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Abstract

Training deep neural networks (DNNs) using traditional
backpropagation (BP) presents challenges in terms of com-
putational complexity and energy consumption, particu-
larly for on-device learning where computational resources
are limited. Various alternatives to BP, including random
feedback alignment, forward-forward, and local classifiers,
have been explored to address these challenges. These
methods have their advantages, but they can encounter dif-
ficulties when dealing with intricate visual tasks or demand
considerable computational resources. In this paper, we
propose a novel Local Learning rule inspired by neural
activity Synchronization phenomena (LLS) observed in the
brain. LLS utilizes fixed periodic basis vectors to synchro-
nize neuron activity within each layer, enabling efficient
training without the need for additional trainable param-
eters. We demonstrate the effectiveness of LLS and its vari-
ations, LLS-M and LLS-MxM, on multiple image classifi-
cation datasets, achieving accuracy comparable to BP with
reduced computational complexity and minimal additional
parameters. Specifically, LLS achieves comparable perfor-
mance with up to 300X fewer multiply-accumulate (MAC)
operations and half the memory requirements of BP. Fur-
thermore, the performance of LLS on the Visual Wake Word
(VWW) dataset highlights its suitability for on-device learn-
ing tasks, making it a promising candidate for edge hard-
ware implementations."

1. Introduction

Currently, stochastic gradient-based optimization
schemes serve as the default method for training deep
neural network (DNN) models. These schemes leverage the
backpropagation (BP) algorithm, enabling the computation
of gradients of the loss function with respect to the trainable
parameters (weights) in the hidden layers. However, BP

ICode available at https://github.com/mapolinario94/LLS-DNN

is associated with high time and memory complexities,
leading to significant energy consumption. For instance, in
a model with L layers and n neurons per layer, BP exhibits
time and memory complexities of O(Ln?) and O(Ln),
respectively. While suitable for offline training in environ-
ments with ample computational resources (such as the
cloud), these computational demands render BP inefficient
for on-device learning on low-power edge devices, where
computation resources are severely constrained [, 24, 30].
Studies such as [!] and [24] highlight the large energy
consumption associated with extensive external memory
accesses and gradient computations in BP. Consequently,
there is a need for hardware-friendly algorithms to facilitate
efficient on-device learning on low-power edge devices.
With this consideration in mind, numerous works have
explored alternatives to backpropagation (BP), trying to
eliminate the need of computationally expensive gradient
calculations associated with BP. Methods like feedback
alignment (FA) and its variant, direct feedback alignment
(DFA), utilize random matrices to propagate error signals
or directly project errors to each layer, offering some reduc-
tion in dependency across layers but still requiring similar
memory demands [5, 18,27]. An alternative to this approach
is proposed by [8], which uses random matrices to project
targets instead of errors, thereby enabling each layer to be
updated independently. Although promising, these meth-
ods do not scale well for deep neural networks (DNNs). In
contrast, [23] proposes a local learning rule that matches
BP performance in large models at the cost of significantly
increasing the number of trainable parameters and compu-
tational complexity. Recent research works have attempted
to replace BP’s backward pass with an additional forward
pass, aiming to enhance biological plausibility, though they
suffer from slow convergence and have not yet proven ef-
fective for deep networks [6, 10]. Additionally, [13] pro-
poses a biologically inspired method using a soft winner-
take-all mechanism to facilitate unsupervised learning in
simpler DNN models. In contrast, [2, 22] and [28] pro-
posed to use auxiliary networks as local classifiers. These
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methods [2, 22, 28] avoid using end-to-end BP by breaking
the problem into smaller pieces and generating error signals
with the aid of such local classifiers per layer or group of
layers. Since these methods necessitate additional layers to
generate the learning signal, we categorize them as hybrids
between local learning and BP.

The aforementioned learning methods often struggle to
scale to complex vision tasks without high computational
costs [0, 8, 13, 18,23,27]. Hybrid approaches using local
classifiers [2,22] offer a better balance for on-device learn-
ing but at the cost of increasing trainable parameters, thus
increasing memory and energy demands. To address this,
we propose a Local Learning rule inspired by brain-like
neural activity Synchronization (LLS). This rule bypasses
intensive gradient calculations of BP and scales to complex
vision tasks and deep networks.

Neuronal activity synchronization in the brain reflects
the correlation of brain signals. Studies in [3,9, 11, 14,21],
have demonstrated that neuronal ensembles in the brain syn-
chronize their activity during cognitive learning processes
or in response to visual stimuli. Inspired from this biologi-
cal process, LLS utilizes fixed periodic basis vectors to syn-
chronize neuron activity within same layers of the model.
Our experiments show that simple periodic functions like
cosine and square enable effective learning in complex im-
age classification tasks. These functions are computation-
ally lightweight, allowing on-the-fly generation on low-
power devices without additional trainable parameters. Fur-
thermore, we explore variations of LLS, such as LLS-M
and LLS-MxM, to enhance performance on more complex
tasks. LLS-M learns to modulate the amplitude of the fixed
basis, while LLS-MxM learns to construct an improved ba-
sis through a linear combination of the fixed basis. Both
variants require minimal trainable parameters, on the order
of O(C) and O(C?), where C represents the number of
classes. Evaluation on public image classification datasets,
including CIFAR10, CIFAR100, IMAGENETTE, TinyIM-
AGENET, and Visual Wake Words (VWW), demonstrates
that our method achieves high accuracy comparable to BP,
with significant reductions in MAC operations, memory
usage, and minimal additional parameters. Notably, our
method’s performance on the VWW dataset underscores
its suitability for on-device learning hardware implemen-
tations.

The main contributions of the paper are as follows:

* A novel local learning rule that utilizes fixed periodic
basis vectors to synchronize neural activity per layer,
achieving high accuracy with reduced MAC opera-
tions, memory usage, and minimal additional trainable
parameters.

* Evaluation of the effectiveness of our method on vari-
ous image classification datasets, demonstrating accu-

racy comparable to BP.

* Demonstration of the suitability of our method for on-
device learning tasks by evaluating its performance on
the Visual Wake Word (VW W) dataset, achieving high
performance with low computational complexity.

2. Background
2.1. Backpropagation (BP)

As noted earlier, the backpropagation (BP) algorithm is
central to deep learning. We explore its mechanics here and
introduce key notations used in this work. A neural net-
work model can be represented as a parameterized func-
tion F'(x; W), where x is the input data and W is the set
of parameters. For an L-layer model, the parameters are
W = {(WO)E_ 1, with WO representing the weights of
the I-th layer. Each layer produces an output, h(!), obtained
by applying a linear transformation over the input h¢~1
based on the parameters W), resulting in an intermediate
representation z(!), followed by a non-linear element-wise
activation function h() = f(z()). Given a loss function
L and a labeled dataset D = {(z;,y;)Y ;}, where x are
the inputs, y the labels, and N the number of samples.
The objective is to find the parameters W that minimize
the loss, i.e., W := argminy + Zf\; L(y;, F(x;; W)).
For this purpose, the conventional approach is to use mini-
batch stochastic gradient descent (SGD), which randomly
samples a mini-batch of data (X,Y") from the dataset to
estimate the gradient of the loss function. Such a learning
algorithm, with a learning rate (7)), has the following update
rule for the parameters:

wh.=w® — Vol 1)

The gradient Vyy,o) £ is computed based on the BP algo-
rithm. BP operates in two phases: the forward pass and the
backward pass. During the forward pass, an mini-batch in-
put X is propagated layer by layer through the model to
obtain a model prediction H%) = F(X; W), and the loss
L(Y, H™) is computed. In this process, all intermediate
representations Z () are saved. Then, in the backward pass,
the chain rule is used to compute the gradients as follows:

oL OHW 9z®

VwoL =550 920 oW
oL & oHD gHO 9z0 P
~ 9HD) ,Hl OHGD 9Z1 oW ®
Here, % is the learning signal obtained by propagat-

ing errors from the last layer (L) to layer [. Additionally,

® o .
%‘g(l) corresponds to the derivative of the activation func-
. o . . .
tion f'(Z"), and 22 is equivalent to the input of the I-th
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layer, i.e., H®1Y From (2), it can be observed that while
the latter two factors on the right-hand side of (2) depend
only on the inputs and outputs of layer [, the learning sig-
nal depends on all successive layers. Therefore, the weight
updates must be sequential (i.e., update-locking problem).
Moreover, the computational and memory complexity of
BP are O(Ln?) and O(Ln), respectively, with n represent-
ing the average number of neurons per layer.

2.2. Local learning for DNN

The non-locality and update-locking features of BP,
among others, have been argued as reasons that make BP
unlikely as the learning rule used by the brain [19]. Dif-
ferent local learning mechanisms that may not rely on the
propagation of errors using symmetric weights have been
explored in many works [6, 8, 10, 13,27]. Here, we refer to
local learning as learning rules that compute weight updates
(AW @) based only on inputs (H"~1), outputs (Z1),
and some other global factors. An example is the DFA
method [27], which uses random feedback weights (RD)
to produce the learning signal. In this method, % in (2)

is replaced by 5 I‘?[fm R®. A similar method is proposed
by [8], denoted as DRTP, which uses fixed random learning
signals produced by propagating the labels instead of error.
In other words, the learning signals are Y R"). Other ap-
proaches, such as those by [0, 10], use two forward passes
to produce the learning signal, or produce a learning signal

based on a soft competition mechanism as proposed by [ 13].

2.3. Neural activity synchronization in the brain

Neural activity synchronization refers to the correlated
neuronal signals across different regions of the brain.
Groups of neurons that co-activate in response to sensory
stimuli or during spontaneous activity are often referred to
as ensembles. These ensembles play a crucial role in vari-
ous cognitive functions, including the processing of visual
stimuli in the cortex [21], memory formation [! 1], and be-
havior regulation [3]. In addition to these roles, modulations
in oscillatory neuronal activity are commonly observed
when humans engage in cognitive tasks. For instance, as
highlighted by [9], the complex, high-dimensional dynam-
ics of neuronal activity can collapse into low-dimensional
oscillatory modes, which in turn facilitates memory en-
hancement and learning. This synchronization not only
simplifies the representation of neuronal dynamics but also
captures both linear and non-linear aspects of neuronal in-
teractions. Drawing inspiration from these biological pro-
cesses, we propose a local learning rule (LLS) that employs
fixed periodic vectors for each class to synchronize neural
activity within the same layer of a neural network. This ap-
proach is intended to enhance the efficiency of learning in
artificial systems. By using periodic vectors, the LLS en-
courages groups of neurons, distributed periodically within

the same layer, to exhibit high activity in response to spe-
cific visual stimuli (such as images of a particular class).
This design is inspired in the concept of neuronal ensem-
bles within artificial neural networks.

3. LLS: Local Learning Rule inspired by Neu-
ral Activity Synchronization

LLS aims to synchronize neural activity within the same
layer while minimizing computational complexity and ad-
ditional trainable parameters. We emphasize three core as-
pects of LLS: (1) locality, (2) update-unlocking, and (3)
minimal parameter requirements.

First, LLS operates locally within each layer, updat-
ing synaptic connections (W) based on local inputs
(H=1), outputs (H®"), and generated learning signals.
The locally generated learning signals are obtained by pro-
jecting H" onto a set of fixed periodic basis vectors B(),
which align with specific classes to optimize layer perfor-
mance. Local operation reduces computational overhead of
computing the weight gradients.

Second, LLS’s update-unlocking feature is a by-product
of locality and enables independent weight updates per
layer, eliminating the need to save the output activations
of all the layers in the model during training. This results
in a memory complexity of O(nmaz), Where 7y,q, repre-
sents the maximum number of neurons in a layer. Unlike
methods employing auxiliary local classifiers, LLS requires
no additional trainable parameters, utilizing fixed periodic
vectors for alignment. However, for tasks with numerous
classes, relying solely on fixed vectors may present chal-
lenges, as discussed in Section 4. To address these limita-
tions, we also propose LLS-M and LLS-MxM as variations
of LLS. LLS-M enables learning of optimal modulation for
fixed basis vectors, while LLS-MxM learns to form a supe-
rior basis via a linear combination of fixed vectors. Both
variations entail minimal additional trainable parameters on
the order of O(C) and O(C?), respectively, where C' de-
notes the number of classes in a task.

3.1. Technical details

The hidden layers are trained based on the alignment of
their output activations (H () with predefined set of fixed
basis vectors (B"), as shown in Fig. 1. Alignment is mea-
sured as the inner product of a layer’s output activations and
the basis. To encourage synchronicity in neural responses
among neurons, the fixed basis vectors are constructed us-
ing periodic functions g(f,t) = g(f,t + 1/f), where f
represents spatial frequency.

For a classification problem with C' classes, each class
¢ has its own vector Bél) = g(f.,tV) where t©) =
[1,2,3,---,TW], T is the length of I-th layer’s output
(Hi(yl:)) and f. is a fixed frequency for class c. Note that
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Figure 1. Overview of LLS. Weight updates for the [-th hidden layer within an L-layer neural network are derived via per-layer minimiza-
tion of cross-entropy loss (Eg?E) on the projection of output activations (H )y over a fixed basis of periodic vectors B O je, HOBT.
This produces a local error signal as the difference between the softmax of the projection (P®M) and the one-hot encoded labels Y.
Subsequently, this error signal is multiplied with the fixed basis to generate the learning signal. Weight updates are then determined by
multiplying the locally generated learning signal with the layer’s inputs and outputs. Consequently, LLS enables independent layer updates
based on local information, resulting in low time and memory complexities of O(LCn) and O(nmaz ), respectively. It is noteworthy that

the fixed basis B®

comprises C' vectors, where C represents the number of classes for the classification task. Furthermore, the fixed basis

vectors are constructed using periodic functions g(fc,t) = g(fe,t+ 1/ fc), where f. denotes the spatial frequency associated with class c.

these basis vectors have the same frequencies for all lay-
ers but with different lengths, also Bg)
B® ¢ ROXTY  The weight updates can be derived as a
per-layer minimization of cross-entropy loss (£(") on the
projection of the activations over the fixed basis (H(V) BT),
as illustrated in Fig. 1. Specifically, the per-layer cross-
entropy loss is described as follows:

is the c-th row of

N
1
£ = - Z Y, log(P{))T

D

Here, N is the number of samples in the mini-batch, ¢, is
the class index for the n-th sample in the mini-batch, and

P,E” is probability vector obtained of applying the softmax

3)
exp(H(l).B(l)T)

¢ exp(H BT

C

function over the projection vector " BUT. Solving the
per-layer minimization problem, miny, o £O(H®W,Y),
results in the following expression for weight updates on
the [-th layer:

AWO — (( PO _

(5

Y)BO f/(Za)))T -1

= \

BO & f/(Zm))T -1

= \

“)

Here, ® is the element-wise product. From Equation (4),
it is evident that the weight updates for each layer [ de-
pend solely on the local variables of that layer, including
its inputs, outputs, and the set of fixed basis vectors. Con-
sequently, all layers can be updated independently of the
rest of the model. These independent updates are the rea-
son why the memory complexity of LLS depends only on
the largest layer (the layer with the highest number of neu-
rons), in contrast with end-to-end training methods that re-
quire memory proportional to the number of neurons in the
entire model. Moreover, since LLS’s learning signals are
generated locally, the time complexity to generate them for
all the layers is proportional to the number of neurons per
layer and the number of classes, that is O(LCn).

The selection of frequencies (f.) for each class is
done to maintain sufficient distance among frequencies
of different classes to avoid interference. The range of
available frequencies is defined by the length of H, . o
Hence,frequencies can be assigned to be equally dlstrlbuted
in that range or randomly as long as they do not overlap. In
practice, we reduce the dimensions of H, O of convolutional
layers by using average pooling, followed by flattening be-
fore projecting it onto the basis B"). This helps both in
faster convergence of the method and in reducing the num-
ber of MAC operations.
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3.2. Variations of LLS

So far, we have discussed LLS based on utilizing a ba-
sis of periodic vectors Bi(i), generated from a fixed periodic
function g(-). However, such a base may not always be op-
timal for a given task. For instance, the amplitude of the
vectors could be too large making it difficult for the algo-
rithm to converge. Additionally, in problems with a large
number of classes, the restriction to fixed periodic vectors
may impede the model’s ability to learn semantics in the
data, such as grouping similar classes.

To address these concerns, we propose two variations of
LLS: LLS-M for learning the appropriate modulation of the
fixed basis (B(), and LLS-MxM for learning to construct a
new basis as a linear combination of the original fixed basis.

LLS-M: In this variation, the new basis is simply a mod-
ulation of the original fixed basis, defined as DO =
MOBW where M® is a diagonal matrix of trainable pa-
rameters with dimensions equal to the number of classes,
ie, M e RE*C. Weight updates for LLS-M follow (4),
with B replaced by D). The updates for M) are com-
puted as follows:

AMY =1 iE(l)T(H(l)B(l)T) 5)
N

Here, I € RY*C is the identity matrix and ® is the
element-wise product.

LLS-MxM: Here, the new basis vectors (D) are ob-
tained as a linear combination of the original fixed periodic
vectors: D) = M®BW® where M®) e RE*C with all
the C' x C' are trainable parameters. Weight updates are ob-
tained following (4), with the basis replaced by D). Simi-
lar to LLS-M, updates for the matrix M ) are computed as
follows:

1
AM®® — NE(I)T(H(I)B(I)T) (6)

4. Experimental evaluation

In this section, we assess the efficacy of LLS and its vari-
ations across several image classification datasets, which in-
clude MNIST [17], FashionMNIST [29], CIFARI10 [15],
CIFAR100 [15], IMAGENETTE [7], TinyIMAGENET
[16], and Visual Wake Words (VWW) [4].

We primarily evaluate the proposed learning rules using
three models: a 5-layer CNN (SmallConv), a VGGS8 [22],
and MobileNets-V1 (MBNet) [12]. Detailed descriptions
of each model are provided in Supplemental Material 1.1.
Additionally, information regarding hyperparameters, data
pre-processing, and optimizer settings is provided in Sup-
plemental Material 1.2.

4.1. Effect of different basis in learning

First, we compare the effect of different functions g(-)
for generating the basis B(). We consider two simple pe-
riodic functions: cosine (¢ = cos(f.t)) and square wave
(9 = sign(cos(f.t))). Both functions offer the advantage
of being easily generated on-the-fly or require storage with
minimal memory overhead due to their periodicity. Addi-
tionally, we investigate the scenario where g(-) is a pseudo-
random number generator, resulting in a random fixed vec-
tor Bi(’l:). The results are evaluated on two models, Small-
Conv and VGGS8, across four image classification datasets
of increasing complexity. Each model undergoes five train-
ing iterations with different random seeds, and the results
are reported in Table 1.

We observe that employing any of the three fixed vector
bases with LLS yields high accuracy across all four vision
tasks. Notably, for the SmallConv model, using LLS with a
square basis function present the best accuracy results, fol-
lowed by cosine basis. In contrast, for the VGG8 model,
the random basis exhibits better performance than the peri-
odic basis, with square still performing better than cosine.
This discrepancy may be attributed to the increased com-
plexity of per-layer feature representations in deeper mod-
els, where a random vector offers more degrees of freedom
for such representations. However, it is important to note
that a random vector is less hardware-friendly, as it requires
specialized pseudo-random number generators, leading to
energy and memory overhead, as discussed in [5]. There-
fore, in the subsequent sections, we primarily focus on LLS
using a square g(-) function (LLSquare)-

Moreover, employing a periodic function, such as a
square function, induces layer neurons to synchronize with
the frequency of the basis function. This synchronization
is demonstrated in Fig. 2, where the activations for differ-
ent classes align with the spatial frequencies of the basis
function. Here, the spectral decomposition is obtained by
applying Fourier transform in the spatial dimension to both
basis vectors (Bl(f:)) and layer output activations (h(")). As
shown in Table 1, synchronization has a beneficial effect on
accuracy for small models, such as SmallConv. A reason
for this is that such models need to discriminate between
classes by transforming inputs through only a few layers.
Thus, aligning the layers’ outputs to periodic vectors might
be easier than aligning random vectors.

4.2. Comparison with local learning algorithms

In this section, we compare LLSquae With other lo-
cal learning methods that exhibit similar time and memory
complexities. These methods include DFA [27], DRTP [&],
and PEPITA [6]. For this comparison, we use the MNIST,
CIFAR10 and CIFAR100 datasets, with results shown in Ta-
ble 2.
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Figure 2. Neural activity synchronization induced by learning rule LLSsquae On the VGG8 model’s 4th layer output (h™) for classes 0
and 1 from the IMAGENETTE dataset. The layer’s response exhibits spatial periodicity coinciding with the periodic function selected as

a basis (B<4)).

Table 1. LLS’s performance comparison with different function g(-) to generate the basis b®. Test accuracy mean and std are reported

over five trials.

Function g(.) Model MNIST FashionMNIST CIFAR10 IMAGENETTE
Cosine 99.50 £ 0.02 89.57 £ 0.22 75.82+£0.39 78.03 £ 0.35
Square SmallConv  99.50 £ 0.02 90.54 +0.23 77.79 +£0.31 79.02+£0.76
Random 99.38 £ 0.03 87.30 £ 0.18 74.19 £ 0.57 71.70 £ 1.45
Cosine 99.52 £ 0.02 93.04 £0.17 86.92 +£0.27 84.85£0.11
Square VGGS8 99.564 £ 0.01 93.54 + 0.06 88.64 +0.12 85.62 +£0.24
Random 99.70 £ 0.02 93.77+£0.08 90.45 £ 0.09 87.09 +0.28

We observe that training the SmallConv model with
DFA, DRTP or PEPITA resulted in low performance or did
not converge at all. For DFA, performance improved by in-
creasing the number of channels threefold (SmallConvL).
Consequently, we used SmallConvL for reporting results
with BP and LLS. However, for DRTP and PEPITA, in-
creasing number of channels did not yield satisfactory re-
sults, and hence, we opted for reporting accuracy of each
task as reported in the original papers.

As shown in Table 2, LLS demonstrates the best perfor-
mance among the three local learning methods under con-
sideration. In terms of accuracy, LLS achieves results close
to BP, while maintaining significantly lower time and mem-
ory complexities compared to BP. In fact, among all the
methods in Table 2, only DRTP exhibit a time and memory
complexities comparable to LLS. Furthermore, it is worth
noting that while DFA, DRTP, and PEPITA do not scale
well for deeper models and in many cases require wide
DNNss to converge [26], LLS performs well on deeper mod-
els, as demonstrated in Section 4.1.

4.3. Performance comparison on deeper models

In this section, we conduct a performance comparison of
LLS and its variations on five image classification datasets:
CIFAR10, CIFAR100, IMAGENETTE, TinyIMAGENET,
and VWW. These datasets cover a wide range of classifi-
cation tasks, including low to high-resolution images and
tasks with few to multiple classes. Notably, we emphasize
the experiments conducted on the VWW dataset, as it holds
significance for edge vision applications and serves as a rel-

evant use case for on-device learning [4]. The comparison
considers four metrics: accuracy, the number of MAC op-
erations required to compute the learning signal, the peak
memory usage, and the number of additional trainable pa-
rameters needed by each method. We compare our method
against BP and the local losses method [22]. Note, local
losses method employs a linear classifier per layer.

CIFAR10 and IMAGENETTE First, we examine tasks
with a few number of classes and different image resolu-
tions, such as CIFAR10 and IMAGENETTE. As depicted
in Table 3, LLS achieves high accuracy, closely following
BP and Local Losses. Note, that LLS achieves such high
accuracy with approximately 300 x fewer MAC operations
and half the memory usage compared to BP, and without
requiring additional trainable parameters. To further nar-
row the accuracy gap, we explore variations of LLS, such as
LLS-M and LLS-MxM. Both variations improve the accu-
racy to be closer to BP with almost no increase in MACs and
memory usage. Note, however, the accuracy improvement
comes at the cost of employing some additional trainable
parameters. It is important to note that LLS-MxM still re-
quires approximately 100x fewer trainable parameters than
Local Losses.

CIFAR100 and TinyIMAGENET For tasks with hun-
dreds of classes such as CIFAR100 and TinyIMAGENET,
LLS exhibits significant accuracy drop compared to BP.
This is attributed to the orthogonal nature of the periodic
vectors, which compels the model to represent each class
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Table 2. Comparison with local learning algorithms (Test accuracy mean and std are reported)

Method Time Memory Model MNIST CIFAR10 CIFAR100
BP (baseline) O(ILn?)  O(Ln) SmallConvL  99.62 +0.020 87.57£0.13 62.25 £0.29
DFA O(LCn) O(Ln) SmallConvL  97.90 £0.17  71.53£0.38 44.93 +£0.52
[27] 98.98 £0.02 73.10£0.50 41.00+0.30
DRTP O(LC’n) O(Nmaz)  [8] 98.52£0.15 68.96 £0.45 -
PEPITA (0] O(Nmaz [6] 98.29 £0.13 56.33£1.35 27.56 £ 0.60
LLSsquare (Ours) OgLC’n OEnmawg SmallConvL  99.57 +0.03 84.10 £ 0.27 55.32£0.38

Table 3. Performance comparison on image classification datasets. Accuracy mean and std are reported over five trials, the additional
params refers to additional trainable parameters, and #MAC is estimated for the number of ops required to generate the learning signal

(ontr)-
Accuracy #MAC! Memory' Additional
Method Model (mean+std) (x10%) (MB)y params
CIFAR10
BP VGG8  94.124+0.12 719.33 1082 -
Local Losses VGG8  91.93 +0.07 2.56 576  1.02 x 10°
LLSquare (Ours) VGG8  88.64 +0.12 2.46 574 0
LLS ?\/I ware (Ours) VGG8 90.43 +£0.24 2.46 574 70
LLS- Mx square (Ours)  VGG8  90.89 £ 0.09 2.46 574 700
IMAGENETTE
BP VGG8 90.92 +0.27 11477.81 15858 -
Local Losses VGG8  88.06 +0.12 36.48 7319 1.02 x 10°
LLSquare (Ours) VGG8  85.62 +0.24 36.38 7318 0
LLS ?\/Isquare (Ours) VGG8  86.60 + 0.37 36.38 7318 70
LLS-MxMgquare (Ours)  VGG8  87.29 4 0.29 36.38 7319 700
CIFAR100
BP VGG8  73.69 +0.39 719.40 1083 -
Local Losses VGG8  69.26 £+ 0.36 5.33 598 1.02 x 108
LLSquare (Ours) VGG8 58.84 +0.33 4.30 577 0
LLS-Mquare (Ours) VGG8  62.55 +0.24 4.31 577 700
LLS-MxMgquare (Ours)  VGG8  68.814+0.19 4.51 578 0.70 x 10°
TinyIMAGENET
BP VGG8 61.10+:0.25 2871.20 4048 -
Local Losses VGG8  54.00 +0.11 15.18 1971  2.04 x 10°
LLSquare (Ours) VGG8  35.99 +0.38 13.13 1928 0
LLS'quuare (Ours) VGG8  41.89 +0.20 13.14 1928 1400
LLS-MxMgguare (Ours)  VGG8  51.41 4 0.48 13.97 1932 0.28 x 10°
Visual Wake Words (VWW)

BP MBNet 88.49 + 0.28 181.83 3036 -
Local Losses MBNet 82.49 +0.17 178.28 730 0.28 x 10°
LLSquare (Ours) MBNet 81.91 +0.16 178.23 729 0
LLS-Mquare (Ours) MBNet  82.71 4 0.42 178.23 729 28
LLS-MxMjgguare (Ours) MBNet  83.66 + 0.21 178.25 729 560

1. # MAC is estimated for a batch size of 1 and GPU memory is measured for a batch size of 128.

orthogonally, even when semantically some classes have
similar representations. Essentially, the basic form of LLS
may not effectively capture semantics. Additionally, in-
creasing the number of classes also increases the number
of frequencies used to generate the fixed basis, leading to
overlapping frequencies. We applied LLS-M learning for
the above problems. LLS-M improves the accuracy, but
only marginally, as the problems associated with orthogo-
nality of the bases could not be completely solved by sim-
ply modulating the bases. In contrast, LLS-MxM learns to

create a better basis as a linear combination of the original
basis, offering a larger improvement and bringing the ac-
curacy closer to BP, as show in Table 3. To further verify
that LLS-MxM can actually learn semantics, we analyze the
learned linear combination matrix (M ()) used to create the
new basis. For instance, for a VGG8 model trained on CI-
FAR100, we project the M () matrix into a 2D space using
t-SNE [20] using the twenty super-classes provided in the
dataset as ground truth. The results of this projection are
illustrated in Fig. 3, wherein vectors representing similar
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Figure 3. Projection of the linear combination matrix M D of the fixed basis BY using t-SNE. M @ is obtained after training a VGGS8
model with LLS-MxM on CIFAR100. The results provide evidence that our learning rule can learn better basis (as a linear combination of
a fixed basis) and can encode semantics within it. Points are colored using the twenty super-class labels provided in CIFAR100.

Pred : Person Pred : Person

Pred : Not — Person

Figure 4. Visual explanations, obtained with the Grad-CAM
method, for predictions of the MBNet model trained with LLS-
MxM on the VWW dataset. It can be observed that our method al-
lows the model to learn high level image features to discern about
the presence of a person or not in an image.

classes are grouped together. The accuracy improvements
shown in Table 3 and the clustering of similar classes illus-
trated in Fig. 3 demonstrate the ability of LLS-MxM to en-
code semantic knowledge in the formation of the new basis.
Furthermore, it is worth noting that LLS-MxM requires ap-
proximately 200 x fewer MACs and half memory compared
to BP, and approximately 10x fewer trainable parameters
than Local Losses.

Visual Wake Words (VWW)  Since our learning rule tar-
gets on-device learning scenarios, we tested the method on
the VWW dataset using a MobileNetsV1 model. Note, the
task and the model are suitable for on-device learning. The
results are shown in Table 3. For this task, LLS-M and
LLS-MxM outperforms the Local Losses method in all met-
rics (accuracy, MACs, memory, and trainable parameters).
Compared to BP, LLS, LLS-M and LLS-MxM show com-
petitive accuracy with fewer MACs and 4x lower memory
usage. Moreover, to understand the model’s learning ability,
we used the Grad-CAM method [25] to obtain visual expla-

nations of the parts of the image most relevant for a par-
ticular prediction. As shown in Fig. 4, the MBNet model
trained with LLS-MxM successfully learns high-level im-
age features indicative of the presence of people in a given
frame. This provides evidence that our method allows the
model to learn complex representations.

5. Conclusions

In this work, we introduced a novel local learning rule,
LLS, inspired by the synchronization of neural activity ob-
served in biological systems, which is associated with mem-
ory formation and cognitive learning. LLS utilizes fixed pe-
riodic basis vectors to synchronize the activity of neurons
within the same layer. Moreover, the deliberate choice of
simple periodic functions, such as cosine and square func-
tions, enables the generation of such basis easily and on-
the-fly on low-power devices without imposing significant
hardware overhead. Experimental validation demonstrates
that LLS and its variations (LLS-M and LL.S-MxM) achieve
high accuracy comparable to BP across various image clas-
sification datasets, including CIFAR10, CIFAR100, IMA-
GENETTE, TinyIMAGENET, and VWW. Remarkably, this
high accuracy is attained with significantly fewer MAC op-
erations, reduced memory usage, and a minimal number
of additional trainable parameters. Furthermore, employ-
ing the Grad-CAM method for visual explanations reveals
that LLS and its variants can capture high-level information
relevant to predictions. In summary, the demonstrated high
accuracy and efficiency of LLS make it well-suited for on-
device learning applications, particularly in scenarios where
computational resources are severely constrained.
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