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Figure 1. Katz et al. [9] as well as its follow-up work [13] introduce methods for visibility estimation on synthetic object scenes without
quantitative analysis due to the lack of ground truth. Biasutti et al. [2] focus on outdoor scenes and provide PCVD, the first dataset for
point visibility estimation manually annotated on real data (by comparing the RGB image with the projected point cloud) for three different
viewpoints. In this work, we introduce IRIS-VIS, a dataset for visibility estimation on real complex indoor data. This indoor scene enables
challenging visibility estimation due to the presence of small and detailed industrial equipment. A ground truth can be generated from any
viewpoint inside the scene thanks to the provided CAD model.

Abstract
Point cloud visibility estimation is fundamental as it is

useful for many computer vision applications including sur-
face reconstruction, 3D segmentation from paired images
and point densification. Previous works showed outstand-
ing results on simple object and outdoor datasets. However,
unlike the previously studied scenes, the most challenging
environments are those providing a high amount of object
points in the same direction, typically in complex indoor
scenes. In this kind of environments, due to the lack of real
data ground truth, quantitative analysis are either missing
or based on simulated data. In this work, we present IRIS-

VIS (Industrial Room In Saclay - VISibility), a new dataset
for point visibility estimation in an indoor environment. It
is a high complexity scene due to the large variety in the
shape, size and orientation of the objects. To our know-
ledge, this is the first dataset on real indoor data providing
a dense LiDAR station-based point cloud along with a well-
fitted CAD model. The latter is useful to compute automat-
ically, quickly and accurately the visibility from any given
viewpoint, enabling evaluations under infinite conditions.
We propose new metrics for the visibility estimation task
and evaluate state-of-the-art methods in both sparse and
dense conditions with the proposed dataset.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Linking the visible objects to a given viewpoint is a cru-

cial step for 3D tasks. For example, it is required for cloud
rendering and 2D-to-3D segmentation masks projection.

Due to the discrete nature of a point cloud, all points
can be seen from a given point of view. As illustrated in
Figure 2, the objective of point visibility estimation is to re-
move the points that are not visible in the real scene from
this point of view. More explicitly, the problem can be for-
mulated as a binary classification where every point receives
a predicted label “visible” or “hidden”.

The particularity of complex indoor environments in
the visibility estimation context, compared to the available
outdoor datasets, is the higher quantity of objects behind
each other. This is why some methods, designed specific-
ally for simple outdoor scenes, tend to perform poorly in-
door [2]. Moreover, the main difference between classic in-
door scenes or object scenes with the so aptly named “com-
plex” indoor environments, is the diversity in the shapes,
size and orientations of the objects. In particular, we in-
troduce IRIS-VIS (Figure 1), the first dataset in industrial
environment providing a dense LiDAR station-based point
cloud and a handmade CAD model. This challenging scene
provides many thin and large pipes, masking partial or
total parts of the equipment in multiple directions. It also
contains many small and detailed objects such as valves,
gauges, railings, that can be difficult to manage. We think
that this dataset will be useful for many computer vision
tasks including visibility estimation.

The specificity of our dataset, compared to the previous
ones is: 1) The real input point cloud including the spe-
cific noise from acquisitions that cannot be fully reproduced
on synthetic data. 2) The complexity of the scene induced
by the industrial equipment and piping. 3) The well-paired
CAD model which we can use as the reference for the vis-
ibility. 4) The automatic and fast ground truth computation
from any given viewpoint.

Experiments on our dataset show that the state-of-the-art
methods struggle to estimate the visibility on some chal-
lenging locations, specifically on objects of non-regular
shapes, at the borders of the visibility range.

Our contributions can be summarized as follows:

• IRIS-VIS: a new dataset for visibility estimation in a
complex indoor industrial environment on real data,
coupled with a handmade CAD model.

• The first quantitative evaluations for point visibility es-
timation on real indoor data. New metrics, more chal-
lenging for this task, are also designed.

• A framework to generate a ground truth from any
viewpoint and to reproduce the results.

Figure 2. Visibility estimation problem: because of the discrete
nature of point clouds, Red points can be seen from the viewpoint
while they should be hidden when considering the structure of the
object.

2. Related Work

Some previous works address the problem of point vis-
ibility estimation. However, most of them focus on simple
objects or outdoor datasets, which are not as challenging
due to the low variability in the object-viewpoint distance.
In particular, it is important to remark that, as far as we
know, no quantitative evaluations are given on real complex
indoor scenes.
Nature of the datasets. First, we should point out that
a ground truth for point visibility can be deduced from
any surface by simple raycasting or rasterization strategies.
Datasets for visibility estimation can be separated into two
main categories depending on whether the input point cloud
is simulated or real. Synthetic clouds usually come from
point sampling on 3D models or are generated from RGB,
RGB-D images [12, 18] with photogrammetric and align-
ment tools, such as SfM [17], which output a sparse cloud,
and can be coupled with a point densification method [11].
In both cases, the ground truth is inherent, obtained by con-
struction. However, the main drawback of these data is that
the acquisition noise, useful to evaluate the methods in real
conditions, cannot be reproduced. On the other hand, for
datasets with real point clouds, coming from acquisitions,
the ground truth needs more work to obtain. It can be human
annotated by comparing the projected cloud with RGB im-
ages such as in [2], but this process is very time-consuming.
The visibility can also be deduced from a handmade 3D
model or with automatic surface reconstruction on a denser
point cloud depending on the tolerance. In our case, the
point cloud comes from real station-based LiDAR acquisi-
tions and the visibility is given by the CAD model.
Scene. The structure of the scene is very important for chal-
lenging visibility estimation. Some methods [8, 9, 13] work
on simple object scenes without ground truth. In outdoor,
Biasutti et al. published PCVD [2], the first dataset on real
data with human annotated visibility. However, due to the
structure of these street scenes and the LiDAR acquisition
located on a car, this dataset is quite simple because the
points-to-view distance is not very variable. In real indoor
scenes, no quantitative evaluation is given. Many data com-
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ing from 3D models or acquisitions could be processed as
previously described. However, most of the available data
is located in classic and usual rooms such as in [1, 3, 4, 22].
Due to the industrial environment containing various and
large piping as well as small and detailed equipment, IRIS-
VIS stands out for its complexity. Table 1 compares our
dataset with PCVD, the only previously available dataset
specifically designed for visibility estimation.

PCVD [2] IRIS-VIS (ours)

# Views 3 Unlimited
# Points 106 2× 109

Scene Streets (outdoor) Industrial (indoor)

Table 1. Quantitative information on visibility estimation datasets.

Methods. Two categories emerge from the literature: meth-
ods based on surface reconstruction and those that are
not. Both categories contain traditional and deep learn-
ing based approaches. Some methods [2, 8, 9, 13] present
simple and intuitive ideas without mesh computation. Other
methods like [15, 19] estimate the visibility in classic in-
door scenes using convolutional neural networks on depth
maps provided by RGB-D images datasets [12, 18]. Sur-
face reconstruction approaches include geometric triangula-
tion methods [5, 10], continuous volumetric radiance fields
(NeRF [14] and variants) and implicit function based on
kernels estimation such as NKF [21] and NKSR [6]. Note
that some of these methods require the normals as input in
addition to the point cloud. Such normals can be estimated
using classic tools. NKSR also outputs the refined estim-
ated normals of the points in addition to the surface.

3. The IRIS-VIS dataset

IRIS-VIS provides a dense LiDAR point cloud coupled
with a handmade CAD model that could be useful for many
different tasks including 3D visibility estimation. We first
present the data and their challenging environment, specify-
ing the way they were obtained. Then, we discuss their re-
liability for our task and describe the automatic processing
that allows us to compute the ground truth from any view-
point.

3.1. Scene and raw data

Data were acquired in the Thermofrigopumps and En-
ergy Storage Tanks (TEST) scene, a large environment of
530 square meters (Figures 3 and 4). It contains very de-
tailed objects with non-regular shapes and piping of vari-
ous sizes in many different directions. Figure 5 presents
the given point cloud and CAD model illustrating their fine
pairing. Acquisition and modeling were done following the
processing steps discussed by Hullo et al. [7].

Figure 3. Thermofrigopumps and Energy Storage Tanks (TEST)
scene. It includes large and thin rotating pipes with different kinds
of junctions, such as T, U and reductions, as well as small and com-
plex equipment with detailed shapes such as valves and gauges.

Figure 4. LiDAR point clouds acquired from 67 stations represen-
ted by triangles. The merged point cloud contains more than 2.1
billion points and covers the whole TEST scene (530m2).

Point cloud. The cloud comes from multiple station-based
LiDAR acquisitions, whose positions are illustrated in Fig-
ure 4. Classic preprocessing steps have been applied to
align and merge the point clouds, and remove the outliers.
The resulting cloud is of top-quality regarding its very high
density, low noise and accuracy of 3 σ = ±2 cm. The cloud
contains line patterns that are specific to LiDAR acquisi-
tions. Also, the density is variable according to the number
of stations from where the points are visible and their dis-
tances, leading to holes where objects cannot be seen. These
observations can be seen in Figure 6.
CAD model. The CAD model is reconstructed close to
the point cloud following a classic segmentation and adjust-
ment procedure in a semi-automatic way. The tolerance for
the reconstruction is 2.56 σ = ±2 cm, which we consider to
be of good quality given the complexity of the TEST scene.
Every type of equipment is represented by a standard 3D
model, adjusted to be as close as possible to the reality. Par-
ticular attention has been given to the pipes to represent the
delicate junctions, elbows of different sizes with respect to
the point cloud. The CAD model and the underlying mesh
are illustrated in Figure 5.
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(a) (b)

(c) (d)
Figure 5. Raw data. (a) Point cloud. (b) CAD model. (c) Example
of the mesh given by the CAD model containing pipes and valves.
(d) Mesh and point cloud.

Points-mesh consistency. Despite its quality, the CAD
model still presents inconsistencies with the point cloud
through several aspects. First, some minor objects, most of
them temporarily present in the scene during acquisitions,
are visible in the point cloud but not included in the CAD
model. Secondly, the 3D templates of the equipment do
not represent completely the complex shapes of the objects
while they are well reflected in the point cloud (e.g. Fig-
ure 6 the handwheel is represented by a disk). Third, many
holes in the point cloud, due to the lack of visibility from
the stations, have been filled by the CAD modeling. Also,
some points can be slightly inside or outside the associated
mesh.

3.2. Data processing for point visibility

As the CAD model is reconstructed close to the point
cloud, we can use the derived mesh as the reference for
the visibility. However, as mentioned previously, the
model presents inconsistencies with the point cloud. Us-
ing it directly for visibility estimation, would lead to miss-
classification in the ground truth. To mitigate this problem,
we process the data automatically in three steps:

1. Points-to-mesh pairing. We remove the points that are
too far from the mesh (namely 3cm). Given the precision
of the CAD model, this step removes objects, or parts, that
are either not modeled or not well-aligned with the model.
The resulting point cloud becomes the input for visibility
estimation.
2. Mesh-to-points pairing. Triangles too far from the point

(a) (b)

(c) (d)

Figure 6. Initial mesh (violet), corrected mesh (orange) and points
on an elbow (a, b) and a valve (c, d). LiDAR acquisition patterns
and noise can be seen in (a) and (b). Note that the points located
at the angle of the elbow are well covered by the mesh despite
the appearance. The pink color is the combination of violet and
orange. See Section 3.2 for more details.

cloud are discarded (3cm). Note that, as shown in Figure 5,
the mesh triangles are large compared to the size of the ob-
jects, leading to a bad pairing because most of the triangles
are kept. To handle this, we divide them into smaller tri-
angles before elimination, with care so as not changing the
global shape of the mesh. All edges that are longer than
a threshold (here 2cm) are iteratively split into two equals
parts. Figure 6 compares the mesh before and after mesh-
to-points pairing.
3. Raycasting. The ground truth is deduced from the mesh
by raycasting from the viewpoint to every point in the input
point cloud. As shown in Figure 7, each point is set as vis-
ible or hidden depending on the distance to the first hit-point
along the ray (namely 3cm).

Figure 7. Visibility condition for the ground truth. The points
and triangles are respectively part of the input point cloud and the
mesh. Rays are cast from the viewpoint to every points. The points
that are close enough to the first hit-point are set as visible (black),
the others are set as hidden (red).
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Threshold values were chosen in accordance with the tol-
erances on the raw data and qualitative visualizations of the
ground truth. We see in Figure 6 that the pairing correc-
tion fixes the discrepancies between the point cloud and the
CAD model to the previously given confidences. In partic-
ular, the holes in the cloud due to the occlusions from the
acquisition stations and the fine structures, such as valves,
are matched with the corrected mesh.

Density Sparse - 2% Dense - 10%

# Points 13 534 572 67 672 868
% Visible 34.99 35.00

Table 2. Quantitative information on the experiment clouds. We
use three clouds, covering in total 30% of the whole TEST scene
(∼180m2), and nine viewpoints whose ground truth has been
computed following Section 3.2. Two point densities are sampled
from the extremely dense IRIS-VIS point cloud.

4. Methods for point visibility estimation
In this section, we present the state-of-the-art methods

for point visibility evaluated on the proposed dataset.

4.1. Point visibility using mesh reconstruction

The most intuitive solution to visibility estimation is to
render the point cloud, similar to how the ground truth is
computed for our dataset in Section 3.2. This however re-
quires knowing the surface associated to the points, some-
thing that is usually not available in practice.

Song et al. proposed Vis2Mesh [19], a surface recon-
struction method based on the visibility estimation from
multiple camera views and graph-cut merging to compute
the mesh. In the same way as VisibNet [15], the visibility is
predicted using deep convolutional neural networks taking
as input the projected depth maps over the 2D views. These
networks, variants of the U-net [16], are trained with the
supervision of visibility maps obtained from a 3D model.
Vis2Mesh can be used in two different ways to mitigate our
task: using the neural networks to estimate the visibility
in multiple directions around the viewpoint or by simple
raycasting over the resulting mesh. In this work, we chose
the more practical second option.

Neural Kernel Surface Reconstruction (NKSR), pro-
posed by Huang et al. [6], is one of the state-of-the-art meth-
ods for local mesh estimation that focuses on generalization
capabilities and noise robustness. Similar to [21], the sur-
face is encoded as the zero level set of an implicit function
defined as the weighted sum of kernels, i.e. positive-definite
basis functions. To improve the scalability while estimating
precise models, Huang et al. use a sparse voxel hierarchy to
support the kernels. This voxel hierarchy is predicted, from
the input point cloud P and the set of normals N associ-

ated to the point cloud, at L levels using a sparse convolu-
tional neural network. The encoder of this network is based
on [20]. Such an implicit function is thus defined as

f (x|P,N) =
∑
i,l

α
(l)
i K

(l)
θ

(
x, x

(l)
i |P,N

)
, (1)

where each kernel K(l)
θ : R3 × R3 → R, l ∈ {1, ..., L} is

derived from a convolutional neural network trained for this
specific level. The coefficients α(l)

i ∈ R, at the i voxel with
center x(l)

i , are optimized via a ridge regression during the
forward pass. In addition to the voxel hierarchy, a second
contribution is a new gradient-based kernel formulation that
handle noise via predicted normal constraints.

4.2. Point visibility without mesh reconstruction

Because of the computational cost of mesh reconstruc-
tion, other more efficient options were proposed. In [9],
Katz et al. define an hidden point removal operator. Know-
ing the position of the point of view v, the first step is to
invert all the points p ∈ R3 of the point cloud P . This in-
version, named linear or spherical inversion, is defined as

p̂ = (γ − ∥p− v∥2)
p− v

∥p− v∥2
(2)

with γ > maxp∈P (∥p∥2) a parameter of the function. It
corresponds to computing the symmetric of p with respect
to the surface of a sphere of radius γ

2 centered at v. Other
inversions are also possible. In their second paper [8], Katz
et al. give the necessary and sufficient conditions for such a
function. They define two other inversions, the exponential
inversion

p̂ = ∥p− v∥γ2
p− v

∥p− v∥2
(3)

with γ < 0, and the natural exponential inversion

p̂ = e−γ∥p−v∥2
p− v

∥p− v∥2
(4)

with γ > 0.
We define as P̂ the set of inverted point p̂. The second

step is to compute the convex hull of the inverted set of
points P̂ . A point p is said to be visible when its inverse p̂
lies on the convex hull derived during the second step. In the
following, we refer to this method as DVPS. This approach
is then extended in [13] to work on noisy point clouds. Note
that the hull provides a local viewpoint-dependant mesh and
is not used to render the point cloud.

Biasutti et al. [2] focus on the problem of point density
when estimating the visibility. They propose a new method,
that we refer to as VEVD, based on local neighboring points
to avoid the problem of parameter selection in [9] based on
the density of the studied point cloud. For that, the point
cloud is projected onto the view camera and the k nearest
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Density Sparse Dense

Method DVPS VEVD VEVD-I Vis2Mesh NKSR DVPS VEVD VEVD-I Vis2Mesh NKSR

t(s) 101 102 102 101 101 101 102 102 102 101

TP 27.27 31.59 22.51 27.74 28.75 22.10 31.90 24.23 26.49 28.44
FP 1.87 18.86 9.38 7.02 3.53 0.53 18.49 9.49 4.90 3.14
FN 7.72 3.40 12.48 7.25 6.24 12.90 3.10 10.77 8.51 6.55
TN 63.14 46.16 55.63 57.99 61.49 64.47 46.52 55.51 60.11 61.87

Precision 93.58 62.62 70.59 79.81 89.07 97.64 63.31 71.86 84.40 90.07
Recall 77.95 90.28 64.33 79.29 82.16 63.14 91.16 69.24 75.69 81.27

Accuracy 90.41 77.74 78.14 85.74 90.23 86.57 78.42 79.75 86.60 90.31
F1-score 85.05 73.95 67.32 79.55 85.48 76.69 74.73 70.53 79.81 85.45

TP-c 17.39 24.13 13.44 23.64 18.22 12.94 27.58 15.91 22.81 18.77
FP-c 1.92 15.54 4.81 15.33 4.34 0.48 14.82 4.60 9.66 3.97
FN-c 14.98 8.24 18.93 8.73 14.15 22.95 8.31 19.98 13.08 17.12
TN-c 65.71 52.09 62.82 52.30 63.29 63.63 49.29 59.51 54.45 60.14

Precision-c 90.05 60.82 73.63 60.65 80.77 96.40 65.05 77.58 70.25 82.54
Recall-c 53.73 74.55 41.52 73.02 56.27 36.06 76.84 44.32 63.55 52.31

Accuracy-c 83.10 76.22 76.26 75.93 81.51 76.57 76.87 75.42 77.26 78.91
F1-score-c 67.30 66.99 53.10 66.27 66.33 52.48 70.46 56.41 66.73 64.03

Table 3. Quantitative results. Information on the clouds are given in Table 2. Positive predictions are the visible points in the outputs. The
“-c” metrics are the complex visibility estimation metrics defined in Section 5. Vis2Mesh and NKSR were run on a GPU, the others on
CPU. VEVD-I is described in Section 4.2. VEVD [2], DVPS [9], Vis2Mesh [19] and NKSR [6] are state-of-the-art methods.

neighbors are estimated for each point in the 2D space. The
visibility of a given point p is given by

α(p) = exp

(
− (d(p)− dmin(p))

2

(dmax(p)− dmin(p))2

)
, (5)

where the depth d(p) is the distance from the camera center
to the point p, namely d(p) = ∥p − v∥2, dmin(p) is the
distance to the closest point from N (p) the set of nearest
neighbors of p, namely dmin(p) = minp′∈N (p) d(p

′), and
dmax(p) the distance to the farthest element, i.e. dmax(p) =
maxp′∈N (p) d(p

′). The αs are then thresholded to obtain a
binary visibility classification.

VEVD is designed for urban scenes acquired with a
LiDAR located on a car. In an indoor scene where many ob-
jects can be behind each others, the definition of the visibil-
ity α, in Eq. (5), can cause points to be classified as visible
when they are not. Indeed, a hidden object can have a rel-
atively small depth compared to the maximum depth of the
scene. Formally, this corresponds to the case where a hid-
den point p is such that d(p) is much smaller than dmax(p)
thus leading to α(p) being close to 1. To mitigate this prob-
lem, we introduce a variant, named VEVD-I, that discards
a neighbor when its depth is too different from d(p) in the
3D space. A neighbor p′ is kept if and only if

d(p′)− d(p) < t(p), (6)

where t(p) > 0 is a point-dependent threshold value func-

tion. We use t(p) = medianp′∈N (p)|d(p′) − d(p)| in the
following. Compared to a global constant threshold, a local
threshold function should help to generalize across datasets.

5. Experiments
We evaluate the state-of-the-art visibility estimation

methods presented in Section 4 on nine viewpoints arbit-
rarily chosen inside the IRIS-VIS point cloud (Figure 4 and
Table 2). The ground truth is computed using our given
code as described in Section 3.2. In order to evaluate robust-
ness towards density, experiments are performed on a sparse
and a dense cloud generated via random uniform sampling
by a factor two and ten percent respectively from the raw
point cloud. We also evaluate the impact of the LiDAR ac-
quisition noise in the supplementary material by performing
the same evaluation as in this section but with a synthetic
point cloud sampled from the CAD model.

Visibility estimation methods classify points in two cat-
egories, visible or hidden. This is why we consider classi-
fication metrics to measure the performance. In that case,
positive and negative predictions correspond respectively to
visible and hidden points from the considered viewpoint.
On top of the true positives (TP), false positives (FP), false
negatives (FN) and true negatives (TN), we also consider
the precision

(
TP

TP+FP

)
, the recall

(
TP

TP+FN

)
, the accur-

acy
(

TP+TN
TP+FP+TN+FN

)
and the f1-score

(
2TP

2TP+FP+FN

)
.
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Figure 8. Qualitative results on Scene Quali-1 in the sparse point cloud. TP (blue), FP (purple), FN (orange). Positive predictions are the
visible points in the outputs.

Input DVPS [9] VEVD [2] VEVD-I Vis2Mesh [19] NKSR [6]

Figure 9. Qualitative results on Scene Quali-2 in the sparse point cloud. TP (blue), FP (purple), FN (orange). Positive predictions are the
visible points in the outputs.

We also believe that, in most of the 3D tasks involving vis-
ibility estimation, false positives are more disruptive than
false negatives and this is why we make the emphasis on
the false positives related metrics during the analysis.

In practice, we observed that the visibility is harder to
predict where the variation in depth of the visible points is
high. Thus, we define new metrics, referred to as “complex
visibility estimation metrics”, to focus on these challenging
areas that are often located at the border of the visible ob-
jects. To automatically compute these interesting locations,
we first project the visible cloud on a sphere centered at the
viewpoint and select the points whose variation in depth in
the local neighborhood (50 nearest neighbors) is higher than
a specific value. We chose the percentile 90 of the depth
variances in the neighborhoods as threshold. Secondly, we
project the non-visible cloud on the same sphere and select

the points belonging to the new neighborhood of a previ-
ously selected visible point. Figure 10 shows that the se-
lected points are mostly located at the visibility boundaries
and Table 3 demonstrates that methods struggle to find the
visible points in these areas as the complex recall provides
significantly worse results than the standard recall.

Figure 10. Point selection for the complex visibility estimation
metrics. Left: the input point cloud. Right: the selected points.
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We discuss implementation details and parameters
choice in the supplementary material.

5.1. Quantitative evaluation

In Table 3, we present the quantitative experiments per-
formed on both dense and sparse version of the cloud.

Looking at the accuracy and f1-score, NKSR [6] gives
the best results for both densities. Regarding the precision,
all methods perform significantly different. DVPS is the
best by far. The poor ranking of VEVD confirms that it is
not suitable for indoor environments. VEVD-I shows sig-
nificant improvements for both densities but still trails the
other methods. VEVD provides the best recall, giving less
FN than the other methods.

NKSR and VEVD seem to be robust to low point density.
Indeed, their performances are similar across all metrics for
both sparse and dense point clouds.

Points located in complex areas are often predicted as
non-visible, leading to a significant increase in FN-c and
a decrease of the recall-c. As a result, the accuracy-c and
f1-score-c also decrease for all the methods and densities.
Similar to the standard metrics, for both densities DVPS
provides the best precision-c and VEVD is the best in terms
of recall-c.

In the supplementary, the performances on the synthetic
point cloud are different than on the LiDAR derived cloud
and often better in accuracy and f1-score. This experiment
demonstrates the impact of the noise for this task and the
advantage of providing a real point cloud in our dataset.

5.2. Qualitative evaluation

Qualitative results are shown on two scenes, named
Quali-1 and Quali-2, included in the clouds used for the
quantitative experiments. Figures 8 and 9 present the res-
ults in the sparse point cloud, whereas Figure 11 compares
the performances of DVPS [9] in sparse and dense config-
uration, the only method that shows significantly different
visualizations. More results are given in the supplementary,
including the quantitative evaluation on these scenes.

Scene Quali-1 is simple: a pole with a convex and regu-
lar shape with no object behind (Figure 8). In these condi-
tions, VEVD-I and Vis2Mesh, both sparse and dense, and
DVPS [9] dense give the fewer amount of FPs. This is par-
ticularly visible behind the pole. We see also that VEVD
gives worse results than the proposed variant VEVD-I.
The methods not based on surface reconstruction (DVPS,
VEVD and VEVD-I) present FNs at the visibility boundar-
ies. The smaller amount of FNs given by Vis2Mesh and
NKSR is the result of a precise mesh estimation and a
raycasting step similar to the ground truth generation. We
show the impact of point density for DVPS in Figure 11.

Scene Quali-2 includes scene Quali-1 and add objects
behind the pole (Figure 9). DVPS, Vis2Mesh and NKSR

Sparse Dense

Figure 11. Difference between the sparse and the dense DVPS [9]
predictions on scene Quali-1. TP (blue), FP (purple), FN (orange).
Positive predictions are the visible points in the outputs.

are clearly robust to this scene modification as these meth-
ods compute a mesh hiding the objects behind. On the con-
trary, VEVD [2] struggles in removing the hidden points in
scene Quali-2 contrary to scene Quali-1. The objects behind
the pole increases dmax, thus leading to a higher visibility
in Eq. (5). VEVD-I shows fewer FPs but still more than
DVPS, Vis2mesh and NKSR. DVPS dense gives fewer FPs
than the other methods, removing both hidden points on the
pole and the objects behind it. On the sparse cloud, only
Vis2Mesh is able to remove all the points behind the pole.

DVPS and NKSR can estimate the visibility on small
and thin objects such as pipes, valves or gauges. On the
other hand, Vis2Mesh has difficulties with thin pipes as
most of them are missing from the resulting mesh. VEVD
and VEVD-I show FNs on some valves but perform well
overall on most of the other thin objects.

6. Discussion and Perspectives

IRIS-VIS provides a dense real indoor point cloud
coupled with a well-fitted CAD model of an industrial
scene. Thanks to the presence of very detailed and small ob-
jects as well as large piping in many directions, it is suitable
for challenging evaluations in many computer vision tasks.
In particular, we designed new metrics for point visibility
estimation and saw that VEVD-I outperforms VEVD [2]
qualitatively. However, these two methods still trail signi-
ficantly DVPS, Vis2Mesh and NKSR in computation time
and task performance. DVPS seems to be a good comprom-
ise between performance (especially precision) and com-
putation time but we also saw that it is not robust to low
point density and very dependent on the choice of paramet-
ers. If the computational cost is not a limitation, NKSR [6]
provides the best accuracy and f1-score while being robust
to the density. Nevertheless, the performance of these meth-
ods is not yet sufficient for automatic industrial applications
thus showing that more work is required to develop more
appropriate methods for this case.
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