margin for k&; = 50000 and
ko = 1. This value of k; actually leads to a top-1 accuracy
of 71.8%, a drop in performance. When we start increas-
ing the value of k,, the gradient response from negatives
increase for TCL loss. Fig. 3d shows that by increasing ko
to 3 while £; = 50000, the gap between gradient (from neg-
atives) curves of TCL loss and SupCon loss vanishes. We
also observe that the top-1 accuracy for TCL loss increases
back to 76.2%, the best possible accuracy that we got for
this setting.

5. Conclusion & Limitations

In this work, we have presented a novel contrastive
loss function called Tuned Contrastive Learning (TCL) loss
that generalizes to multiple positives and multiple negatives
present in a batch and is applicable to both supervised and
self-supervised settings. We showed mathematically how
its gradient response to hard positives and hard-negatives
is better than that of SupCon loss. We evaluated TCL loss
in supervised and self-supervised settings and showed that
it performs on par with existing state-of-the-art supervised
and self-supervised learning methods. We also showed
empirically the stability of TCL loss to a range of hyper-

parameter settings.

A limitation of our work is that the proposed loss objec-
tive introduces two extra parameters k1 and ko, for which
the values are chosen heuristically. Future direction can in-
clude works that try making these parameters learnable as
part of the training process so that they are chosen automat-
ically during test time or come up with loss objectives that
provide the properties of TCL loss out of the box without
introducing any extra parameters.

6. Potential Societal Impact

This paper proposes a novel contrastive loss that can help
make discriminative models such as classification models
more accurate and also prove to be helpful in labeling large
amounts of unlabeled data. Hence, this work can find appli-
cations in Al systems used in various different industries.

At the same time, it is important to note that contrastive
learning, in comparison to cross-entropy based learning, re-
quires longer duration of training meaning higher energy
consumption and more carbon emissions. This calls for de-
veloping new learning paradigms that offer the benefits of
contrastive learning but take fewer epochs and less time to
train.
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